
Fast and Cheap Genome wide Haplotype

Construction via Optical Mapping

T.S. Anantharaman∗, V. Mysore†, and B. Mishra†‡
∗Wisconsin Biotech Center, Univ. Wisc., Madison WI, U.S.A

† Courant Institute of Mathematical Sciences, NYU, New York, NY, U.S.A.

‡ Watson School of Biological Sciences, Cold Spring Harbor, NY, U.S.A.

Abstract

We describe an efficient algorithm to construct genome wide haplotype restriction maps
of an individual by aligning single molecule DNA fragments collected with Optical Mapping
technology. Using this algorithm and small amount of genomic material, we can construct the
parental haplotypes for each diploid chromosome for any individual, one from the father and
the other from the mother. Since such haplotype maps reveal the polymorphisms due to single
nucleotide differences (SNPs) and small insertions and deletions (RFLPs), they are useful in
association studies, studies involving genomic instabilities in cancer, and genetics. For instance,
such haplotype restriction maps of individuals in a population can be used in association studies
to locate genes responsible for genetics diseases with relatively low cost and high throughput.

If the underlying problem is formulated as a combinatorial optimization problem, it can
be shown to be NP-complete (a special case of K-population problem). But by effectively
exploiting the structure of the underlying error processes and using a novel analog of the Baum-
Welch algorithm for HMM models, we devise a probabilistic algorithm with a time complexity
that is linear in the number of markers.

The algorithms were tested by constructing the first genome wide haplotype restriction
map of the microbe T. Pseudoana, as well as constructing a haplotype restriction map of a 120
Megabase region of Human chromosome 4. The frequency of false positives and false negatives
was estimated using simulated data. The empirical results were found very promising.

1 Introduction

Diploid organisms, such as humans, carry two mostly similar copies of each chromosome, referred
to as haplotypes. Variations in a large population of haplotypes at specific loci are called poly-
morphisms. The co-associations of these variations across the loci indices are of intense interest in
disease research.

The polymorphic marker of most interest has been the Single Nucleotide Polymorphism (SNP).
There are estimated to be 15 million such markers over the entire human genome (including only
SNPs where the minor allele occurs at least 5% of the time) and a realistic genome wide association
study would require at least 1000 samples to be tested for each of these 15 million SNPs. By
taking advantage of linkage disequilibrium [1, 7, 8, 17] the number of SNPs that need to be tested
can be reduced to about 300,000. The main limitation of most SNP based approaches is that
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each SNP is assayed separately and hence it is not possible to accurately infer the exact haplotype
map for a particular individual (which we will refer to as an individual haplotype map and is
sometimes called one-individual haplotype map or personal haplotype map) from SNP assays alone.
Instead, the phase is inferred statistically from a large population of SNP data. These phasing
algorithms use assumptions such as parsimony in the total number of different haplotypes in the
population, the Hardy-Weinberg equilibrium, perfect phylogeny to combinatorially constrain the
possible haplotypes [5, 9, 10, 12, 14] or alternatively, use statistical approaches [19, 21] (available
as phase and haplotyper software packages). The statistical algorithms have tended to be
bit more accurate, but unforgivingly slow. The results of all these algorithms are referred to
as population haplotype maps and are typically only 90–95% accurate in any particular map on
average and would thus rarely be correct in any individual haplotype. The inaccuracies emanate
from multiple, complex and unwieldy sources of errors: population stratifications, violation to
perfect phylogeny assumption (with hemizygous deletions or gene conversion), or corrupted data
manifesting as genotype errors. Thus, it is necessary that we explore new direct and cost-effective
methods, where a single individual’s genome is analyzed to create the haplotype sequences or maps
without making any overly generalized assumptions, using population wide statistics, or requiring
the availability of parental genomes (as in trio-studies).

For a genotyping method to be able to correctly determine the phasing between neighboring
polymorphic markers in every individual haplotype map, it must ultimately be able to test single
DNA fragments containing 2 or more heterozygous polymorphic markers in a single test. It is possi-
ble, of course, to assemble individual haplotype maps by sequencing the individual’s entire genome
using a modified sequence assembly algorithm [16, 24] but the cost of doing this is prohibitive1.

Here, we propose a direct and more cost-effective approach using the fairly well developed
single molecule technology of Optical Mapping. We demonstrate the feasibility of constructing
such an accurate individual haplotype map of restriction sites through pilot-scale experiments and
simulation studies. A brief description of the data generated by Optical Mapping technology is given
in the following section, and many more details of the technology can be found in the literature
(e.g. [15, 18, 25]). Unfortunately, the input genomic data that can be collected from a single
DNA molecule by the best chemical and optical methods (such as those used in Optical Mapping)
are corrupted by many poorly understood noise processes. Thus to make this system feasible,
the biggest challenge has been in developing accurate Bayesian probabilistic models of errors for
experiment design and efficient maximum likelihood algorithms to achieve accuracy with sufficiently
redundant data.

Each individual haplotype map of restriction sites will only detect a small fraction of all polymor-
phisms in the human genome, but using the same linkage disequilibrium assumption mentioned pre-
viously, approximately 8 individual haplotype restriction maps will contain more than the 300,000
SNPs required to infer all other known polymorphisms in the individual genome. Even with 50
fold data redundancy required, all date required for 8 individual haplotype restriction maps can be
collected for under $1000.

In this paper, we present an unambiguous mathematical formulation of the problem (section
2), combinatorial complexity of the resulting problem (also section 2), an efficient probabilistic
algorithmic solution built upon a detailed Bayesian model of the underlying error sources (section
3) and finally, its complexity analysis (section 4). We also provide data on the performance of the
algorithm on real and simulated examples (section 5) and conclude with a discussion of the future

1This cost has been estimated to be over $10 million per individual

2



problems (section 6).

