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Abstract. The determination of feature maps, such as STSs3, SNPs4

or RFLP5 maps, for each chromosome copy or haplotype in an individ-
ual has important potential applications to genetics, clinical biology and
association studies. We consider the problem of reconstructing two hap-
lotypes of a diploid individual from genotype data generated by mapping
experiments, and present an algorithm to recover haplotypes. The prob-
lem of optimizing existing methods of SNP phasing with a population
of diploid genotypes has been investigated in [7] and found to be NP-
hard. In contrast, using single molecule methods, we show that although
haplotypes are not known and data are further confounded by the map-
ping error model, reasonable assumptions on the mapping process allow
us to recover the co-associations of allele types across consecutive loci
and estimate the haplotypes with an efficient algorithm. The haplotype
reconstruction algorithm requires two stages: Stage I is the detection of
polymorphic marker types, this is done by modifying an EM–algorithm
for Gaussian mixture models and an example is given for RFLP sizing.
Stage II focuses on the problem of phasing and presents a method of local
maximum likelihood for the inference of haplotypes in an individual. The
algorithm presented is nearly linear in the number of polymorphic loci.
The algorithm results, run on simulated RFLP sizing data, are encour-
aging, and suggest that the method will prove practical for haplotype
phasing.

1 Introduction

Diploid organisms carry two mostly similar copies of each chromosome, referred
to as Haplotypes. Variations in a large population of haplotypes at specific loci

3 sequence tag sites
4 single nucleotide polymorphisms
5 restriction fragment length polymorphisms
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are called Polymorphisms. The co-associations of these variations across the
loci indices are of intense interest in disease research. Genetic markers such as
RFLPs6 and SNPs 7 are the units to which this paper’s association studies apply.

The problems and difficulties of inferring diploid haplotypes through the use
of population data have been extensively investigated ([4], [6], [10], [13], [7]), and
widely acknowledged.

Our approach focuses on the use of multiple independent mapping experi-
ments (on, for example, a collection of large DNA fragments ) as the base data to
infer haplotypes. Single molecule methods and technologies, such as optical map-
ping and polony ([9]), may accommodate the high-through-put for haplotyping
diploids in a population.

We consider the problem of reconstructing two haplotypes from genotype
data generated by general mapping techniques, with a focus on single molecule
methods. The genotype data is a set of observations D = 〈di〉i∈[1...N ]. Each
observation is derived from one of the two distinct but unknown haplotypes.
Each observation di = 〈dij〉j∈[1...M ] is a set of observations over the loci index j

with dij ∈ R
r.

Mapping processes are subject to noise and we assume a Gaussian model
dij ∼ N(µ, σ) with parameter µ depending on the underlying haplotype of di.
Mapping processes shall be designed to discriminate the polymorphic allele types
in the data space for each loci; hence the set of observation points 〈dij〉i∈[1...N ]

are derived from a mixed distribution which displays bi-modal characteristics
in the presence of a polymorphic feature. By estimating the parameters of the
distribution, we can assign a posteriori distribution that a particular point in R

r

is derived from an allele type.
Since the mapping errors for dij and dij′ are assumed to be independent,

computing the posteriori distribution for haplotypes with product allele types is
straightforward, and is a major advantage of utilizing single molecule methods
in association studies.

The Phasing problem is to determine which haplotypes are most likely gen-
erating the observed genotype data. The challenge is to infer the most likely
parameter correlations across the loci index accounting for the posteriori.

2 Mapping Techniques

We wish to present applications for a wide spectrum of mapping techniques, to
allow a large number of polymorphic markers (SNPs, RFLPs, micro-insertions
and deletions, microsatilite copy numbers) to be used in an association study.

This paper focuses on mapping techniques capable of 1) discriminating al-
leles at polymorphic loci and 2) providing haplotype data at multiple loci. A
mapping technique designed for association studies should be discriminating: for
each polymorphic loci, data points in the data space R

r which are derived from
separate allele types should form distinct clusters in the data. A technique which

6 Restriction Fragment Length Polymorphisms.
7 Single Nucleotide Polymorphisms.
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allows observation of a single haplotype over multiple loci may be necessary for
an efficient phasing algorithm. Thus single molecule methods are of particular
interest to us. Our models and analysis are influenced by their applicability to
association studies.

As an example, consider the length between two restriction fragments. The
observable x is modeled as a random variable depending on the actual distance
µ.

P (x|µ) =
1√
2πµ

exp

(−(x− µ)2

2µ

)

Isolate a specific pair of restriction sites on one of the haplotypes H1, and let
the distance between them be given by µ1. The distance between the homologous
pair on the second haplotype H2 is given by µ2. An observation x from the
genotype data is then either derived from H1 or H2, denoted x ∼ H1 and x ∼ H2

respectively.

