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Chapter 1Introduction1.1 Stag Hunt Problem(With Two Players)Stag Hunt ProblemStag HareStag 2,2 0,1Hare 1,0 1,11. If both row-player and column-player hunt stag, since astag is worth 4 \utils", they each get 2 \utils."2. If both row-player and column-player hunt hares, since ahare is worth 1 \util", they each get 1 \util."3. If row-player hunts hare, while column-player hunts stag(and hence fails to hunt any thing), then the row-playergets 1 \util" and the column-player gets 0 \util."4. The other case is symmetric.1



2 Introduction Chapter 1Note that if row-player is risk aversive, he will choose tohunt hare and thus guarantee that he gets 1 \util" independentof the choice column-player makes. Thus he will maximize theminimum utility under the two possible pure strategies (\huntstag" with a minimum utility of 0 if the opponent hunts harevs. \hunt hare" with a minimum utility of 1 regardless of whatthe opponent chooses to play) and choose to hunt hare. Bysymmetry, it is seen that in fact both players will choose to hunthares.Is this the truly optimal strategy?Quoting Rousseau (Discourse on the origin and Basis ofEquality among Men):\If a group of hunters set out to take a stag, theyare fully aware that they would all have to remainfaithfully at their posts in order to succeed; but if ahare happens to pass near one of them, there can beno doubt that if he pursued it without qualm, andthat once he had caught his prey, he cared very littlewhether or not he had made his companions misstheirs."Changing the discussion slightly, suppose that column-playerwill play a mixed strategy by playing \hunt stag" with someprobability (say, y) and by playing the other strategy (\hunthare") with probability (1� y). His best choice of these proba-bilities must be such that row-player is now \indi�erent" to thechoice of his own strategies. Thus, we have2y + 0(1� y) = 1y + 1(1 � y)and y = 1=2. Thus one expects both row-player and column-player to play the strategies \hunt stag" and \hunt hare" withequal probabilities.1.2 Why are these kinds of analysis im-portant to us?1. EconomycMishra 1998



Section 1.3 Introduction 32. Evolutionary Biology3. Large Scale Distributed Systems4. Resource Allocation5. Intelligent Agents1.3 Prisoners' DilemmaPrisoners' DilemmaC DC 0,0 -2,1D 1,-2 -1,-1There are two prisoners (row-player and column-player) ar-rested for a particular crime, but the prosecutor does not haveenough evidence to convict them both. He relies one one of themtestifying against the other in order to get a conviction and pun-ish the second prisoner by sending him to jail. If both of themtestify against the other (defections: \D, D") then they both goto jail for 1 year each, thus getting a \util" of �1. If, on the otherhand, both maintain silence (cooperations: \C, C") then theygo free with \util" of 0 each. If, on the other hand, row-playertesti�es (D) and column-player maintains silence (C), then row-player is rewarded with 1 util and column-player is punishedwith �2 util. The other case is symmetric.The pay-o�s can be made all non-negative by adding 2 utilsto each and thus getting a pay-o� matrix: cMishra 1998



4 Introduction Chapter 1Prisoners' Dilemma (Modi�ed Pay-o�s)C DC 2,2 0,3D 3,0 1,11. For column-player the strategy C is dominated by thestrategy D independent of how row-player plays the game.Thus column player must defect.2. Similarly, for row-player the strategy C is dominated bythe strategy D independent of how column-player playsthe game. Thus row player must defect.Hence the equilibrium strategy for the players is to defecteven when they could have each gotten better pay-o�s by coop-erating.1.4 Second-Price Auction1. Seller has one indivisible unit of object for sale.2. There are I potential buyers (bidders) with valuations0 � v1 � v2 � vI :(Consider the case when I = 2.)3. The bidders simultaneously submit bidssi 2 [0;1]:4. The highest bidder wins the object.5. But he only pays the second bid (maxj 6=i sj).cMishra 1998



Section 1.5 Introduction 56. His utility is vi �maxj 6=i sj :Consider the special case of just two playersv1; v2 = valuations s1; s2 = bids:Pay-o�s u1 � if s1 > s2 then v1 � s2 else 0:u2 � if s2 > s1 then v2 � s1 else 0:Let us look at the player 1's choices.1. Overbidding(a) s1 � s2: The payo� is zero and the strategy is weaklydominated.(b) s2 � v1: The payo� is v1 � s2 and the strategy isweakly dominated with respect to bidding s1 = v1.(c) v1 < s2 < s1: The payo� is v1 � s2 < 0 negative andthe strategy is strongly dominated.2. Underbidding(a) s2 � v1: The payo� is zero and the strategy is weaklydominated.(b) s1 � s2: The payo� is is v1 � s2 and the strategy isweakly dominated with respect to bidding s1 = v1.(c) s1 < s2 < v1: The payo� is zero and the strategy isweakly dominated.So the best strategy for player 1 is to bid exactly his ownvaluation (s1 = v1). And by a symmetric argument, the beststrategy for player 2 is also to bid exactly his own valuation(s2 = v2). cMishra 1998



6 Introduction Chapter 11.5 Two Person Zero-sum GamesWe de�ne a loss matrix M as follows:M(si; sj) =M(i; j) = Loss su�ered by the row-player for thestrategy pro�le (si; sj).Rock, Paper & ScissorsR P SR 1/2 1 0P 0 1/2 1S 1 0 1/2Row-player's goal is to minimize the loss. Assume (withoutloss of generality) that all the losses are in the range [0; 1].Row-player's expected lossXi;j �r(si)�c(sj)M(si; sj)= Xi;j �r(i)M(i; j)�c(j)= �Tr M�c =M(�r; �c):�r(si) = Probability that the row player plays si�c(sj) = Probability that the column player plays sjSimilarly,M(�r; j) =Xi;j �r(i)M(i; j) and M(i; �c) =Xi;j �c(j)M(i; j):Row-player's strategymin�r max�c M(�r; �c):cMishra 1998



Section 1.7 Introduction 7A mixed strategy ��r realizing this minimum is called a minmaxstrategy.Theorem 1.5.1 The MINMAX theorem: von Neumannmin�r max�c M(�r; �c) = max�c min�r M(�r; �c):1.6 Obstacles1. Imperfect InformationM (pay o�) may be unknown.2. Computational complexityM is so large that computing a minmax strategy using alinear program is infeasible.3. IrrationalityOpponent (column-player) may not be truly adversarial.1.7 Repeated Play (with learning)M unknown1. The game is played repeatedly in a sequence of rounds.2. On round t = 1; : : : ; T :(a) The learner (row-player) chooses mixed strategy �r;t.(b) The opponent (column-player) chooses mixed strat-egy �c;t.(c) Row-player observes all possible lossesM(i; �c;t) =Xi;j �c;t(j)M(i; j);for each row i.(d) Row-player su�ers loss M(�r;t �c;t). cMishra 1998