2 Problem Formulation

Our problem can be formulated mathematically as follows: We assume that all individual single
molecule DNA fragments are derived from a diploid genome (ignoring the case of sex chromosomes)
with two copies of homologous chromosomes. Each DNA fragment is further mapped by cleavage
with a restriction enzyme of choice and imaged by an imaging algorithm to produce an ordered
sequence of “restriction fragment lengths” or equivalently, “restriction sites.” The variations in
these restriction fragment lengths are primarily due to RFLPs as well as SNPs at the restriction
sites. Additionally, there are further variations introduced by the experimental process and could
be assumed due to: sizing errors, partial digestion, short missing restriction fragments, false cuts,
ambiguities in the orientation, optical chimerisms, etc. Thus, the genomes may be represented as
two haplotype restriction maps, H1 and H2, for the same individual which differ only slightly from a
genotype restriction map H by a small number of short insertions, deletions and SNPs that coincide
with restriction sites. All such maps, H , H1 and H2, are assumed to be representable as a sequence
of restriction sites (e.g. H2,i, with indices 0 ≤ i ≤ (N + 1), where H2,0 and H2,N+1 represent the
chromosome ends), but are unknown. However, short DNA fragments of around 500 Kb derived
from such maps, and further corrupted by experimental noise processes can be readily generated
at high throughput and very low cost using a technology like Optical Mapping [15, 18, 25]. These
short DNA fragments will be written as Dk, with indices 1 ≤ k ≤ M , where M is the number of
data fragments and each data fragment is in turn represented as a sequence of restriction sites (e.g.
Dk,j , 0 ≤ j ≤ mk + 1 ) and can be aligned globally to create an estimate of genotype map H using
algorithms described previously [3].

The algorithmic problem, we wish to study, is to further separate H into two maps H1 and H2

in such a manner that each data fragment Dk is aligned well to one haplotype or other and that
H1 and H2 differ from H only by modifications consistent with SNPs or RFLPs polymorphisms.

Thus, ultimately, this problem corresponds to a problem of refining a multiple map alignment
in to two families, starting with one global alignment. A combinatorial generalization, where the
number of such families is arbitrarily large (k > 1) and the cost of each alignment is arbitrarily
unconstrained, has been shown to lead to computationally infeasible problems. See [20] for the
proof of NP-completeness as well as a probabilistic analysis to show conditions under which the
problem can be solved efficiently with a probability close to one. The key to an effective solution
of these problems relies on careful experiment design (e.g., choice of coverage, restriction enzyme,
experimental conditions, etc.) to ensure conditions under which a polynomial time probabilistic
algorithm will work with high probability in conjunction with a Bayesian error model that encodes
the error processes properly.

To construct individual haplotype maps from Optical Mapping data we use a mixture hypothesis
of pairs of maps H1 and H2 for each chromosome, corresponding to the correct restriction map of
the two parental chromosomes. We first assemble the data into a regular map of the entire genome
and use this assembly to separate the data into distinct chromosome sets: all maps from the same
chromosome belonging to a pair will be included in the same set. We then use a probabilistic
model of the errors in the data to derive conditional probability density expressions f(Dk|H1) and
f(Dk|H2), and apply Bayes rule to maximize a score for the best alignment with respect to proposed
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H1 and H2, Equation 1.:

f(H1, H2|D1, . . . , DM ) ∝ f(H1, H2)f(D1, . . . , DM |H1, H2) (1)

The first term on the right side is the prior probability of H1 and H2 and we just use a low
prior probability for each polymorphism (difference in H1 vs. H2). For the conditional probability
term, we can assume each map is a statistically independent sample from the genome and that the
mapping errors are drawn from i.i.d. distributions and hence write:

f(D1, . . . , DM |H1, H2) =

M
∏

k=1

[f(Dk|H1) + f(Dk|H2)]

2
(2)

The conditional terms of the form f(Dk|Hi) above can be written as a summation over all pos-
sible (mutually exclusive) alignments between the particular Dk and Hi, and for each alignment the
probability density is based on an enumeration of the map errors in the alignment and multiplying
together the probability associated with each error under some suitable error model. The exact form
of the error models suitable for Optical Mapping is described in the next section, but for almost
any error models used the sum of the probability for all alignments can be computed effectively
using dynamic programming. In the next two sections, we will derive the dynamic programming
recurrence relations for this problem and show how to implement the algorithm with attractive
computational complexities. Using these alignment algorithms, we will see how it is possible to
quickly search through the space of all haplotype pairs to find the most plausible ones consistent
with the data.

Other methods for assembling Optical Mapping data for relatively short clones into genotype
restriction maps exist, e.g., ones based on Markov Chain Monte Carlo search [22] or Maximum
Likelihood [23] or heuristic scoring functions [13]. However these methods are yet to be scaled to
map whole genomes. Even for restriction maps of BAC clones these methods produce the correct
map only 50% of the time [13] and have no way of signaling when the method fails. Bayesian
algorithms [3, 4], similar to the ones described here, are routinely used by untrained chemists and
biologists to assemble genotype restriction maps with a success rate of higher than 90%, and produce
p-values to signal failure rather than produce an incorrect map.

3 Algorithm

3.1 Computing Conditional Probabilities for a Hypothesis

Theorem 1 Consider an arbitrary alignment between the data D and the hypothesis H, J th re-

striction site of D matching the Ith restriction site of H. We will denote this aligned pair by

J 7→ I.
Let the probability density of the unaligned portion on the left and right end of such an alignment

be denoted by fur(I, J) on the right end if J 7→ I is the rightmost aligned pair, and ful(I, J) on the

left end if J 7→ I is the leftmost aligned pair.

In addition, the following probability density functions fm and fa denote the following:

fm(I, P ) = Pr[H [I..P ] is missing in the observed data D].

fa(I, J, P, Q) = Pr[H [I..P ] is an aligned region but not a missing fragment with respect to

the observed data region D[J..Q]].
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Figure 1: To define the notation required we consider a single arbitrary alignment between a particular data D

and hypothesis H. Recall that N is the number of restriction sites in H and m the number of restriction sites in
D. Any arbitrary alignment between D and H can be described as a list of pairs of restriction sites from H and
D that describes which restriction site from H is aligned with which restriction site from D. As an example, Here
the alignment consists of 4 aligned pairs (4, 2), (5, 2), (I, J) and (P, Q). Notice that not all restriction sites in H or
D need be aligned. For example between aligned pairs (I, J) and (P, Q) there is one misaligned site on H and D

each, corresponding to a missing site (false-negative) and extra-site (false-positive) in D. In this alignment a true
small fragment between sites 4 and 5 in H are missing from D, which is shown by aligning both sites 4 and 5 in H

with the same site 2 in D. Note that if two or more consecutive fragments in H are all missing in D, this would
be described by aligning all sites for the missing fragments in H with the same site in D (rather than showing only
the outermost of this set of consecutive sites in H aligned with D, for example). The expression for the conditional
probability density of any alignment, such as the one here, can be written as the product of a number of probability
terms corresponding to the regions of alignment between each pair of aligned sites, plus one probability term for each
unaligned region at the two ends of the alignment.