P (x) = P (x|x ∼ H1)P (x ∼ H1) + P (x|x ∼ H2)P (x ∼ H2)

=
1√

2πµ1
exp

(−(x− µ1)
2

2µ1

)

P (x ∼ H1)

+
1√

2πµ2
exp

(−(x− µ2)
2

2µ2

)

P (x ∼ H2).

With the RFLP sizing mapping technique, observable dij , dij′ have inde-
pendent error sources depending on loci-specific parameters. The set {dij , i ∈
[1 . . .N ]} provides points in R which may be discriminated using a Gaussian
Mixture model. Due to the uncertainty of mapping and underlying haplotypes we
have chosen to model data as posteriori distribution α(x) = [P (x ∼ H1), P (x ∼
H2)] rather than determined allele types.

This paper is organized into five sections: section 1 defines the problems
we are addressing; section 2 explains the EM-Algorithm application; section 3
discusses the phasing problem; section 4 outlines algorithm implementation and
provides examples; and section 5 briefly discusses results, technologies and future
work.

2.1 EM–Algorithm for detection of bi–allelic polymorphisms

The use of the EM-Algorithm for inferring parameters of a Gaussian mixture
model is a well-known method ( see [5] [12] ), and useful in this context as
well. We postulate that in the presence of polymorphisms at loci j, informative
mapping data will display a bi-modal distribution in the data space R

r. Detailed
computations for the E-Step and M-Step are provided in the appendix. For
each locus j the EM-algorithm is run until convergence occurs; the result being:
〈αk(x), Φ̂ = 〈µ̂1, µ2, . . . , µK , σ〉〉. Here α is a posteriori probability that data
point x is derived from allele type k ∈ [1, 2, .., K]. Criteria for Polymorphisms
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Let Φ̂(D) denote the limit of the EM–algorithm with data set D at the loci
j. A critical question is: When will a loci exhibit 2 specific allele variations?
Setting K = 2 for the remainder of the paper (hence Φ̂ = 〈µ1, µ2, σ〉, we define
polymorphic loci as events:

X(D) =

{

1 if Φ̂(D) : |µ̂1 − µ̂2| − δ > 0

0 o.w.

Robustness of the EM-algorithm Mapping techniques contain errors that
are Gaussian across a diverse set of technologies. Genetic markers may be as-
sociated or linked to allele types in the population. The mixture model treated
with EM works well, sometimes distinguishing fits beyond visual accuracy. The
constraint for a single value of σ forces the EM results toward one of two steady
states, µ1 6= µ2 or µ1 = µ2 (a single Gaussian). Although the EM estimates are
slightly biased, the estimators are consistent and the bias is known to diminish
with larger data sets.

The individual experiment data {dij : i ∈ [1...N ]} is mapped to posteriori
probability measures over the allele classes producing a probability function
α(y) reflecting our confidence (in the presence of mapping error) that point
y corresponds to one of our allele types. For polymorphims assignments, false
positives are unlikely to disturb the phasing, while false negatives affect the size
of phased contigs.

3 Phasing Genotype Data

Phasing is the problem of determining co–association of alleles, due to linkage
on the same haplotype. Letting Λj be the allele space at loci j, a haplotype may
be considered an element of the set:

∏

j∈[1,2,...,M ] Λj .

In phasing polymorphic alleles for an individual’s genotype data (a mix of
two haplotypes), we assume that half of the data is derived from each of the
underlying haplotypes H1 and H2. In this context haplotypes have a comple-
mentary structure in that the individual’s genotype must be hetero-zygote at
each polymorphic loci.

We define a haplotype space and discuss how to estimate the probability
that an observation di is derived from a particular haplotype over a set of loci.
Finally, we formulate the maximum likelihood problem for haplotype inference,
this being our solution to the phasing problem.

3.1 Haplotype Space and Joint Distributions

The full space of haplotypes is the product over all allele spaces {1, 2, . . . , M};
in the problem under discussion the haplotype space is in one-to-one correspon-
dence with M = {−1, 1}M . The discrete-measure space 〈M, 2M〉 will be used
to denote the haplotypes, while M[j1, j2, ..., jv ] denotes the haplotypes over the
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range of loci j1, j2, ..., jv. The result of phasing genotype data is a probability
measure on the space 〈M, 2M〉. Noiseless data may result in a measure assigning
1
2 to each of the complementary haplotypes, and 0 to all others. This uniform
measure over complements corresponds to perfect knowledge of what the haplo-
types are. Our algorithm is consistent in that the correct result is achieved for
suitably large data sets.