8 Introduction Chapter 1Row-player's cumulative expected loss:TXt=1M(�r;t; �c;t):The expected cumulative loss of the best strategyTXt=1M(��r ; �c;t) = min�r TXt=1M(�r; �c;t):1.8 Learning AlgorithmParameter � to be chosen. Initially,W1(i) = 1; 8iWt+1(i) = Wt(i)�M(i;�c;t)�r;t(i) = Wt(i)PiWt(i) :1.9 Analysis of Learning Algorithm1.9.1 Inequality 1Xi Wt+1(i) = Xi Wt(i)�M(i; �c;t)=  Xi Wt(i)! �Xi �r;t�M(i; �c;t)) PiWt+1(i)PiWt(i) = Xi �r;t�M(i; �c;t)� Xi �r;t(1 � (1 � �)M(i; �c;t))= 1� (1� �)M(�r;t; �c;t)):After telescoping, we getPiWT+1(i)PiW1(i) �Yt (1 � (1 � �)M(�r;t; �c;t))cMishra 1998



Section 1.9 Strategic Form Games 9Hence,ln PiWT+1(i)n ! � Xt ln(1� (1 � �)M(�r;t; �c;t))� �(1� �)Xt M(�r;t; �c;t):1.9.2 Inequality 2Xi WT+1(i) �WT+1(j) = �PtM(j; �c;t)� �PtM(��r ; �c;t):Henceln PiWT+1(i)n ! � (ln�)Xt M(��r ; �c;t))� lnn:1.9.3 Final ResultCombining the two inequalities:(1� �)Xt M(�r;t; �c;t) � lnn+ (ln 1=�)Xt M(��r ; �c;t)):and,Xt M(��r ; �c;t) � Xt M(�r;t; �c;t)� (ln 1=�)1 � � Xt M(��r ; �c;t)) + lnn1� � :
cMishra 1998



Chapter 2Strategic Form Games2.1 GamesGames can be categorized in to following two forms as below.We will start here with the �rst category and postpone the dis-cussion of the second category for later.1. Strategic Form Games (also called Normal Form Games)2. Extensive Form Games2.2 Strategic Form Games1. Let I = f1; : : : ; Ig be a �nite set of players, where I 2 Nis the number of players.2. Let Si(i 2 I) be the (�nite) set of pure strategies availableto player i 2 I.3. S = S1 � S2 � � � � � SI(Cartesian product of the pure strategies) = Set of purestrategy pro�les. 10



Section 2.2 Strategic Form Games 11ConventionsWe write, si 2 Si for a pure strategy of player i. We alsowrite, s = (s1; s2; : : : ; sI) 2 S for a pure strategy pro�le.\�i" denotes the player i's \opponents" and refers to allplayers other than some given player i. Thus, we can write,S�i = �j2I;j 6=iSjJust as before, s�i 2 S�i denotes a pure strategy pro�le forthe opponents of i. Hence,s = (si; s�i) 2 S;is a pure strategy pro�le.ui : S ! R = Pay-o� function (real-valued function on S)for player i.ui(s) = von Neumann-Morgenstern utility of player i foreach pro�le s = (s1; s2; : : : ; sI) of pure strategies.De�nition 2.2.1 A strategic form game is a tuple(I; fS1; S2; : : : ; SIg; fu1; u2; : : : ; uIg)consisting of a a set of players, pure strategy spaces and pay-o�functions.De�nition 2.2.2 A two-player zero-sum game is a strategicform game with I = f1; 2g such that8s2S 2Xi=1 ui(s) = 0:De�nition 2.2.3 A mixed strategy set for player i, �i is theset of probability distributions over the pure strategy set Si�i = (�i:Si ! [0; 1]jXi �i(si) = 1):The space of mixed strategy pro�le = � = �i2I�i:As before, we write: �i 2 �i, and � = f�1; �2; : : : ; �Ig 2 �:cMishra 1998



12 Strategic Form Games Chapter 2The support of a mixed strategy �i = The set of pure strate-gies to which �i assigns positive probability.Player i's pay-o� to pro�le � isui(�) = E�iui(�; ��i)ui(�) = ui(�i; ��i) = Xsi2Si �i(si)ui(si; ��i)ui(si; ��i) = Xs�i2S�i ��i(s�i)ui(si; s�i)= Xs�i2S�i Yj 6=i �j(sj)!ui(si; s�i):Hence,ui(�) = Xsi2Si Xs�i2S�i �i(si) Yj 6=i �j(sj)!ui(si; s�i)= Xs2S Yj �j(sj)!ui(s):2.3 Domination & Nash EquilibriumDe�nition 2.3.1 A pure strategy si is strictly dominated forplayer i if 9�0i2�i 8s�i2S�iui(�0i; s�i) > ui(si; s�i):A pure strategy si is weakly dominated for player i if9�0i2�i  8s�i2S�iui(�0i; s�i) � ui(si; s�i)^ 9s�i2S�iui(�0i; s�i) > ui(si; s�i)!:De�nition 2.3.2 Best Response: The set of best responsesfor player i to a pure strategy pro�le s 2 S isBRi(s) = (s�i 2 Sij8si2Si ui(s�i ; s�i) � ui(si; s�i)):Let the joint best response set be BR(s) = �iBRi(s):cMishra 1998



Section 2.4 Strategic Form Games 13De�nition 2.3.3 Nash Equilibrium: A pure strategy pro�les� is a Nash equilibrium if for all players i,8si2Si ui(s�i ; s��i) � ui(si; s��i):Thus a Nash equilibrium is a strategy pro�le s� such that s� 2BR(s�).A Nash equilibrium s� is strict if each player has a uniquebest response to his rivals' strategies: BR(s�) = fs�g.8si 6=s�i ui(s�i ; s��i) > ui(si; s��i):A mixed strategy pro�le �� is a Nash equilibrium if for all play-ers i, 8si2Si ui(��i ; ���i) � ui(si; ���i):Remark: Since expected utilities are \linear in the probabili-ties," if a player uses a non-degenerate mixed strategy in a Nashequilibrium (non-singleton support), he must be indi�erent be-tween all pure strategies to which he assigns positive probability.(It su�ces to check that no player has a pro�table pure-strategydeviation).2.4 Example ExampleL M RU 4,3 5,1 6,2M 2,1 8,4 3,6D 3,0 9,6 2,8For column-player, M is dominated by R. Column-player caneliminateM from his strategy space. The pay-o� matrix reducesto cMishra 1998