We assume that I < P and J < Q.
Then the following holds:

f(D|H) =
N

X

I=1

m+1
X

J=0

ful(I, J)f(D[J..m + 1]|H [I..N ] ∧ J 7→ I).

f(D[J..m + 1]|H [I..N ] ∧ J 7→ I) = fur(I, J) + fm(I, I + 1)f(D[J..m + 1]|H [I + 1..N ] ∧ J 7→ (I + 1))

+
N

X

P=I+1

m+1
X

Q=J+1

fa(I, J, P, Q)f([Q..m + 1]|H [P..N ] ∧ Q 7→ P )

In particular, if the intermediate values are kept in a DP table Asuf [I, J ]

Asuf [I, J ] = f(D[J..m + 1]|H [I..N ] ∧ J 7→ I)

then it is easily seen that f(D|H) can be computed exactly in O(m2N2) time and O(mN) space,

assuming that fm and fa are O(1) time functions and ful and fur are O(N) time functions. �

In a later section we will see how to reduce the complexity to linear time when we only require
an ǫ-approximate value f̃

f(D|H) − ǫ < f̃(D|H) < f(D|H) − ǫ,
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for the probability density function arising in the context of optical mapping as follows:

fm(I, I + 1) = PHI+1−HI

ν

fa(I, J, P, Q) = λQ−J−1Pd(1 − Pd)
P−I−1(1 − Pν)HP −HI G(HP −HI ),σ2(HP −HI )(DQ − DJ),

where Pd = the digest rate, λ = the false-positive site rate, σ2h = the Gaussian sizing error variance
for a fragment of size h, Pν = the probability of missing a fragment of unit size, and Re = the
breakage rate of DNA (the inverse of the expected fragment size). For a random variable x following
a Gaussian distribution N (µ, σ2), the probability density value at d is

Gµ,σ2(d) =
exp[−(d − µ)2/2σ2]√

2πσ
.

The exact form of the functions for ful and fur for Optical Mapping are complicated, but not
very important in understanding the complexity of the algorithm; thus a detailed discussion is
omitted here, but can be seen in the appendix. Note that, at first glance, ful and fur may appear
to be O(N) time functions, but it is easily seen that they permit O(1) ǫ-approximation.

As it has been shown elsewhere [2], a good approximate location of the best alignment between
D and H can be determined in O(1) expected time, if the conditional probability density has been
previously evaluated for a similar H or alternatively, through a geometric hashing algorithms. Only
a O(1)-width band of the DP table needs to be evaluated to compute an ǫ-approximation f̃(D|H).
In particular, the band width of the DP table used in practice is usually about ∆ = 8; more
generally for Optical mapping ∆ is bounded by

(1 − Pd)
∆−1 = ǫ, or ∆ = 1 +

ln(ǫ)

ln(1 − Pd)
.

With this approach we achieve a reduced time complexity of O(min(m, N)) (more explicitly,
O(min(m∆3, N))).

3.2 Recomputing Conditional Probabilities for a Modification to Hy-

pothesis

We next consider following problem: How can one re-evaluate the conditional probability distribu-
tion function, f(D|H ′ = p(H)) when the new hypothesis, H ′, has been obtained by locally changing
H in just one place (corresponding to a polymorphism). There are three cases to consider. We
study one of the three cases here in detail and refer the reader to the appendix: for details. The
omitted cases are similar but tedious.

We may obtain H ′ by

1. Deleting one of the existing restriction sites in H , as the site may contain a heterozygous
SNP;

2. Adding a new restriction site at a specified location in H , symmetrical to the previous case;

3. Increasing or decreasing a restriction fragment length in H , an RFLP;
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Consequently, we may also need to compute the first and second derivative of f(D|H) relative
to the change in any fragment size in H .

Theorem 2 Consider an arbitrary alignment between the data D and the hypothesis H, J th restric-

tion site of D matching the Ith restriction site of H. Using the notations of the previous subsection,

we write:

Asuf [I, J ] = f(D[J..m + 1]|H [I..N ] ∧ J 7→ I), and Apref [I, J ] = f(D[0..J ]|H [1..I] ∧ J 7→ I).

Then

Asuf [I, J ] = fur(I, J) + fm(I, I + 1)Asuf [I + 1, J ] +

N
∑

P=I+1

m+1
∑

Q=J+1

fa(I, J, P, Q)Asuf [P, Q],

and similarly,

Apref [I, J ] = ful(I, J) + Apref [I − 1, J ]fm(I − 1, I) +

I−1
∑

P=1

J−1
∑

Q=0

Apref [P, Q]fa(I, J, P, Q),

If H \ {HK} is obtained from H by deleting the site HK , then

f(D|H \ {HK}) = Pr[Alignments with rightmost aligned I < K]

+ Pr[Alignments with leftmost aligned J > K]

+ Pr[Alignments with a fragment spanning H [K − 1..K + 1]]

=

K−1
X

I=1

m+1
X

J=0

Apref [I, J ]f (−Hk)
ur (I, J) +

N
X

I=K+1

m+1
X

J=0

f
(−Hk)
ul (I, J)Asuf [I, J ]

+IK<N

m+1
X

J=0

Apref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+

m+1
X

J=0

K−1
X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]
fa(I, J, P, Q)

1 − Pd

Asuf [P, Q],

where f
(−Hk)
ul and f

(−Hk)
ur are computed respectively from ful and fur by suitable simple modifica-

tions.

Then it is seen that f(D|H \{HK}), ∀K 1 ≤ K ≤ N , can be computed exactly in O(m2N2) time

and O(mN) space, assuming that fm and fa are O(1) time functions and ful and fur are O(N)
time functions.

Proof Sketch:

We omit the derivation of the recurrence relation. In order to see how the stated computational
complexity can be achieved, observe that: (1) We can amortize the cost of computing f(D|H\{HK})
over all 1 ≤ K ≤ N by evaluating each term with fa(I, J, P, Q), f

(−Hk)
ur (I, J), f

(−Hk)
ul (I, J) just

once. For example, any term

Apref [I, J ]
fa(I, J, P, Q)

1 − Pd
Asuf [P, Q]
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will be present in the summation of f(D|H \ {HK}) for all I < K < P and absent for all other K.
(2) If all f(D|H \ {HK}) for all 1 ≤ K ≤ N are summed into a table F [K = 1..N ] where each

F [K] = f(D|H \ {HK}) − f(D|H \ {HK−1})
except F [1] = f(D|H \{H1})), we just need to add this term to F [I +1] and subtract it from F [P ].
Then it is easily seen that both the DP tables Apref [I, J ] and Asuf [I, J ] and the table F [K = 1..N ]
can be computed exactly in O(m2N2) time and O(mN) space, assuming that fm and fa are O(1)
time functions and ful and fur are O(N) time functions. �

A few simple remarks are in order: The probability f(D|H \ {HK}) we wish to compute can
be extracted from table F by adding up the region F [1..K], which can be done for all K in O(N)
time.