Let Λj be the allele set for the polymorphic loci j. Consider two bi-allelic
loci j and j′. For clarity, we will assume that Λj = {A, a} while Λj′ = {B, b}.
A data observation di is derived from one of the four classes: AB, Ab, aB, ab.
Because the mapping noise at loci j and j ′ are independent, we can assess the
probability based on the loci posteriori that the observation is derived from the
following four classes:

P (di ∼ AB) = αjA(dij)αj′B(dij′ )

P (di ∼ Ab) = αjA(dij)αj′b(dij′ ) = αjA(dij)(1− αj′B(dij′ ))

P (di ∼ aB) = αja(dij)αj′B(dij′ ) = (1− αjA(dij))αj′B(dij′ )

P (di ∼ ab) = αja(dij)αj′b(dij′ ) = (1− αjA(dij))(1− αj′B(dij′ ))

We define α
(i)
jj′ as the estimated probability distribution for observation i on

haplotypes over the loci j, j ′:

α
(i)
jj′ = [αjj′AB(di), αjj′Ab(di), αjj′aB(di), αjj′ab(di)]

We define αjj′ as the estimated probability distribution over the data set on
haplotypes over the loci j, j ′:

αjj′ (D) =
1

N

N
∑

i=1

α
(i)
jj′

For ρ ∈ M[j1, j2, ..., jM ] and αjwρw
(di) = Prob(di ∼ ρw) with ρw ∈ Λjw

, we
can extend the estimates to any set of indices producing:

α
(i)
j1j2...jv

=





∏

w∈[1...v]

αjwρw
(di)





ρ∈M[j1,j2,...,jv]

αj1j2...jv
=

1

N

∑

i

α
(i)
j1j2...jv

3.2 Complementarity

In phasing the diploid genotype data into two haplotypes ρ1, ρ2 ∈ M there is
a special property: haplotype ρ2 is complementary to haplotype ρ1, denoted
ρ̄2 = ρ1. The complementary pair of haplotypes may be represented by a change
of variables, w ∈ {−1, 1}M−1 , and the transformation to the haplotypes is given
by the map:
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ρ1(b) =

{

−1 if b = 1

−1
∏

j=1:(b−1) w(j) for b ∈ [2...M ]

ρ2(b) =

{

1 if b = 1

1
∏

j=1:(b−1) w(j) for b ∈ [2...M ]

In evaluating the data, there are a possible 2M−1 complementary pairs of
allele types to search.

The confidence of a set of complementary haplotypes is modeled as a prob-
ability distribution on the discrete measure space 〈M, 2M〉, which is the convex
hull of the following set of extremal points which correspond to certain knowledge
of complementary haplotypes.

A =











θρ : θρ(δ) =











1
2 if δ = ρ
1
2 if δ = ρ̄

0 o.w.

for δ ∈M











These values are the uniform distribution over complementary haplotypes
and geometrically are vertices of a high dimensional hyper-cube. Let A[j1, j2, ..., jv]
be the corresponding distribution over the haplotype space M[j1, j2, ..., jv].

3.3 Maximum Likelihood Problem

We assume that for every loci j, the data {dij : i ∈ [1 . . .N ]} contains an
equal distribution of data from the underlying haplotypes H1, H2 that can be
inferred. Using the estimated values α for the joint distribution over loci product
spaces, we will compute the haplotypes most likely producing α. We formulate
the corresponding maximum likelihood problem as follows: Let the likelihood
function be given by:

L(Θ) = P (D|Θ) =
Γ (N)

∏

ρ∈M
Γ (Nαρ)

∏

ρ∈M

ΘαρN
ρ

MLE 1 Find ρ ∈ A so that L(ρ) ≥ L(ω) ∀ω ∈ A.

Similarly, for any specified set of loci {j1, j2, . . . , jv} we may define a like-
lihood function LM[j1,j2,...jv] as the most likely to produce posterior αj1,j2,...,jv

over the space M[j1, j2, ...jv ].

Lemma 1 If d(α, A) < ε for some ε small enough, and d(α, A) = minθ∈A ||α− θ||2.
Maximizing

∏

ρ∈{0,1}M−1 Θ
αρN
ρ over Θ ∈ A is equivalent to minimizing

∑

j∈[1...M ]

(αj −Θj)
2

αj

over Θ ∈ A.
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The proof in the appendix is derived from a Taylor-series expansion of the
likelihood function. It demonstrates that the MLE result in set A is the vertex
of a 2M−1 hyper-cube closest to our estimated joint probability function α,
measured by a modified L2 norm.