14 Strategic Form Games Chapter 2New Pay-o�sL RU 4,3 6,2M 2,1 3,6D 3,0 2,8For row-player, M and D are dominated by U. Row-playercan eliminate M and D. The new pay-o� matrix isNew Pay-o�sL RU 4,3 6,2Next, column-player eliminates R as it is dominated by Uand reduces the pay-o� matrix toNew Pay-o�sLU 4,3Note thatBRr(U;L) = U; & BRc(U;L) = L; & BR(U;L) = (U;L):(U;L) is a strict Nash equilibrium.Remark: Mixed Strategy (Not a Nash equilibrium.)cMishra 1998



Section 2.4 Strategic Form Games 15�r = (1=3; 1=3; 1=3) & �c = (0; 1=2; 1=2) & � = (�r; �c):Thusur(�r; �c) = Xs (Yj �j(sj))ur(s)= (1=3 � 0)4 + (1=3 � 1=2)5 + (1=3 � 1=2)6+ (1=3 � 0)2 + (1=3 � 1=2)8 + (1=3 � 1=2)3+ (1=3 � 0)3 + (1=3 � 1=2)9 + (1=3 � 1=2)2= 512 ;anduc(�r; �c) = Xs (Yj �j(sj))uc(s)= (1=3 � 0)3 + (1=3 � 1=2)1 + (1=3 � 1=2)2+ (1=3 � 0)1 + (1=3 � 1=2)4 + (1=3 � 1=2)6+ (1=3 � 0)0 + (1=3 � 1=2)6 + (1=3 � 1=2)8= 412 ;Thus this mixed strategy leads to a much better pay-o� incomparison to the pure strategy Nash equilibrium.A pure strategy may be strictly dominated by a mixed strat-egy, even if it is not strictly dominated by any pure strategy.ExampleL RU 2,0 -1,0M 0,0 0,0D -1,0 2,0 cMishra 1998



16 Strategic Form Games Chapter 2For row-player M is not dominated by either U or D. But Mis dominated by a mixed strategy �r = (1=2; 0; 1=2) (payo�:ur(�) = (1=2; 1=2).Going back to the \Prisoners' Dilemma" game, note that itsNash equilibrium is in fact (D, D) [both players defect].BRr(C;C) = BRr(C;D) = BRr(D;C) = BRr(D;D) = D;BRc(C;C) = BRc(C;D) = BRc(D;C) = BRc(D;D) = D;BR(C;C) = BR(C;D) = BR(D;C) = BR(D;D) = (D;D):2.4.1 Matching PenniesMatching PenniesH TH 1,-1 -1,1T -1,1 1,-1There are two players: \Matcher" (row-player) and \Mis-matcher" (column-player). Matcher and Mismatcher both havetwo strategies: \call head" (H) and \call tail" (T). Matcherwins 1 util if both players call the same [(H,H) or (T,T)] andmismatcher wins 1 util if the players call di�erently [(H,T) or(T,H)]. It is easy to see that this game has no Nash equilibriumpure strategy. However it does have a Nash equilibrium mixedstrategy: �r = (1=2; 1=2) & �c = (1=2; 1=2):The pay-o�s areur(�) = (1=2 � 1=2)1 + (1=2 � 1=2)(�1)+ (1=2 � 1=2)(�1) + (1=2 � 1=2)1 = 0uc(�) = (1=2 � 1=2)(�1) + (1=2 � 1=2)1+ (1=2 � 1=2)1 + (1=2 � 1=2)(�1) = 0:cMishra 1998



Section 2.6 Strategic Form Games 172.5 Key Ingredients for Nash Equilib-rium1. Introspection (Fictitious play)2. Deduction/Rationality3. Knowledge of Opponents Pay-o�s4. Common Knowledge2.6 Revisiting On-line Learning2.6.1 ConvergenceNote that in the earlier discussion of the on-line learning strat-egy, we noted that the on-line learning algorithm is competitive[with a competitive factor of (ln 1=�)=(1��) � 1+ (1� �)=2+(1��)2=3+ � � �, for small (1��)] for any su�ciently large timeinterval [0; T ]. But it is also fairly easy to note that the proba-bilities that the row-player chooses do not necessarily convergeto the best mixed strategy. Namely,WT (i) = �PtM(i; �c;t) & �r;T (i) = WT (i)PiWT (i) :We have not explicitly shown that limT!1 �r;T converges indistribution to ��r . Does the computed distribution convergeto anything? In the absence of any convergence property, onemay justi�ably question how the algorithm can be interpretedas learning a strategy.2.6.2 IrrationalityLet us look at the \Matching Pennies" problem again:Matching Pennies cMishra 1998



18 Strategic Form Games Chapter 2H TH 1,-1 -1,1T -1,1 1,-1Suppose the column-player chooses a mixed strategy at timet such that �c;t(H) > 1=2 [and �c;t(T ) = 1 � �c;t(H) < 1=2]then for the row-player, the best response is BRr;t(�t) = Hand is unique. By a similar reasoning, if �c;t(H) < 1=2 [and�c;t(T ) > 1=2], then for the row-player, the best response isBRr;t(�t) = T . Thus, if the rival deviates from his Nash equi-librium mixed strategy �c;t = (1=2; 1=2), then row-player's (ra-tional) best response is always a pure strategy H or T . Thus,if row-player had a convergent (rational) mixed strategy, thendepending on limT!1f�c;tgT0 , the row player must converge toone of the following three (conventional) strategies:1. random(1=2; 1=2) (the Nash equilibriummixed strategy),2. H� (always H), or3. T � (always T).Anything else would make the row-player irrational. Thus,a player playing the on-line learning algorithm must be almostalways irrational!2.6.3 A Meta-Theorem of Foster & YoungDe�nition 2.6.1 An in�nite sequence �c;t is almost constant,if there exists a �c such that �c;t = �c almost always (a.a.). Thatis limT!1 jft � T : �c;t 6= �cgjT = 0:If �c;t is not almost constant then8�c= const �c;t 6= �c in�nitely often (i.o.):cMishra 1998