If we only wish to compute an ǫ-approximation f̃ , for some consecutive range of m different
K values, one can compute these m probabilities f(D|H \ {HK}) for each kind of modification in
O(min(m, N)) time:

1. To delete a restriction site from H : Total cost = O(min(m∆3, N)) for total of m restriction
sites.

2. To change the size of a restriction fragment in H by δ: Total cost = O(min(m∆3, N)) for
changing each of (m + 1) restriction fragments.

3. To add T new restriction sites in H : Total cost = O(min(m∆3 + T∆4, N)). Note that
typically T ≤ m.

4. To compute the first two derivatives
∂df(D|H)

∂F d
k

, d = 1, 2, and k = 0, . . . , m of f(D|H) relative

to each of m + 1 fragment sizes: Total cost = O(min(m∆3, N)).

3.3 Search Algorithm for Haplotypes

The recurrence equations of the previous subsections and the dynamic programming algorithms
based on those allow us to efficiently compute the posterior probability for a single possible pair of
maps H1 and H2 and their modifications

[

H
(0)
1

H
(0)
2

]

⇒
[

H
(1)
1

H
(1)
2

]

⇒
[

H
(2)
1

H
(2)
2

]

⇒ · · ·

The computationally expensive part of computing the haplotype map algorithm is the search over
possible maps H1 and H2 in order to find the one with the highest posterior probability.

Initially, we assume that a single genotype map hypothesis H has been computed and it has
been determined that H best matches all data. The algorithms to compute such maps have been
developed [4, 3] and have been in use for more than five years. The speed of the main algorithm,
GenTig, has been improved through an important heuristic stage that relies on geometric hashing
to quickly identify the maps that overlap, and can also be used in the context of haplotyping. The
time complexity of this geometric-hashing-stage is super-linear and is given as

TH = O(N + M
4/3
D ), where MD =

M
∑

j=1

mj + 1,
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i.e., MD is the total number of fragments in the optical mapping data. We will see that the actual
time for this stage TH is dominated by the remaining computation involving search over possible
haplotype pairs H1 and H2, unless the genome we are dealing with is much larger than the human
genome; see next subsection.

If our initial hypothesis is H , then H
(0)
1 = H

(0)
2 = H , and at each stage H

(i)
1 and H

(i)
2 must

then be refined by trying to add or delete restriction sites and by adjusting the distance between
restriction sites by doing a gradient optimization of the probability density of all maps for each

fragment size. The result is H
(i+1)
1 and H

(i+1)
2 .

Note that at each hypothesis-recomputation step, trying each new restriction site polymorphism
involves modifying H1 or H2 by adding or deleting a restriction site from H1 (or H2) only, while
trying an RFLP involves modifying the same interval in both H1 and H2 by adding some δh to H1

and subtracting the same δh from H2. In each case both possible “phases” of each polymorphism
is to be accounted for, reversing the use of H1 and H2 above. Since both phases must be tested
and the better scoring one selected, except when adding the first polymorphism to H1 and H2, the
search process can easily turn in to 2O(N).

Note also that if the data cannot allow the phasing to be determined because there are no (or
insufficient) data molecules spanning both polymorphisms, both phases (orientations) will score
almost the same. This fact is also recorded since it marks a break in the phasing of polymorphisms.

Further note that RFLP polymorphisms are more expensive to score, since in addition to the
phasing (whether H1 or H2 has the bigger fragment) it is necessary to determine the amount of the
fragment size difference for H1 and H2 (the δh value), which can be searched for in O(1) expected
time, and the constant is essentially logarithmic in the ratio of the expected fragment length to
the resolution of optical mapping. More precisely, this step involves trying a number of different
multiples of δh values that is logarithmic in the number of total possible values using the well known
unimodal function maximization algorithm based on the golden mean ratio. As an example, the
total number of δh values required for any fragment can be bounded by about 20 if the resolution
of δh is set at 0.1Kb and the largest restriction fragment length is 50Kb; usually, this number is
extremely small: just 1 or 2 small δh values are sufficient to verify that no polymorphism exists.

A purely greedy addition of polymorphisms to H1 and H2 is not sufficient to get the phases
correct as the search can get stuck in local maxima when two or more polymorphisms are nearby.
We avoid this problem by using a heuristic look ahead distance of w restriction sites, and scoring all
combinations of polymorphisms in this window, before committing the best scoring set of polymor-
phisms in H1 and H2. With a sufficiently large window size w, the fraction of the polymorphic sites
the algorithm misses or phases incorrectly can be made negligible. Since this heuristic can increase
the worst case complexity of the algorithm exponentially with the window size w we heuristically
determine the smallest possible window w by using simulated data and search the space of possible
polymorphisms within a window by adding/deleting just one or two polymorphisms at a time until
no further improvement in the probability density occurs.

The overall algorithm must try every possible restriction site and fragment as a possible poly-
morphic SNP or RFLP respectively using a rolling window of size w restriction sites. This process
must be repeated a few times until no further polymorphisms are detected. Typically just two to
three iterations of scanning all restriction sites suffice.
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3.4 Complexity and Algorithm improvements

The overall complexity of the basic haplotype search algorithms described here, just using the basic
DP algorithm from Theorem 3.1, is

Time Complexity

=

M
∑

j=1

Time to compute f(Dj |H) +

3N
∑

i=1

M
∑

j=1

Time to compute f(Dj |H(i)
1 ) and f(Dj |H(i)

2 )

= O





M
∑

j=1

mj + N



+ 3N × O





M
∑

j=1

mj + N



 = O(M2
D/C + N),

where C = coverage and C = (1/N)
∑M

j=1 mj

A couple of simple tricks can be used to significantly speed up the evaluation of conditional
probabilities. First H1 and H2 are typically only being modified in a single location at a time. If
a data map Dj did not previously overlap H1 or H2 anywhere near the location we are modifying,
we can simply reuse its previous conditional probability density values f(Dj |H1) and f(Dj |H2).
Since the average number of DNA fragments overlapping any point of the genome is C, a number
considerably less than the total number of fragments M , this makes the total cost of the search for
the best H1 and H2 asymptotically O(MDm).