With this result we assume the following function to be used in the algorithms
presented later:

Algorithm 1
MLE–Collapse( j1, j2, . . . , jv )

Compute ρ ∈ A[j1, j2, . . . , jv ]

minimizing
P

j∈[j1,j2,...,jv ]

(αj−Θj)
2

αj
over Θ ∈ A

return ρ

4 Algorithms

The algorithms focus on growing disjoint-phased contiguous sets of loci called
Contigs. All loci are assigned an arbitrary phase and begin as a singleton phased
contig. A Join operation checks if these phased contigs may be phased relative
to one another using a function called Verify-Phase. Verify-Phase can be
designed to check a phasing criteria, for example refuting a hypothesis of Hardy-
Weinberg Equilibria is discussed in the appendix.

If a pair of phased contigs can be joined by passing the Verify-Phase

function then the disjoint sets are combined into a single phased contig and the
joint distribution over the set is computed with the MLE–Collapse function.
Having completed a successful join operation, we may regard the distribution
function as the most likely haplotypes generating the observed data over the
specified loci. Because the growth of contigs is monotonic and depends on local
information available at the time of the operation, in the full paper we also
consider an Adjust operation that fractures a contig and re-join’s using a larger
locality of data than what was available during the Join.

We describe the operations in detail, analyze the results and indicate how to
avoid incorrect operations.

Collapse : In the previous section of this paper, we discussed the collapse
operation as the MLE–Collapse function. It may be used to update a joint
probability distribution over a set of contigs; it has the effect of keeping the
contig structures bound to haplotype states which simplifies the computing of a
phase.

Join:

Let K be a parameter denoting neighborhood size. Letting C1 = {j1, j2, . . . , jv}
and C2 = {j′1, j′2, . . . j′w}, the join operation is as follows:

Given joint-probability functions αj1 , αj2 , . . . , αjv
, αj′1

, αj′2
, . . . αj′w

, compute
the joint probability function αC1,C2 with formula

αC1,C2 = α(jv)(j′1j′2...j′w) = wjv ,j′1
α(jv)(j̄′1j′2...j′w) + wjv ,j′2

α(jv)(j′1 j̄′2...j′w) + . . . + wjv ,j′
K

α(jv)(j′1j′2...j̄′
K

...j′w)
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Fig. 1. Collapse

with

α(jv)(j′1j′2...j̄′x...j′w) =
∑

i=1:N

α
(i)
jvj′x

=
∑

i=1:N

α
(i)
jv

(dijv
)α

(i)
j′x

(dij′x
)

wjv ,j′x
= κ

1

d(jv , j′x)

Here, κ = 1
1

d(jv,j′
1
)
+ 1

d(jv,j′
2
)
+...+ 1

d(jv,j′
K

)

and d(jv , j′x) is proportional to genomic

distance between loci jv and j′x.

Algorithm 2
Compute–Phase( C1 = {j1, j2, . . . , jv} , C2 = {j′1, j

′

2, . . . , j
′

w} , K )
assume jv in C1 is such that d(jv, C2) ≤ d(j, C2) ∀j ∈ C1:
Compute α(jv)(j′1j′2...j′w) using parameter K.

return α(jv)(j′1j′2...j′w)

Algorithm 3
join( C1 = {j1, j2, . . . , jv} , C2 = {j′1, j

′

2, . . . , j
′

w} , K )
Compute–Phase( C1 = {j1, j2, . . . , jv} , C2 = {j′1, j

′

2, . . . , j
′

w} , K )
if ( Verify–Phase( αj1j2...jv ) ) then

αj1j2...jv ← MLE–Collapse(j1, j2, . . . , jv ) ;

Our algorithm estimates the haplotypes by solving an ordered set of local
MLE problems. The rationale of the chosen function is discussed in the full
paper.

4.1 Implementation

Input

The input is a set of data points {dij ∈ R
r : i ∈ [1 . . . N ], j ∈ [1 . . . M ]}. We

make the following assumptions about the input:

– For each j the points d1j , d2j , . . . , dNj are derived from the Gaussian mixture
model corresponding to mapping data at polymorphic loci j.
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Fig. 2. Compute–Phase

– For each i points di1, di2, . . . , diM are independent random variables with
parameters associated to underlying haplotypes.

Knowing the mapping order of polymorphic loci, we assume the positions of the
genome to be [x1, x2, . . . , xM ].

Pre-Process

The EM-algorithm is run for each loci: {dij : i ∈ [1...N ] observable } → {Φ̂j :
αj} ∀j ∈ [1, . . . , M ].

The result is a set of estimates for bi-allelic loci, {Φ̂1, Φ̂2, . . . , Φ̂M}, as well
as a set of functions estimating the probability that any data point derives from
the distinct alleles {α1, α2, . . . , αM}.