Section 2.6 Strategic Form Games 19Consider an n-player game with a strategy space S1 � S2 �� � � � Sn = S and with the utility functions ui : S ! R. Allactions are publicly observed. Let �i = the set of probabilitydistributions over Si. Let � = �i�i be the product set of mix-ture. Before every round of the game, a state can be describedby a family of probability distributionsf(�i; �i;j)gi 6=j:�i 2 �i = Player i's mixed strategy;�i;j 2 �j = Player i's belief about player j' mixed strategy:De�nition 2.6.2 Rationality: Each player chooses only bestreplies given his beliefs:8i 6=j �i(si) > 0 ) si 2 BRi(�i;j):De�nition 2.6.3 Learning: Player i has its own determin-istic learning process ffi; fi;jg which it uses in determining itsstrategy and its beliefs. In particular, let ht = all publicly avail-able information up to time t. Then, player i chooses its strategyand beliefs as follows: fi : ht�1 7! �i;tfij : ht�1 7! �ij;t:The learning process is informationally independent if �ij;t =fij(ht�1) do not depend on any extraneous information.De�nition 2.6.4 Convergence: The beliefs are said to con-verge along a learning path fht; �i;t; �ij;tg10 if8i 6=j 9�ij2�j limt!1 �ij;t = �ij:The strategies are said to converge along a learning pathfht; �i;t; �ij;tg10 if 8i 9�i2�i limt!1 �i;t = �i: cMishra 1998



20 Strategic Form Games Chapter 2The beliefs are said to be predictive along a learning path if8i 6=j limt!1 �ij;t = �i;t;and they are strongly predictive if in addition both the beliefsand strategies converge.Theorem 2.6.1 Consider a �nite 2-person game (players: row-player and column-player) with a strict (thus, unique) Nashequilibrium �� = (��r ; ��c ) which has full support on Sr � Sc.Let f(fr; frc); (fc; fcr)g be a DRIP learning process (D = Deter-ministic, R = Rational, I = Informationally independent and P= Predictive).On any learning path (ht; (�r;t; �rc;t); (�c;t; �cr;t)), if the beliefsare not almost constant with value �� then the beliefs do notconverge.Proof:Assume to the contrary: then �rc;t 6= ��c i.o. Then, in�nitelyoften, �rc;t does not have full support and9sr;t2Sr sr;t 62 BRr(�rc;t);and by the �niteness of the strategies Sr:9sr2Sr sr 62 BRr(�rc;t) i.o.By rationality of row-player,9sr2Sr �r;t(sr) = 0 i.o. & 9sr2Sr limt!1 �r;t(sr) = 0:By a similar argument,9sc2Sc limt!1 �c;t(sc) = 0:Since the learning is assumed to be predictive, we getlimt!1�cr;t(sr) = 0 & �rc;t(sc) = 0:cMishra 1998



Section 2.6 Nash Equilibrium 21Thus, if the beliefs converge (say, to (�r; �c)) then the beliefs(and also, strategies|by predictivity) converge to some strate-gies other than the unique Nash equilibrium (as it is unique withfull support). Hence one of the following two holds at the limit:9tr2Srnfsrg �r(tr) > 0 and tr 62 BRr(�c)or9tc2Scnfscg �c(tc) > 0 and tc 62 BRc(�r):But, depending on which equation holds true, we shall concludethat either row-player or column-player (or both) must be irra-tional, a contradiction.

cMishra 1998



Chapter 3Nash Equilibrium3.1 Nash Equilibrium3.1.1 Fixed Point TheoremsDe�nition 3.1.1 A point x 2 K is a �xed point of an injectivefunction f :K ! K; if x = f(x):De�nition 3.1.2 A point x 2 K is a �xed point of a mapping	:K ! 2K ; if x 2 	(x):Theorem 3.1.1 Brouwer's Fixed Point Theorem: If f :K ! K is a continuous function from a nonempty, compact,convex subset K of a �nite dimensional TVS (topological vectorspace) into itself, then f has a �xed point, i.e.,9x2K x = f(x):Theorem 3.1.2 Kakutani's Fixed Point Theorem: If 	 :K ! 2K is a convex-valued, uhc (upper hemi-continuous) mapfrom a nonempty, compact, convex subset K of a �nite dimen-sional TVS to the nonempty subsets of K, then 	 has a �xedpoint, i.e., 9x2K x 2 	(x):22



Section 3.1 Nash Equilibrium 23De�nition 3.1.3 Topological Vector Space: L = vector spacewith a T1 topology(8x6=y2L 9Gx= open set x 2 Gx ^ y 62 Gx)which admits continuous vector space operations.Example:Rnwith standard Euclidean topology. (Only instanceof a �nite dimensional TVS.)Theorem 3.1.3 Existence of a Mixed Strategy Equilib-rium (Nash 1950). Every �nite strategic-form game has a mixed-strategy equilibrium.Proof: Player i's reaction correspondence, 	i, maps eachstrategy pro�le � to the set of mixed strategies that maximizeplayer i's pay-o�s when his rivals play ��i:	i(�) = (�0i j 8si2Si ui(�0i; ��i) � ui(si; ��i)):Thus, 	i : �! 2�i :De�ne 	 : �! 2� : � 7! �i	i(�):Thus this correspondence map is the Cartesian product of 	i's.A �xed point of 	 (if exists) is a �� such that�� 2 	(��):Note that 8si2Si ui(��i ; ���i) � ui(si; ���i);by de�nition. Thus a �xed point of 	 provides a mixed strategyequilibrium ��.Claims:1. � = Nonempty, compact and convex subset of a TVS.�i = �jSij�1 = jSij � 1 dimensional simplex, since�i = ((�i;1; : : : ; �i;jSij) j �i;j � 0;Xj �i;j = 1):Rest follows since � = �i�i. cMishra 1998



24 Nash Equilibrium Chapter 32. ui = Linear Function.80<�<1 ui(��0i + (1 � �)�00i ; ��i)= �ui(�0i; ��i) + (1 � �)ui(�00i ; ��i):Hence ui is a continuous function in his own mixed strat-egy. Since � is compact, ui attains maxima in �.8�2� 	(�) 6= ;:3. 8�2� 	(�) = convex:Let �0i, �00i 2 	(�). By de�nition,8si2Si (ui(�0i; ��i) � ui(si; ��i))^ (ui(�00i ; ��i) � ui(si; ��i)):Hence80<�<1 8si2Si ui(��0i + (1� �)�00i ; ��i) � ui(si; ��i);and 80<�<1 ��0i + (1� �)�00i 2 	i(�):4. 	 = uhc. Consider a sequence((�n; �̂n) j �̂n 2 	(�n))n:We wish to show thatIf limn!1 (�n; �̂n) = (�; �̂) then �̂ 2 	(�):Suppose Not! Then 8n �̂n 2 	(�n);but �̂ 62 	(�) ) �̂i 62 	i(�):cMishra 1998