The algorithm can be improved further if we use the dual DP tables from Theorem 3.2, in which
m consecutive changes to H1 and H2 can be tested in just three times the time it previously took
to test just one change to H1 and H2. In this case we will recompute the dual DP algorithm for
the approximately 2C DNA fragments at a time, where these are just the fragments that overlap m
consecutive sites. Hence the speedup from switching to the dual DP tables is approximately m/6
resulting in an asymptotic complexity of O(MD)

4 Empirical Results

4.1 Haplotype mapping of 22 chromosomes of T. Pseudoana

Optical Mapping data was previously collected by Dr. Shiguo Zhou of University of Wisconsin in
order to assemble a normal NheI restriction map of the microorganism T. Pseudoana (Diatom).
To test the haplotyping algorithms described above, we selected the 22 largest chromosomes (out
of 25) and separated out the data for each chromosome in order to be able to run the haplotyping
algorithm on 22 separate machines. For all except chromosome 19, the algorithm was able to
successfully phase all polymorphisms and generate two separate maps. Chromosome 19 has all of
its polymorphisms near the two ends of the chromosome and there were not enough molecules that
spanned the chromosome end to end to allow their relative phase to be determined.

4.2 Haplotype mapping of 120Mbase region of human genome

We also selected a subset of the Human Optical Mapping data collected by Mr. Alex Lim of
University of Wisconsin to assemble the first genome wide SwaI restriction map of the Human
genome. The current data set provides an average of 12× data redundancy over the entire human
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genome, which is insufficient to reliably assemble a genome wide map. Moreover the typical molecule
size of 500Kb was shorter than assumed by our simulation. However we selected data that had
assembled into a 120Mbase contig and was identified as part of chromosome 4 on the basis of
alignment with sequence published by NIH. Even though 12× data redundancy is only sufficient
to assemble a haplotype map with low reliably (see next section) chromosome 4 is known to have
60% more SwaI restriction sites than the rest of the human genome which, increases the likelihood
that the typical 500Kb molecule in the data can span two to three restriction site polymorphisms.
Therefore we attempted to reassemble the data using the haplotype assembly algorithm. The
program found 233 restriction site polymorphisms and 12 fragment length polymorphisms, and
was able to phase all polymorphisms into 2 contiguous regions. Using simulation studies (see next
section), we have determined that one needs to wait until about 50× data redundancy is available
when a reliable map can be constructed for this region as well as the rest of the human genome.

4.3 Simulated Data

With real data it is not easy to determine what fraction of false positive or false negative polymor-
phisms is present in the final map since the true haplotype map is not known independently of our
method. To check if this is a problem, we generated simulated data approximating the first 5 mega
bases of human chromosome 21, and the typical error rates for Optical Mapping data based on max-
imum likelihood estimates from previous microbial maps [15, 18, 25] (The more recent data used in
the previous sections had maximum likelihood error estimates about 30% better, so the estimates
used here are conservative). The simulated data was assembled using different amounts of simulated
data corresponding to data redundancy of 6×, 12×, 16×, 24×, 50× and 100× (per haplotype). The
results are summarized in Table 1. To understand these numbers consider row 4 corresponding to
16× redundancy). The last column shows that we used 80 molecules in the simulation. Of these
80 molecules the software classified 71 molecules into one of the two haplotype variants. In fact the
software made 2 errors and correctly classified only 69 molecules. By comparing the two consensus
maps generated by the software we created a list of restriction sites classified as polymorphic (i.e.
a SNP was claimed by the software to exist at a restriction site) and this list was then compared
with the correct list of SNPs generated from the true in-silico maps. The column with the header
“fp SNPs” shows the number of false-positive SNPs claimed by the software. The column with the
header “fn SNPs” shows the corresponding number of false-negative SNPs. Similarly for RFLPs
(i.e. fragment size polymorphisms due to the simulated insertions/deletions of 3Kb).

Redundancy fp SNPs fn SNPs fp RFLPs fn RFLPs Phase err Molecules

6x 5 5 1 18 7/26 30
12x 4 2 4 16 2/55 60
16x 2 1 0 12 2/71 80
24x 2 1 1 11 3/111 120
50x 0 1 1 5 4/228 250
100x 0 0 2 1 2/441 500

Figure 2: Haplotyping algorithm performance for 16 SNPs and 24 RFLPs.
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5 Discussions and Future Work

Single molecule mapping technologies, such as Optical Mapping, are ideal for detecting genetic
markers with phasing information and without population-based assumptions. We formulated an
abstraction of the haplotype map assembly problem for all such single molecule mapping technolo-
gies and provide a probabilistic linear time algorithm to assemble haplotype maps by combining
single molecule restriction maps of long genomic DNAs of average length at least 500Kb containing
2 or more heterozygous polymorphic restriction sites on average.

Single molecule mapping technologies have many advantages over SNP based approaches; we
enumerate four. First, restriction maps can reveal not only SNPs that coincide with the restriction
sites, but also micro-insertions and deletions, global rearrangements or hemizygous deletions. Even
though there is only about 1 micro-insertion or deletion for every 12 SNPs, the average size of
a micro-insertion or deletion is over 36 base pairs, and hence accounts for over 75% of all base
pair differences vs. just 25% for SNPs [6]. Second, since single molecule methods work directly
with genomic DNA and do not require the use of PCR, with such single-molecule methods one can
identify markers in repeat regions, segmental duplications, SINES, LINES etc.— regions occupying
almost half of the human genome. Third, since single DNA molecule segments are mapped using
fluorescent microscopy, this approach is capable of very high throughput (limited primarily by
the digital camera throughput) requiring very little DNA, and costs a fraction of the comparable
cost for the least expensive SNP based approaches. Of course such a individual haplotype map will
reveal only those polymorphic markers (including SNPs) that coincide with restriction sites, but this
can be overcome by collecting maps for multiple restriction enzymes: Based on the known SNPs
and extrapolating to an estimated minimum 10 million SNPs, then using 4 restriction enzymes
with average fragment sizes of 2–4Kb it is possible to detect approximately 200,000 SNPs plus an
estimated 130,000 other polymorphisms. This can be extended to about 1 million SNPs and 650,000
other polymorphisms by using about 50 methylation insensitive restriction enzymes in 20 groups.
Finally, by suitable choice of restriction enzymes, Optical Mapping is also capable of detecting
the epigenetic state in the form of methylated CpG bases which are resistant to many restriction
enzymes. Epigenetic information is known to play a key role in genetic diseases like cancer and
explains why identical twins may display different genetic traits even though they share the same
genetic code.

We estimate that our approach is currently the only approach that can produce a genome wide
individual haplotype map for under $1000 (based on 8 restriction enzyme haplotype maps). The
dominant SNP based approach requires testing of about 300,000 SNPs which costs at least ten
times more per person.