Next we construct a join schedule. Letting βj = xj+1−xj , we sort the results
into an index array giving an increasing sequence: {j1, j2, . . . jv, . . . jM−1}.
Main Algorithm and Data Structure

Contigs are maintained in a modified union-find data structure designed to
encode a collection of disjointed, unordered sets of loci which may be merged
at any time. Union-find supports two operations, union and find [14]: union
merges two sets into one larger set, find identifies the set containing a particular
element. Loci j is represented by the estimated distribution αj , and may refer-
ence its left and right neighbor. At any instant, a phased contig is represented
by:

– A MLE distribution or haplotype assignment for the range of loci in the
contig (if one can be evaluated).

– Boundary loci: Each contig has a reference to left- and right-most loci.

In the vth step of the algorithm, consider the set of loci determined by βv ,
{jv, jv+1}: If find(jv) and find( jv+1 ) are in distinct contigs Cp and Cq , then
1) attempt to union Cp and Cq , by use of the join operation and 2) update the
MLE distribution and boundary loci at the top level if the join is successful.

Output

Output is a disjointed collection of sets, each of which is a phased contig. It
represents the most likely haplotypes over that particular region.
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4.2 Time Complexity

The preprocess may involve using the EM–algorithm once for each loci. The
convergence rate of the EM–algorithm is a topic of research ( [8] ) and depends
on the amount of overlap in the mixture of distributions. For moderate-sized
data sets we have noticed no difficulties with convergence of the EM-algorithm.

First we estimate the time complexity of the main algorithm implement-
ing the K−neighbor version. For each βjv

there are two find operations. The
number of union operations cannot exceed the cardinality of the set {βj : j ∈
[j1, j2, . . . , jM−1]}, as contigs grow monotonically. The time cost of a single find
operation is at most γ(M), where γ is the inverse of Ackermann’s function. Hence
the time cost of all union-find operations is at most O(Mγ(M)). The join opera-
tion, on the other hand, requires running the K−neighbor optimization routine,
at a cost of O(K). Thus the main algorithm has a worst-case time complexity of

O
(

M (γ(M) + K)
)

= O
(

Mγ(M)
)

and may be regarded as almost linear in the number of markers, M for all
practical purposes since K is almost invariably a small constant.

4.3 Examples

The appendix contains two examples illustrating the implementation for two
simulated RFLP data sets, subject to extensive random errors.

5 Conclusions and Future Work

The simulation results are found to be encouraging, as they demonstrate that
locally the phasing may be highly accurate. When local coverage derived from
one haplotype is low, then the detection of polymorphisms become difficult. In
the first data set a false negative detection is found on the 8th marker from the
left, this is due to zero coverage from one of the haplotypes at that point. The
ninth marker is a false negative detection and is attributed to zero coverage from
one haplotype and low coverage ( 2 molecules ) from the alternative haplotype.
Note that the false positive does not cause errors in the phase information for
correctly detected polymorphic loci in the phased–contig achieved over marker
index in the set {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}. Designing a mapping
experiment targeting a polymorphic marker in the set {6, 7, 8, 9, 10} could allow
one to phase the two contigs into a single contig.

In the full paper we shall explore how the order of local maximum likelihood
problem solutions relate to the global maximum likelihood problem. We further
discuss mapping technologies and single molecule methods that may be used to
generate data suited for the diploid haplotyping problem. In particular SNPs,
micro–arrays, and DNA-PCR-Colonies or polonies ([9]) are under investigation
by the authors. Further analysis and examples will be presented.
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Appendix

A RFLP Examples

We demonstrate our algorithm on two simulated data sets composed of ordered
restriction fragment lengths subject to sizing error. Figure 3 below is presented
in bands:

– The band nearest the bottom in the layout is the simulated haplotypes.
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– The second band from the bottom is the haplotype molecule map for a
diploid organism. These molecules (which are sorted into two haplotype
classes in the layout) are mixed and made available to the algorithm as
a single set of genotype data.

– The third band from the bottom shows the results of the EM-algorithm and
the set of markers that are determined to have polymorphic alleles.

– The forth band in the layout provides the history of contig operations. From
this tree one can view: 1) the developing k-neighborhoods, and 2) the distinct
phased contigs.

– The top band in the layout gives the algorithmic output for this problem,
including phased-in subsets that span the distance indicated by the bars
above and below the loci markers. Areas where phase structure overlaps but
cannot extend are regions that are of interest to target with more specific
sequences, in order to extend the phasing.

Parameters of the simulations are summarized in the table:

Parameter Symbol Data Set 1 Data Set 2
Number of molecules M 80 150
Number of fragments RFLP and non RFLP F 20 100
Size of the genome G 12000 50000
Expected molecule size EMS 2000 2000
Variance in molecule size VMS 50 500
Variance in fragment length size VFS 1 20
P–value that any given fragment is an RFLP P–BIMODE .5 .3
Expected separation of means for RFLP ERFLPSEP 10 50
Variance in the separation of means for RFLP VRFLPSEP .01 6

Any parameter with both an expectation and variance is generated with a
normal distribution.