Section 3.1 Beyond Nash 25Thus, 9�>0 9�0i2�i ui(�0i; ��i) > ui(�̂i; ��i) + 3�:Since ui = continuous, there is a su�ciently large N suchthat ui(�0i; �N�i) > ui(�0i; ��i)� �> ui(�̂i; ��i) + 2�> ui(�̂Ni ; �N�i) + �:Thus, �̂Ni 62 	(�N), a contradiction.Thus we conclude that 	 : � ! 2� is a convex valued,uhc map from a nonempty, compact, convex subset � of �nitedimensional TVS to nonempty subsets of �. Thus by Kakutani's�xed point theorem 9��2� �� 2 	(��);and �� is a mixed strategy Nash equilibrium.
cMishra 1998



Chapter 4Beyond Nash: Domination,Rationalization andCorrelation4.1 Beyond NashWe have seen that it is impossible to \learn" a Nash equilibriumif we insist on DRIP conditions. A resolution to this dilemmacan involve one or more of the following approaches:1. Explore simpler requirements than Nash equilibria: e.g.,undominated sets, rationalizable sets and correlated equi-libria. (The �rst two correspond to minmax and maxminrequirements. The last one requires some side informationand may make the system informationally dependent.)2. Requirement of predictivity may need to be abandoned.3. Requirement of rationality may need to be abandoned.4.1.1 Correlated EquilibriumThis concept extends the Nash concept by supposing that theplayers can build a \correlated device" that sends each of theplayers a private signal before they choose their strategy.26



Section 4.2 Beyond Nash 27Main Ingredients: Predictions using only the assumptionthat the structure of the game (i.e., the strategy spaces and pay-o�s, Si's and ui's) and the rationality of the players are commonknowledge.4.2 Iterated Strict Dominance and Ra-tionalizabilityDe�nition 4.2.1 Iterated Strict Dominance: LetS0i = Si and �0i = �iLet for all n > 0Sni = (si 2 Sn�1i j 8�0i2�n�1i 9s�i2Sn�1�i ui(si; s�i) � ui(�0i; s�i));(Thus si dominates all the mixed strategies for some strategypro�le of the rivals) and de�ne�ni = (�i 2 �i j �i(si) > 0) si 2 Sni ):Let S1i = 1\n=0 Snibe the set of player i's pure strategies that survive iterated dele-tion of strictly dominated strategies.Let �1i = (�i = mixed strategy j8�0i2�i 9s�i2S1�i ui(�i; s�i) � ui(�0i; s�i))be the set of player i's mixed strategies that survive iterated dele-tion of strictly dominated strategies. cMishra 1998



28 Beyond Nash Chapter 4Example:L RU 1,3 -2,0M -2,0 1,3D 0,1 0,1Note thatS0r = fU;M;Dg & �0r = f� (with full support) g:Similarly,S0c = fL;Rg & �0c = f� (with full support) g:Also note thatS1r = � � � = S2r = S1r = S0r ; & S1c = � � � = S2c = S1c = S0c :Note, however, that for all values p 2 (1=3; 2=3) the mixed strat-egy �r = (p; 1 � p; 0) is dominated by D. Thus,�1r � �0r:4.2.1 Some Properties of Undominated SetsS1 = S11 � S12 � � � � � S1I ; & �1 = �11 ��12 � � � � ��1I :1. The �nal surviving strategy spaces are independent of theelimination order .2. A strategy is strictly dominated against all pure strategiesof the rivals if and only if it is dominated against all of theircMishra 1998



Section 4.3 Beyond Nash 29strategies. Thus, the following is an equivalent de�nitionof the undominated sets:S0i = Si and �0i = �iSni = (si 2 Sn�1i j8�0i2�n�1i 9s�i2Sn�1�i ui(si; s�i) � ui(�0i; s�i)):�ni = (�i 2 �n�1i j8�0i2�n�1i 9s�i2Sn�1�i ui(�i; s�i) � ui(�0i; s�i)):S1i = 1\n=0 Sni ; & �1i = 1\n=0�ni :De�nition 4.2.2 A game is solvable by iterated (strict) domi-nance, if for each player i, S1i is a singleton, i.e., S1i = fs�ig.In this case, the strategy pro�le (s�1, s�2, : : :, s�I) is a (unique)Nash equilibrium.Proof: Suppose that it is not a Nash equilibrium: That is forsome i s�i 62 BRi(s��i)Thus 9si2Si ui(si; s��i) > ui(s�i ; s��i):But suppose si was eliminated in round n: Then9s0i2Sn�1i 8s�i2Sn�1�i ui(s0i; s�i) > ui(si; s�i):Since s��i 2 S1�i, we have ui(s0i; s��i) > ui(si; s��i). Repeating inthis fashion we get a sequence of inequalities:ui(s�i ; s��i) > � � � > ui(s00i ; s��i) > ui(s0i; s��i) > ui(si; s��i);resulting in a contradiction. cMishra 1998



30 Beyond Nash Chapter 44.3 RationalizabilityThis notion is due to Bernheim(1984), Pearce(1984) and Au-mann(1987) and provides a complementary approach to iteratedstrict dominance. This approach tries to answer the followingquestion:\What are all the strategies that a rational playercan play? "Rational player will only play those strategies that are bestresponses to some beliefs he has about his rivals' strategies.De�nition 4.3.1 (Rationalizable Strategies) Let~�0i = �i:For n > 0, let~�ni = (�i 2 ~�n�1i j9��i2�j 6=iConv(~�n�1j ) 8�0i2~�n�1i ui(�i; ��i) � ui(�0i; ��i)):The rationalizable strategies for player i areRi = 1\n=0 ~�niA strategy pro�le � is rationalizable if �i is rationalizable foreach player i. Let �� = (��1, ��2, : : :, ��I ) be a Nash equilibrium.Note �rst, ��i 2 ~�0i , for all i. Next assume that �� 2 �i~�n�1i .Thus ��i 2 ~�n�1i , and ���i 2 �j 6=i ~�n�1j . Hence,8�0i2�i ui(��i ; ���i) � ui(�0i; ���i) ) ��i 2 ~�ni :Thus, �� 2 R = �iRi.Hence,Theorem 4.3.1 Every Nash equilibrium is rationalizable.cMishra 1998