Our approach can be applied to other single molecule mapping technologies. When applied
to single molecule technologies to map short 6–8bp LNA hybridization probes, it can be used to
sequence the entire human genome: With 50× coverage the location of probes can be determined
to within about 200bp. Hence well known error tolerant SBH (Sequencing by Hybridization) al-
gorithms [11] can be used to determine the sequence within any 200bp window from maps of a
universal set of about 2048 probes of 6bp, allowing a draft quality individual haplotype sequence
to be assembled for about $20,000.

Software

HapTig software will be available soon at http://www.bioinformatics.cims.nyu.edu/~mishra
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appendix

The goal of the various DP programming formulations in this paper have been to compute f(D|H),
or f(D|H ′) when H is perturbed to yield H ′, thus yielding the conditional probabilities of a data
map D given a hypothesized consensus map H . This conditional term can be written as a sum-
mation over all possible (mutually exclusive) alignments between the particular D and H , and for
each alignment the probability density is based on a straightforward enumeration of the map errors
implied by the alignment. The key to reasonably fast evaluation of the probability densities summed
over all alignments is the use of a dynamic programming recurrence equation, which is equivalent
to factoring out the common sub-expressions of the probability densities across the different align-
ments. First consider a single arbitrary alignment between a particular D and H . The data map
D can be described by a vector of locations of restriction sites

D =

〈

DJ

〉m+1

J=0

,

where for convenience the first entry D[0] is always 0 and the last entry D[m + 1] is the total size
of the map. For notational convenience we may also refer to the entries of this array as D[J ] or its
subarrays as D[J..Q], where 0 ≤ J ≤ Q ≤ m+1. Similarly the hypothesis map H will be described
by a vector of restriction sites

H =

〈

HI

〉N+1

I=0

,

with analogous representations of H [I] and H [I..P ] with 0 ≤ I ≤ P ≤ N+1. An arbitrary alignment
can be described as a list of pairs of restriction sites from H and D that describe which restriction
site from H is aligned with which restriction site from D. An example appears in Figure 1.

The expression for the conditional probability density of any alignment as defined in Figure 1. can
be written as the product of a term corresponding to the region of alignment between each pair of
aligned sites, plus one term for the unaligned region at each end of the alignment.

Let

Pd = the digest rate,

λ = the false-positive site rate,

σ2h = the Gaussian sizing error variance

for a fragment of size h,

Pν = the probability of missing a

fragment of unit size, and

Re = the breakage rate of DNA

(the inverse of the expected fragment size).

For a random variable x following a Gaussian distribution N (µ, σ2), the probability density value
at d is

Gµ,σ2(d) =
exp[−(d − µ)2/2σ2]√

2πσ
.

For an aligned region that is not a missing fragment (e.g., alignments (I, J) and (P, Q), such that
P > I and Q > J) this probability density will be denoted by a function of the form fa(I, J, P, Q),
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which will depend on the specific errors in the corresponding region of the alignment between D
and H .

fa(I, J, P, Q) = λQ−J−1Pd(1 − Pd)
P−I−1(1 − Pν)HP −HI

×G(HP −HI),σ2(HP −HI )(DQ − DJ).

Similarly for an aligned region that corresponds to a consecutive number of missing fragments
the probability density will be denoted by a function fm(I, P ) (e.g., (I, J) and (I + 1, J) will
correspond to fm(I, I + 1)).

fm(I, P ) = PHP −HI

ν .

Finally for the probability density of the unaligned portion on the left and right end of each
alignment, we shall use fur(I, J) on the right end if (I, J) is the rightmost aligned pair, and ful(I, J)
on the left end if (I, J) is the leftmost aligned pair. These in turn are computed in terms of the
auxiliary functions fr and fl:

fr(I, J, P, Q)

= λm−J (1 − Pd)
P−I−1(1 − PHP −HI

ν )
[

ReΨ(Dm+1 − DJ , HP − HI , HP − HQ)

+IP=N+1G(HN+1−HI ),σ2(HN+1−HI)(Dm+1 − DJ)

]

.

and

fl(I, J, P, Q)

= λJ−1(1 − Pd)
I−P−1(1 − PHI−HP

ν )
[

ReΨ(DJ , HI − HP , HQ − HP )

+IP=0G(HI ),σ2(HI )(DJ)

]

.

The function Ψ is defined as follows3:

Ψ(d, h, b)

=
1

2

[

erf

(

d − h + b
√

2σ2[(h − b) ∧ (d ∨ h)]

)

+ erf

(

h − d
√

2σ2[(h − b) ∧ (d ∨ h)]

)

]

3Notations: a ∧ b = max(a, b) and a ∨ b = min(a, b).
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Now the functions fur and ful are defined as follows:

fur(I, J)

=







































∑N+1
P=I+1 fr(I, J, P, P − 1),

if J ≤ m;

P
HN+1−HN

ν + Re
P

HN+1−HN

ν − 1

log Pν
,

if I = N & J = m + 1;
0,

otherwise;

and

ful(I, J)

=







































∑I−1
P=0 fl(I, J, P, P + 1),

if J ≥ 1;

PH1
ν + Re

PH1
ν − 1

log Pν
,

if I = 1 & J = 0;
0,

otherwise.

Now all that remains is to write down the probability density of a particular alignment as simply
the product of each of the terms fa, fm, ful and fur while computing Asuf recursively as explained
in the body. Note that the probability density of any alignment can be broken apart into the
product of those terms on either side of any particular alignment pair (I, J). This observation
forms the basis of a two-dimensional recurrence using the array Asuf [I, J ], where 1 ≤ I ≤ N and
0 ≤ J ≤ m + 1.

Asuf [I, J ]

= fur(I, J)

+II<Nfm(I, I + 1)Asuf [I + 1, J ]

+
N

X

P=I+1

m+1
X

Q=J+1

fa(I, J, P, Q)Asuf [P, Q]

f(D|H)

=

N
X

I=1

m+1
X

J=0

ful(I, J)Asuf [I, J ].

Next we write down the recurrence equations as we modify H to H ′.
We start with an explanation for how to efficiently re-compute f(D|H ′) while deleting one

restriction site HK from H at a time for all possible K, 1 ≤ K ≤ N . The key step is to compute
an additional recurrence array Apref which represents the sum of the probability densities of all
those alignments between the part of H to the left of site I and the part of D to the left of site
J , for which (I, J) is the rightmost aligned pair. The corresponding recurrence equation are shown
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below:

Apref [I, J ]

= ful(I, J)

+II>0Apref [I − 1, J ]fm(I − 1, I)

+
I−1
X

P=1

J−1
X

Q=0

Apref [P, Q]fa(I, J, P, Q)

fk(D|H)

=

K−1
X

I=1

m+1
X

J=0

Apref [I, J ]fur [I, J ] +
N

X

I=K+1

m+1
X

J=0

ful[I, J ]Asuf [I, J ]

+

m+1
X

J=0
»

IK<N Apref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+

K−1
X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]fa(I, J, P, Q)Asuf [P, Q]

–

.