We used a simple Verify–Phase function which merely checked that our
posteriori distribution αCa,Cb

is separated by a distance of C > 0 from the point
[ 12 , 1

2 ]. In practice we discovered that the parameter C should depend on the
local coverage.

For the first simulation on data set I seen in figure A, a relatively small
set is chosen so that the limitations of the algorithm can be seen. Here the
neighborhood size is set to k = 5. There is no guarding against false positive
RFLP detections, still phasings are computed and one can see that mistakes are
due to the low coverage library.

In the second simulation on data set II seen in figure A we illustrate that
good phasing results may be achieved on large, sparse data sets.

B MLE Estimate

If d(α, A) < ε for some ε small enough. Maximizing
∏

ρ∈{0,1}M−1 Θ
αρN
ρ over

Θ ∈ A is equivalent to minimizing
∑

j∈[1...M ]
(αj−Θj)

2

αi
over Θ ∈ A.
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 HAPLOTYPES 

 Molecule Data 

 Inferences 

  0.500000   0.500000   0.999024   0.500000   0.500000   0.665817   0.500000   0.500000   0.500001   0.500022   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000 

 Contig--Tree 

  0.319556   0.500000   0.500000   0.500000 

  0.331947   0.500000 

  1.145977 

  0.500000 

  0.789813 

  0.500000 

  0.500000 

  0.681644 

  0.817776   0.500000 

  0.500000 

  33.507418 

  0.500000 

  0.500000 

 Output 

  0.500000   0.500000   0.999024   0.500000   0.500000   0.665817   0.500000   0.500000   0.500001   0.500022   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000 

Fig. 3. Data set I

 HAPLOTYPES 

 Molecule Data 

 Inferences 

  0.500000   1.000000   0.500000   0.500000   0.500000   0.500000   0.500017   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   1.000000   -0.250000   0.500691   0.500000   0.500000   0.500000   0.875000   0.500000   0.500000   0.125000   0.500000   0.500000   0.500000   0.500000   0.125000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   1.000000   0.500000   0.000000   0.000000   0.500000   0.000000   0.500000   0.500000   0.500000   1.000000   0.500000   0.499897   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   1.000000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   1.000000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   1.000000   1.000000   0.500000   0.500000   0.500000   0.500000   0.500000 

 Contig--Tree 

  0.500000   0.500000 

  0.500000 

  0.500000   0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000   0.500000   0.500000 

  0.500000 

  0.500000   0.500000   0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000   0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.000000 

  0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000 

  1.000000 

  0.500000   0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  -135.150059 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000   0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  -0.250000 

  0.500000 

  0.875000 

  1.000000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  1.000000 

  269.856757 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000   0.500000   0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.700007 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.500000 

  0.125000 

  0.500000 

  0.500000 

  0.000000 

  0.500000 

 Output 

  0.500000   1.000000   0.500000   0.500000   0.500000   0.500000   0.500017   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   1.000000   -0.250000   0.500691   0.500000   0.500000   0.500000   0.875000   0.500000   0.500000   0.125000   0.500000   0.500000   0.500000   0.500000   0.125000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   1.000000   0.500000   0.000000   0.000000   0.500000   0.000000   0.500000   0.500000   0.500000   1.000000   0.500000   0.499897   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   1.000000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   1.000000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   0.500000   1.000000   1.000000   0.500000   0.500000   0.500000   0.500000   0.500000 

Fig. 4. Data set II
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Proof. Let F (Θ) = n!
Q

j=1:k nj !

∏

j=1:k Θ
nj

j . Computing the second variation:

F ′′(θ) =





























n2
1

θ2
1

n1n2

θ1θ2
. . . n1nk

θ1θk

n2n1

θ2θ1

n2
2

θ2
2

. . . n2nk

θ2θk

...
... . . .

...
nkn1

θkθ1

nkn2

θkθ2
. . .

n2
k

θ2
k
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n1

θ2
1

0 . . . 0

0 n2

θ2
2

. . . 0

...
... . . .

...
0 0 . . . nk

θ2
k



























F (θ)

Since F (θ) is smooth in θ, Taylor’s remainder theorem gives,

F (Θ) = F (α) +∇F (α) · (Θ − α) + (Θ − α)
T
F ′′(α)(Θ − α) + o (||(Θ − α)||2)

When α = [n1

n
, . . . nk

n
], ∇F (α) = 0, this is a standard MLE result for a multi-

nominal distribution. Computing the quadratic function:

(Θ − α)T
F ′′(α)(Θ − α)

= (Θ − α)T











n2











1 1 . . . 1
1 1 . . . 1
...