Section 4.4 Beyond Nash 31Theorem 4.3.2 (Bernheim/Pearce (1984))The set of rationalizable strategies is nonempty and containsat least one pure strategy for each player. Further, each �i 2 Riis (in �i) a best response to an element of �j 6=iConv(Rj).Comparing the constructions of undominated strategies withrationalizable strategies, we note that�0i = �i; and ~�0i = �i:In the nth iteration, the undominated strategies are constructedas �ni = (�i 2 �n�1i j8�0i2�n�1i 9��i2�j 6=iConv(�n�1j ) ui(�i; ��i) � ui(�0i; ��i));where as rationalizable strategies are constructed as~�ni = (�i 2 ~�n�1i j9��i2�j 6=iConv(~�n�1j ) 8�0i2~�n�1i ui(�i; ��i) � ui(�0i; ��i)):Finally,�1i = 1\n=0�ni ;�1 = �i�1i ; and Ri = 1\n=0 ~�ni ; R = �iRi:A direct examination of these constructions reveals that ~�ni ��ni and hence, R � �1. Also, note that the undominated strate-gies are computing the minmaxvalues where as the rationalizablestrategies compute maxmin values.4.4 Correlated EquilibriumAumann's Example cMishra 1998



32 Beyond Nash Chapter 4L RU 5,1 0,0D 4,4 1,5There are 3 Nash equilibria:� A pure strategy: (U, L) 7! Pay-o� = 5,1,� A pure strategy: (D, R) 7! Pay-o� = 1,5, and� A mixed strategy: ((1=2; 1=2), (1=2; 1=2)) 7! Pay-o� =(2.5, 2.5).Suppose that there is a publicly observable random variablewith Pr(H) = Pr(T ) = 1=2. Let the players play (U, L) if theoutcome is H, and (D, R) if the outcome is T. Then the pay-o�is (3, 3).By using publicly observable random variables, the playerscan obtain any pay-o� vector in the convex hull of the set ofNash equilibria pay-o�s.Players can improve (without any prior contracts) if they canbuild a device that sends di�erent but correlated signals to eachof them.4.4.1 Formal De�nitions� \Expanded Games" with a correlating device.� Nash equilibrium for the expanded game.De�nition 4.4.1 Correlating device is a triple(
; fHigI ; p)� 
 = a (�nite) state space corresponding to the outcomesof the device.cMishra 1998



Section 4.4 Beyond Nash 33� p = probability measure on the state space 
� Hi = Information Partition for player i.Assigns an hi(!) to each ! 2 
 such that ! 2 hi(!).hi : 
! Hi : ! 7! hi(!):Player i's posterior belief about 
 are given by Bayes' law:8!2hi p(!jhi) = p(!)p(hi) :4.4.2 Pure Strategies for the Expanded GameGiven a correlating device (
; fHig; p), we can de�ne strategiesfor the expanded game as follows: Consider a map�i : 
! Si : ! 7! �i(!);such that �i(!) = �i(!0), if !0 2 hi(!).The strategies are adapted to the information structure.De�nition 4.4.2 DEF(1) A correlated equilibrium � relativeto information structure (
; fHig; p) is a Nash equilibrium instrategies that are adapted to information structure. That is,(�1, �2, : : :, �I) is a correlated equilibrium if8i 8~�i X!2
 p(!)ui(�i(!); ��i(!)) � X!2
 p(!)ui(~�i(!); ��i(!)):Using the Bayes' rule, an equivalent condition would be:8i 8hi2Hi;p(hi)>0 8si2SiX!jhi(!)=hi p(!jhi)ui(�i(!); ��i(!))� X!jhi(!)=hi p(!jhi)ui(si; ��i(!)): cMishra 1998



34 Beyond Nash Chapter 44.4.3 Correlated Equilibrium and Universal De-vice\Universal Device" that signals each player how that playershould play.De�nition 4.4.3 DEF(2) A correlated equilibrium is any prob-ability distribution p(:) over the pure strategies S1�S2�� � ��SIsuch that, for every player i, and every function d(i) : Si ! SiXs2S p(s)ui(si; s�i) � Xs2S p(s)ui(d(si); s�i):Using the Bayes' rule, an equivalent condition would be:8i 8si2Si;p(si)>0 8s0i2SiXs�i2S�i p(s�ijsi)ui(si; s�i)� Xs�i2S�i p(s�ijsi)ui(s0i; s�i):Equivalence of correlated equilibria under Def(1) and Def(2):Claim:Def(1) ( Def(2):Choose 
 = S. hi(s) = fs0js0i = sig. Leave p(s) unchanged.Claim:Def(1) ) Def(2):Let � be an equilibrium w.r.t. (
; fHig; ~p). De�nep(s) =Xf~p(!)j�1(!) = s1; : : : ; �I(!) = sI ; ! 2 
g:Let Ji(si) = f!j�i(!) = sig:Thus~p(Ji(si)) = p(si) = probability that player i is told to play si:cMishra 1998



Section 4.4 Adaptive Learning 35X!2Ji(si) ~p(!)~p(Ji(si))��i(!):It is the mixed strategy of the rivals that player i believes hefaces, conditional on being told to play si, and it is a convexcombination of the distributions conditional on each hi such that�i(hi) = si.

cMishra 1998



Chapter 5Adaptive and SophisticatedLearning5.1 Adaptive and Sophisticated Learn-ingThe idea of best reply dynamics goes back all the way to Cournot'sstudy of duopoly and forms the foundation of Walrasian equi-librium in economy and is created by the classical Tatonnementlearning process.The underlying learning processes can be categorized intosuccessively stronger versions:� Best-Reply Dynamics: However, it's also known thatthis dynamics lead to non-convergent, cyclic behavior. Inthis model, an outsider with no information about the util-ities (payo�s) of the agents could eventually predict thebehavior of the agents more accurately than they them-selves.� Fictitious-Play Dynamics: The agents choose strate-gies that are best reply to predictions that the probabilitydistributions of the competitors' play at the next round isbased on the empirical distribution of the past plays. Even36