Note that in equation above, none of the terms Apref [I, J ] or Asuf [I, J ] will change if we remove
the restriction site HK from H . However the terms fa(I, J, P, Q) will change to fa(I, J, P, Q)/(1 −
Pd), and fur[I, J ] and ful[I, J ] will change in a way we will describe below, when HK is deleted.
First we rewrite the previous equation as

fk(D|H)

=
K−1
X

I=1

m+1
X

J=0

Apref [I, J ]
N+1
X

P=I+1

fr(I, J, P, P − 1)

+
N

X

I=K+1

m+1
X

J=0

Asuf [I, J ]
I−1
X

P=0

fl(I, J, P, P + 1)

+
m+1
X

J=0
»

IK<NApref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+

K−1
X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]fa(I, J, P, Q)Asuf [P, Q]

–

.

We now write down the recurrence equation to reflect the deletion of HK from H and corre-
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sponding changes in fa, fl and fr to get the result:

f(D|H \ {HK})

=

K−1
X

I=1

m+1
X

J=0

Apref [I, J ]

N+1
X

P=I+1

f−(Hk)
r (I, J, P, P − 1)

+

N
X

I=K+1

m+1
X

J=0

Asuf [I, J ]

I−1
X

P=0

f
−(Hk)
l (I, J, P, P + 1)

+

m+1
X

J=0
»

IK<NApref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+

K−1
X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]
fa(I, J, P, Q)

1 − Pd

Asuf [P, Q]

–

,

where

f−(HK )
r (K, I, J, P )

=

8

>

>

>

>

<

>

>

>

>

:

fr(I, J, P, P − 1)

(1 − Pd)
, if K < P − 1;

fr(I, J, P, P − 2), if K = P − 1;
0, if K = P ;
fr(I, J, P, P − 1), if K > P,

and analogously

f
−(HK)
l (K, I, J, P )

=

8

>

>

>

>

<

>

>

>

>

:

fl(I, J, P, P + 1), if K < P ;
0, if K = P ;
fl(I, J, P, P + 2), if K = P + 1;
fl(I, J, P, P + 1)

(1 − Pd)
, if K > P + 1.

Recurrence equation for adding a restriction site HT to H somewhere between HK−1 and HK
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is shown below.

f(D|H ∪ {HT }, HK−1 < HT < HK)

=

K−1
X

I=1

m
X

J=0

Apref [I, J ]

N+1
X

P=I+1

f+(HT )
r (K, I, J, P )

+

N
X

I=K

m+1
X

J=1

Asuf [I, J ]

I−1
X

P=0

f
+(HT )
l (K, I, J, P )

+

m+1
X

J=0

»

Apref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+

K−1
X

I=1

N
X

P=K

m+1
X

Q=J+1

Apref [I, J ]fa(I, J, P, Q)(1 − Pd)Asuf [P, Q]

–

+

m+1
X

J=0

A
(HK→HT )
pref [K, J ]A

(HK→HT )
suf [K − 1, J ],

where the the notations A
(HK→HT )
pref [K, J ] (respectively, A

(HK→HT )
suf [K − 1, J ]) means to evaluate

Apref [K, J ] (respectively, Asuf [K − 1, J ]) using its defining equation provided previously while re-
placing any occurrence of HK with HT . Note that the equation shown above depends on the exact
value of HT only in the last summation term. Furthermore

f+(HK)
r (K, I, J, P )

=

8

>

>

<

>

>

:

fr(I, J, P, P − 1)(1 − Pd), if K ≤ P − 1;

f
(HK→HT )
r (I, J, K, K − 1)

+ f
(HK−1→HT )
r (I, J, K, K − 1), if K = P ;

fr(I, J, P, P − 1), if K > P,

and analogously

f
+(HK)
l (K, I, J, P )

=

8

>

>

<

>

>

:

fl(I, J, P, P + 1), if K ≤ P .

f
(HK→HT )
l (I, J, K − 1, K)

+ f
(HK−1→HT )

l (I, J, K − 1, K), if K = P + 1;
fl(I, J, P, P + 1)(1 − Pd), if K ≤ P − 1.

Recurrence equation for adding a small amount δh to one restriction fragment [HK , HK+1].
Note that this is equivalent to changing

〈H1, . . . , HK−1, HK , HK+1, . . . , HN 〉
→ 〈H1, . . . , HK−1, HK , HK+1 + δh, . . . , HN + δh〉.
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f(D|H : ∀T>KHT → HT + δh)

=

K
X

I=1

m
X

J=0

Apref [I, J ]

N+1
X

P=I+1

f (+δh)
r (K, I, J, P )

+

N
X

I=K+1

m+1
X

J=1

Asuf [I, J ]

I−1
X

P=0

f
(+δh)
l (K, I, J, P )

+

m+1
X

J=0
»

IK≤N Apref [K, J ]P δh
ν fm(K, K + 1)Asuf [K + 1, J ]

+

K−1
X

I=1

N
X

P=K

m+1
X

Q=J+1

Apref [I, J ]f (+δh)
a (I, J, P, Q)Asuf [P, Q]

–

,

where

f (+δh)
a (I, J, P, Q)

= f (HP →HP +δh)
a (I, J, P, Q)

f (+δh)
r (K, I, J, P )

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

f
HP−1→HP−1+δh,HP →HP +δh
r (I, J, P, P − 1),

if K < P − 1;

fHP →HP +δh
r (I, J, P, P − 1),

if K = P − 1;
fr(I, J, P, P − 1),

if K ≥ P ,

and analogously

f
(+δh)
l (K, I, J, P )

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

fl(I, J, P, P + 1),
if K < P ;

fHP →HP −δh

l (I, J, P, P + 1),
if K = P ;

f
HP →HP −δh,HP+1→HP+1−δh

l (I, J, P, P + 1)
if K > P.

Finally the first two (d = 1, 2) partial derivatives of f(D|H) relative to all fragment sizes
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FK = HK+1 − HK , 0 ≤ K ≤ N , can be computed by using the recurrence equation shown below.