... . . .
...

1 1 . . . 1











− n











1
α1

0 . . . 0

0 1
α2

. . . 0
...

... . . .
...

0 0 . . . 1
αk





















F (α)(Θ − α)

= F (α)n2





∑

j

(Θj − αj)





2

− F (α)n
∑

j

(Θj − αj)
2

αj

= −F (α)n
∑

j

(Θj − αj)
2

αj

Thus for an θ very near to α the level curves of F are given by Θδ = {θ : F (θ) =
F (α)− δ} are approximately ellipsoids.

F (Θ) = F (α)− F (α)n
∑

j

(Θj − αj)
2

αj

+ o (||(Θ − α)||2)

= F (α)− F (α)n
∑

j

(Θj − αj)
2

αj

+ o





∑

j

(Θj − αj)
2

αj





Let ||Θ − α||2α =
∑

j
(Θj−αj )2

αj
. Letting L1 = L(α) and assuming there is a second

local optima for the likelihood function value at L2, let V (α) = {Θ : L(Θ) >

L1−L1−L2

2 }. We must show that there is a δ so that {Θ : ||Θ − α||2α < δ} ⊂ V (α).
And this is clear from the inequality

L1−L1n||Θ − α||2α−o
(

||Θ − α||2α
)

< F (Θ) < L1−L1n||Θ − α||2α+o
(

||Θ − α||2α
)
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by choosing a δ small enough that L1nδ + o(δ) < L1−L2

2 . We conclude that if

there is a point of A ∈ {Θ : ||Θ − α||2α < δ} then it must be the unique maxima
in A for our likelihood function.

C Test for Hardy-Weinberg Equilibria at Different Loci

The Chi–Squared statistical test for determining whether allelic data at loci
j and j′ display linkage disequilibrium and hence are not in Hardy-Weinberg
Equilibrium (HWE) have been very well studied. We refer the reader to Weir (
[15] ) for details and a complete statistical treatment.

We slightly modify the Chi-Squared statistical test for Gametic Disequilib-
rium at two loci using additive disequilibrium coefficients to adjust to our pop-
ulation model. The end result is a Chi-Squared statistical test that allows us to
reject HWE from observed frequencies alone. Since determining linkage is a pre-
requisite to phasing, or at least in finding structure in the joint distribution over
allele spaces of adjacent loci, the statistical test is important. The boundaries
of haplotype blocks (or phased contigs, as we call them) are an interesting and
important problem in understanding population dynamics.

Let Dab denote the disequilibrium coefficient between alleles a at loci j and
b at loci j′:

Dab = pab − papb

Where pab, pa, pb are the population frequencies for allele type: ab, a, b respec-
tively. In the presence of HWE Dab is expected to be zero. Letting D̂ab denote
an estimate from estimate frequencies:

D̂ab = p̃ab − p̃ap̃b

=
1

N

∑

i=1:N

(αja(dij)αbj′ (dij′ ))− (p̃ap̃a)

with:
p̃a = 1

N

∑

i=1:N αaj(dij), p̃b = 1
N

∑

i=1:N αbj′(dij′ )

Computing of Expectation and Variance:

E(D̂ab) =
N − 1

N
Dab

V (D̂ab) ≈
1

N

[

paqapbqb + (1− 2pa) (1− 2qa) Dab −Dab
2
]

The variance can be computed using Fisher’s approximate variance formula.
Under the assumption that loci j and j ′ are in HWE we have Dab = 0 and:

EHWE(D̂ab) = 0

VHWE(D̂ab) =
1

N
[paqapbqb]
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From this information, one may construct a Chi-Squared test to evaluate the
hypothesis that alleles a and b at loci j and j ′ are acting as they would if they
were in HWE.

χ2
ab = z2 =

ND̂ab

2

p̃A
a q̃A

a p̃B
b q̃B

b

We may reject the HWE hypothesis correctly 9 times in 10 by using a reference
value of z2 > 2.71, or we may reject HWE correctly 99 times in 100 using
reference values z2 > 6.63. If alleles are linked by a haplotype, this test may be
used as the Verify-Phase function mentioned previously in this text.