Section 5.2 Adaptive Learning 37this dynamics lead to (if there is no zero-sum restriction)cycles of exponentially increasing lengths.� Stationary Bayesian Learning Dynamics: The agentschoose strategies as functions from the information set(empirical distribution of the past plays) without relyingon any intermediate prediction. The distribution over thestrategies changes as the empirical distribution changes.(Reactive Learning: involves no model building.)The dynamics may converge|but to a (mixed) strategypro�le that is not necessarily the perfect (Nash) equilib-rium.5.2 Set-upPlayer n plays a sequence of plays: fxn(t)g. Each xn(t) is apure strategy and is chosen by the rules of player n's learningalgorithm. We are interested in two properties that may besatis�ed by fxn(t)g: it is approximately best-reply dynamics,then it is consistent with adaptive learning; it is approximately�ctitious-play dynamics, then it is consistent with sophisticatedlearning.De�nition 5.2.1 fxn(t)g is consistent with adaptive learn-ing. Player n eventually chooses only strategies that are nearlybest replies to some probability distribution over his rivals jointstrategy pro�les, where near zero probabilities are assigned tostrategies that have not been played for su�ciently long time.De�nition 5.2.2 fxn(t)g is consistent with sophisticatedlearning. Player n eventually chooses only nearly best replies tohis probabilistic forecast of rivals' joint strategy pro�les, wherethe support of probability may include not only past plays butalso strategies that the rivals may choose if they themselves wereadaptive or sophisticated learners. cMishra 1998



38 Adaptive Learning Chapter 5We will look at the e�ect of these algorithms on �nite playergames, with compact strategies and continuous pay-o� func-tions.Note that these assumptions are consistent with the usualmodel of exchange economy with in�nitely divisible goods. Notethat in this model, serially undominated set is a singleton andthus the Walrasian equilibrium. One of the main results that wewill see is that in any process, consistent with adaptive learning,play tends towards the serially undominated set and hence, in anexchange economy, adaptive learning would lead to equilibrium.5.3 FormulationDe�nition 5.3.1 Noncooperative game� = (N; (Sn;n 2 N); �):N = Finite Player SetSn = Player n's strategyCompact Subset of some Normed Space� = Pay-o� FunctionAssumed Continuous:S = �n2NSn x 2 S ) x = (xn; x�n):x�n is the strategy choice of n's rivals.� : S ! RjNj = Pay-o� Function, Continuous�n : S ! R: (xn; x�n) 7! �n(x):Let T be a set. Then �(T ) = Set of all probability distribu-tions over T .�(Sn) = Mixed strategies on Sn. ��n = �j 6=n�(Tj) =Mixed strategies of n's rivals.cMishra 1998



Section 5.3 Adaptive Learning 39De�nition 5.3.2 A strategy xn 2 Sn is �-dominated by anotherstrategy �xn 2 �(Sn) if8z�n2S�n �n(xn; z�n) + � < �n(�xn; z�n):If 8� xn is �-dominated by �xn, then xn is dominated by �xn(in the classical sense).Let T � S. De�ne Tn � T jSn = projection of T onto Sn.T�n = �j 6=nTj.De�nition 5.3.3 Given T � S. LetU �n(T ) = fxn 2 Sn : 8yn2�(Sn) 9z�n2T�n�n(xn; z�n) + � � �n(yn; z�n)gU �(T ) = �n2NU �n(T ):U �n(T ) = Pure strategies in Sn that are not �-dominated whenn's rivals are limited to T�n.Fact 1The operator U � is monotonic. Let R and T be sets of strategypro�les. R � T ) U �(R) � U �(T ):Fact 2 9T U �(T ) 6� T:In general, starting with some arbitrary set of strategy pro�le Tone may not be able to create a monotonically descending chainof sets of strategy pro�les:T � U �(T ) � U �;2(T ) � � � � � U �;k(T ) � U �;k+1(T ) � � � �Fact 3However, S � U �(S): Since S is the whole nothing new can getintroduced.By the monotonicity of U �, we see that ifU �;k(T ) � U �;k+1(T ); cMishra 1998



40 Adaptive Learning Chapter 5then U �(U �;k(T )) � U �(U �;k+1(T ))and U �;k+1(T ) � U �;k+2(T ):Putting it all together, we do haveS � U �(S) � U �;2(S) � � � � � U �;k(S) � U �;k+1(S) � � � �We then de�ne U �1(S) = 1\k=0U �;k(S):Hence, U01(S) = lim�!0 U �;1(S) = Serially undominated strat-egy set. We say x is serially undominated, if x 2 U01(S).De�nition 5.3.4 A sequence of strategies fxn(t)g is consistentwith adaptive learning by player n if8�>0 8t̂ 9�t 8t��t xn(t) 2 U �n fx(s) : t̂ � s < tg!:A sequence of strategy pro�les fx(t)g is consistent with adap-tive learning if each fxn(t)g has this property.5.4 Looking ForwardF �;0(t̂; t) = U � fx(s) : t̂ � s < tg!:8 k � 1:F �;k(t̂; t) = U � F �;k�1(t̂; t) [ fx(s) : t̂ � s < tg!:cMishra 1998



Section 5.4 Learning: MR 41Lemma 5.4.1F �;0(t̂; t) � F �;1(t̂; t) � � � � � F �;k(t̂; t) � F �;k+1(t̂; t) � � � �ProofBy the monotonicity of U �,F �;0(t̂; t) � F �;1(t̂; t):Assume by inductive hypothesis,F �;k�1(t̂; t) � F �;k(t̂; t):Then F �;k�1(t̂; t) [ fx(s) : t̂ � s < tg� F �;k(t̂; t) [ fx(s) : t̂ � s < tg:By the monotonicity of U �,U � F �;k�1(t̂; t) [ fx(s) : t̂ � s < tg!� U � F �;k(t̂; t) [ fx(s) : t̂ � s < tg!:Thus F �;k(t̂; t) � F �;k+1(t̂; t):De�nition 5.4.1 A sequence of strategies fxn(t)g is consistentwith sophisticated learning by player n if8�>0 8t̂ 9�t 8t��t xn(t) 2 U �n(F �1(t̂; t)):A sequence of strategy pro�les fx(t)g is consistent with so-phisticated learning if each fxn(t)g has this property.8�>0 8t̂ 9�t 8t��t x(t) 2 F �1(t̂; t): cMishra 1998



Chapter 6Learning a la Milgrom andRoberts6.1 Adaptive Learning and UndominatedSetsExample: Battle of SexesWnM Ballet(B) Football(F)Ballet(B) 2,1 0,0Football(F) 0,0 1,2Let fx(t)g be a sequence of strategy pro�les. We show thatx(t) = (F;B) is consistent with sophisticated learning.8t̂ fx(s)jt̂ � s < tg = f(F;B)g:Thus, we haveF �;0W (t̂; t) = U �W f(F;B)g! = BF �;0M (t̂; t) = U �M f(F;B)g! = F42