∂df(D|H)

∂F d
K

=

K
X

I=1

m
X

J=0

Apref [I, J ]

N+1
X

P=I+1

∂dfr(I, J, P, P − 1)

∂F d
K

+

N
X

I=K+1

m+1
X

J=1

Asuf [I, J ]

I−1
X

P=0

∂dfl(I, J, P, P + 1)

∂F d
K

]

+IK=NApref [N, m + 1]
∂df

(N)
m

∂F d
N

+IK=0Asuf [1, 0]
∂df

(0)
m

∂F d
0

+
m+1
X

J=0
»

IK<NApref [K, J ]
∂dfm(K, K + 1)

∂F d
K

Asuf [K + 1, J ]

+

K
X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]
∂dfa(I, J, P, Q)

∂F d
I

Asuf [P, Q]

–

.

The differential expressions in the recurrence equations are computed as shown in the following
formulæ.

∂dfm(K, K + 1)

∂F d
K

= fm(K, K + 1)(log Pν)d.

∂df
(N)
m

∂F d
N

= fm(N, N + 1)(Re + log Pν)(log Pν)d−1.

∂df
(0)
m

∂F d
0

= fm(0, 1)(Re + log Pν)(log Pν)d−1,

Next, we derive

∂fa(I, J, P, Q)

∂FI

= f(I, J, P, Q)

»



G′(DQ − DJ , HP − HI)

G′(DQ − DJ , HP − HI)
− fm(I, P ) log Pν

1 − fm(I, P )

ff–

∂2fa(I, J, P, Q)

∂F 2
I

= f(I, J, P, Q)

»



G′(DQ − DJ , HP − HI)

G(DQ − DJ , HP − HI)
− fm(I, P ) log Pν

1 − fm(I, P )

ff2

+
G′′(DQ − DJ , HP − HI)

G(DQ − DJ , HP − HI)
−

„

G′(DQ − DJ , HP − HI)

G(DQ − DJ , HP − HI)

«2

−fm(I, P ) log P 2
ν

1 − fm(I, P )2

–

.
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where

G(d, h) =
exp[−(d − h)2/2σ2h]√

2πσ2h

G′(d, h) =

„

d2 − h2 − σ2h

2σ2h2

«

G(d, h)

G′′(d, h) =

"

„

d2 − h2 − σ2h]

2σ2h2

«2

− d2

σ2h3
+

1

2h2

#

G(d, h)

Furthermore,

∂fr(I, J, P, P − 1)

∂FK

=

8

<

:

f
(a,1)
r (I, J, P ) − f

(b,1)
r (I, J, P ), if K < P − 1;

f
(a,1)
r (I, J, P ), if K = P − 1;

0, if K ≥ P ,

and analogously

∂fl(I, J, P, P − 1)

∂FK

=

8

<

:

0, if K < P,

f
(a,1)
l (I, J, P ), if K = P ;

f
(a,1)
l (I, J, P ) − f

(b,1)
l (I, J, P ), if K > P ;

Next, we consider the second derivatives:

∂2fr(I, J, P, P − 1)

∂F 2
K

=

8

<

:

f
(a,2)
r (I, J, P ) − f

(b,2)
r (I, J, P ), if K < P − 1;

f
(a,2)
r (I, J, P ), if K = P − 1;

0, if K ≥ P ,

and analogously

∂2fl(I, J, P, P − 1)

∂F 2
K

=

8

<

:

0, if K < P,

f
(a,2)
l (I, J, P ), if K = P ;

f
(a,2)
l (I, J, P ) − f

(b,2)
l (I, J, P ), if K > P ;
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The terms f
(a,1)
r , f

(a,2)
r , f

(a,1)
l , and f

(a,2)
l are defined as shown:

f (a,1)
r (I, J, P )

= λm−J (1 − Pd)
P−I−1



(1 − fm(I, P ))

»

ReΨa(Dm+1 − DJ , HP − HI , HP−1 − HI)

+IP>NG′(DQ − DJ , HP − HI)

–

−fm(I, P ) log Pν

»

ReΨ(Dm+1 − DJ , HP − HI , HP−1 − HI)

IP>NG(DQ − DJ , HP − HI)

–ff

and

f (a,2)
r (I, J, P )

= λm−J (1 − Pd)
P−I−1

»

ReΨ
′
a(Dm+1 − DJ , HP − HI , HP−1 − HI)

+IP>NG′′(DQ − DJ , HP − HI)

–

Analogously,

f
(a,1)
l (I, J, P )

= λJ−1(1 − Pd)
I−P−1



(1 − fm(P, I))

»

ReΨa(DJ , HI − HP , HI − HP+1)

+IP=0G
′(DJ , HI − HP )

–

−fm(P, I) log Pν

»

ReΨ(DJ , HI − HP , HI − HP+1)

IP=0G(DJ , HI − HP )

–ff
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and

f
(a,2)
l (I, J, P )

= λJ−1(1 − Pd)
I−P−1

»

ReΨ
′
a(DJ , HI − HP , HI − HP+1)

+IP=0G
′′(DJ , HI − HP )

–

Next, the terms f
(b,1)
r , f

(b,2)
r , f

(b,1)
l , and f

(b,2)
l are defined as shown:

f (b,1)
r (I, J, P )

= λm−J (1 − Pd)
P−I−1(1 − fm(I, P ))

ReΨb(Dm+1 − DJ , HP − HI , HP−1 − HI)

and

f (b,2)
r (I, J, P )

= λm−J (1 − Pd)
P−I−1

ReΨ
′
b(Dm+1 − DJ , HP − HI , HP−1 − HI)

Analogously,

f
(b,1)
l (I, J, P )

= λJ−1(1 − Pd)
I−P−1(1 − fm(P, I))

ReΨb(DJ , HI − HP , HI − HP+1)

and

f
(b,2)
l (I, J, P )

= λJ−1(1 − Pd)
I−P−1

ReΨ
′
b(DJ , HI − HP , HI − HP+1)

Here the functions Ψa, Ψ′

a, Ψb, and Ψ′

b have the following definitions.

Ψa(d, h1, h2) =
exp[−(d − h1)

2/2σ2(d ∨ h1) ∧ h2]
p

2πσ2(d ∨ h1) ∧ h2

Ψ′
a(d, h1, h2) =

„

d − h1

2σ2(d ∨ h1) ∧ h2

«

Ψa(d, h1, h2)

Ψb(d, h1, h2) =
exp[−(d − h2)

2/2σ2(d ∨ h1) ∧ h2]
p

2πσ2(d ∨ h1) ∧ h2

Ψ′
b(d, h1, h2) =

„

d − h2

2σ2(d ∨ h1) ∧ h2

«

Ψa(d, h1, h2)
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