D EM–Algorithm Analytic Results

D.1 An Example Using RFLP Markers

The data at loci j refers to the observed distances between restriction sites j

and j + 1, as they are derived from two haplotypes H1 and H2 with underlying
genome distances µ1 and µ2. The distribution of data points for loci j is given
by:

fj(x) =
1

√

2πµ2
j1

exp

(

−(x− µj1)
2

2µ2
j1

)

αj1(x)+
1

√

2πµ2
j2

exp

(

−(x− µj2)
2

2µ2
j2

)

αj2(x)

We make a simplifying assumption that σ = 1
2 (µj1 + µj2) so that fj may be

closely approximated by:

Fj(x) =
1√

2πσ2
exp

(−(x− µj1)
2

2σ2

)

αj1(x)+
1√

2πσ2
exp

(−(x− µj2)
2

2σ2

)

αj2(x)

For loci j the set of points {dij : i ∈ [1, 2, . . .N ]} is data. We infer the
model parameters Φ = {σ, µ1, µ2} and posteriori distribution α by use of the
EM–algorithm. We drop the subscript j in the following equation, the objective
being to iteratively optimize the function:

H(α, Φ) =
∑

i∈1:n

∑

k∈1:2

(αk(dji) ln Gk(dji|Φ)− αk(dji) ln (αk(dji)))

With Gk(x|Φ) = 1√
2πσ2

exp
(

−(x−µk)2

2σ2

)

the kth Gaussian kernel.

Optimization is done in two steps:
1. E–STEP Holding Φ fixed, optimize H(α, Φ) over α, letting Φ̂ be the

previous estimate of parameters.
The result for the argmax α is:
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αk(x)← Gk(x|Φ̂)
∑

l Gl(x|Φ̂)

2. M–STEP

Holding α fixed, optimize H(α, Φ) over Φ (using the previous estimate of
parameters on the hidden categories α̂(y), which depend on the previous estimate
denoted Φ̂ = [µ̂1, µ̂2, σ̂]). The result argmin H(α̂, Φ) is:

µk ←
∑

i=1:n α̂k(dij)dij
∑

i=1:n α̂k(dij)

σ ←
√

1

2

∑

j=1:2

1

N

∑

i=1:N

α̂j(dij)(dij − µ̂j)2

The EM-algorithm is run until convergence in the parameter space occurs.
Detailed computations for the E-Step and M-Step are provided in the appendix.

Detailed proofs of each step are found below.

E-Step

Proof. Consider the calculus problem of optimizing:

f(φ) = φ (A1 − log(Bφ)) + (1− φ) (A2 − log(B(1− φ)))

f ′(φ) = 0⇒ φ∗ =

(

1

eA1−A2 + 1

)

Notice that φ∗ ∈ (0, 1). Apply this fact to the optimization problem of finding
numbers Q̂ = 〈αiν 〉i=1:N,ν=1:2, so that the following function is optimized:

∑

i=1:n

∑

ν=1:2

(αiν (Aiν − log(Bαiν )))

=
∑

i=1:n

αiν (Ai1 − log(Bαiν)) + (1− αiν) (Ai2 − log(B(1− αiν)))

Where A1 = (di−µ1)2

2σ2 and A2 = (di−µ2)
2

2σ2 and B =
√

2πσ2. We see that the
answer is given by maximizing each summand and hence given by:

α1 =

(

1

e

“

(di−µ1)2

2σ2 − (di−µ2)2

2σ2

”

+ 1

)

=
G1(di)

G1(di) + G2(di)

and similarly for α2.
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M-Step

Proof. Consider the calculus problem of optimizing:

f(µ1, µ2, σ) =
∑

i=1:N

∑

ν=1:2

qνi log

(

1√
2πσ2

exp
−(ai − µν)2

2σ2

)

+ H

=
∑

i=1:N

∑

ν=1:2

qνi

(−(ai − µν)2

2σ2
− log

√
2πσ2

)

+ H

Where H is constant in (µ1, µ2, σ). Consider the partial derivative of f with
respect to µν :

∂f

∂µν

=
∑

i=1:N

∂

∂µν

( qνi

2σ2
(−a2

i + 2aiµν − µ2
ν − 2σ2 log

√
2πσ2)

)

=
1

σ2

∑

i=1:N

qνiai − µνqνi

Thus we get:
∂f

∂µν

= 0⇐ µν =

∑

i=1:N qiνai
∑

i=1:N qiν

Now consider the partial of f with respect to σ:

∂f

∂σ
=
∑

i=1:N

∑

ν=1:2

qνi

(

(ai − µν)2

2σ2
− 1

)

=
1

2σ2

∑

i=1:N

∑

ν=1:2

qνi

(

(ai − µν)2 − 2σ2
)

Thus we get:

∂f

∂σ
= 0⇐ σ =

√

1

2

∑

ν=1:2

1

N

∑

i=1:N

qiν(ai − µν)2

Hence the necessary condition for (µ∗
1, µ

∗
2, σ

∗) to be the maximizing argument
is that:

µ∗
1 =

∑

i=1:N qi1ai
∑

i=1:N qi1

µ∗
2 =

∑

i=1:N qi2ai
∑

i=1:N qi2

σ∗ =

√

1

2

∑

ν=1:2

1

N

∑

i=1:N

qνi(ai − µν)2