Section 6.2 Learning: MR 43Thus F �;0(t̂; t) = f (B;F ) g:Similarly,F �;1(t̂; t) = U � f(B;F ); (F;B)g!= fB;Fg � fB;Fg:Continuing in this fashion, we getF �;1(t̂; t) = fB;Fg � fB;Fg:Thus x(t+ 1) = (F;B) 2 F �;1(t̂; t);is consistent with sophisticated learning.6.2 ConvergenceDe�nition 6.2.1 A sequence of strategy pro�les fx(t)g con-verges omitting correlation to a correlated strategy pro�leG 2 �(S)if (1) and (2) hold:1. Gtn converges weakly to the marginal distribution Gn forall n.2. 8�>0 9�t 8t��t 8n2N d[xn(t); supp(Gn)] < �;De�ne d[x; T ] � infy2T kx� yk.The sequence converges to the correlated strategy G 2 �(S)if in additionGt converges weakly to G.De�nition 6.2.2 A sequence fx(t)g converges omitting corre-lation to a mixed strategy Nash equilibrium if cMishra 1998



44 Learning: MR Chapter 61. It replicates the empirical frequency of the separate mixedstrategies and2. It eventually plays only pure strategies that are in or nearthe support of the equilibrium mixed strategies.Theorem 6.2.1 If fx(t)g converges omitting correlation to acorrelated equilibrium in the game �, then fx(t)g is consistentwith adaptive learning.Proof Sketch:Gt converges to a correlated equilibrium G.) Gn consists of best responses to G�n) For su�ciently large t, xn(t) is within � of Gn) Since Sn is compact and � is continuous8yn2Gn 9z�n2G�n 9�>0 �n(xn(t); z�n) + � � �n(yn; z�n)) xn(t) 2 U �n fx(s) j t̂ � s < tg!:Theorem 6.2.2 Suppose that the sequence fx(t)g is consistentwith adaptive learning and that it converges to x�. Then x� is apure strategy Nash equilibrium.Proof Sketch:Assume that x� is not a Nash equilibrium) 9n2N 8�>0 fx�ng 6= U �(fx�g):) Player n must play x0n 6= x�n i.o.) xn(t) does not converge to x�n) Contradiction.Theorem 6.2.3 Let fx(t)g be consistent with sophisticated learn-ing. Then for each � > 0 and k 2 N there exists a time t�k afterwhich (i.e., for t � t�k) x(t) 2 U �k(S):Proof Sketch:Fix � > 0. De�ne tk � t�k (Change in notation).cMishra 1998



Section 6.2 Learning: MR 45Case k = 0: t0 = 0. x(t) 2 U �(S).Case k = j + 1: By the inductive hypothesis there exists atj such that 8t�tj x(t) 2 U �j(S):Hence fx(s) j tj � s < tg � U �j(S):Since fx(t) is consistent with sophisticated learning, we canchoose t̂ = tj; tj+1 = max(t̂; �t):Then 8t�tj+1 x(t) 2 F �1(tj; t):Claim: F �1(tj; t) � U �;j+1(S):Equivalently, 8i F �i(tj; t) � U �;j+1(S):It then follows thatF �0(tj; t) = U � fx(s) j tj � s < tg!� U � U �;j(S)! = U �;j+1(S):F �;i+1(tj; t) = U � F �;i(tj; t) [ fx(s) j tj � s < tg!� U �(U �;j+1(S) [ U �;j(S))= U �(U �;j(S)) = U �;j+1(S):\k \�>0 U �k(S) = \k U0k(S) = U01(S): cMishra 1998



46 Learning: MR Chapter 6Theorem 6.2.4 Let fx(t)g be consistent with sophisticated learn-ing and S1n be the set of strategies that are played in�nitely oftenin fxn(t)g. ThenS1 = �n2NS1n � \k \�>0U �k(S) = U01(S)Corollary 6.2.5 In particular, for any �nite game �, all playlies eventually in the set of serially undominated strategies U01(S).Theorem 6.2.6 Suppose U01(S) = f�xg.kx(t)� �xk ! 0i� fx(t)g is consistent with adaptive learning.Proof Sketch:()) kx(t)� �xk ! 0:Since � is continuous,8�>0 9�t 8t>�t 8n2N �n(xn(t); x�n(t))�maxf�n(yn; x�n(t))jyn 2 Sng< [�n(�x) + �=2]� [maxf�n(yn; �x�n)jyn 2 Sng � �=2]= �:xn(t) 2 U �n(fx(�t)g) � U �n fx(s)j�t � s < tg!:) fx(t)g is consistent with adaptive learning.(()Let x� = accumulation point of fx(t)g.8k 9�t 8t>�t x(t) 2 U �k(S):x� 2 \�>0 1\k=1U �;k(S)= \k \�>0U �;k(S) = U01(S) = f�xg) kx(t)� �xk ! 0:cMishra 1998



Section 6.3 Learning: MR 47Theorem 6.2.7 Suppose U01(S) = f�xg.kx(t)� �xk ! 0i� x(t) is consistent with sophisticated learning.6.3 Stochastic Learning ProcessesWe now allow the players to experiment as we will now assumethat each user may not know his own pay-o� function. SeeFreudenberg & Kreps (1988).Game consists of alternations among� Exploration: Every strategy is experimented with equi-probability.� Exploitation: Good strategies |based on exploration|are played.At each date t, player n conducts an experiment with prob-ability �nt in an attempt to learn its best play.1. Independence: Decision to experiment is independent ofother players' decisions.2. Rare: �nt ! 0 as t!1.3. In�nitely Often: Pt �nt =1.ft(k; !)g = Subsequence of dates at which player n conductsno experiment.! = Realization of the players' randomized choices.Thus the interval [0; t] consists of experiment dates Pn(xn; t)and play dates Mn(xn; t). Write M(t) to denote the expectedtotal number of experiments.� �(xn; t) = Total Pay o� received with Mn(xn; t)� �(yn; t) = Total Pay o� received with Mn(yn; t) cMishra 1998



48 Information Theory Chapter 6Claim:Let T = set of strategy pro�les.8z2T �n(xn; z�n) < �n(yn; z�n)� 2�) For large t �(xn; t) < �(yn; t)� �M(t)=jSnj:E[�(xn; � + 1)��(yn; � + 1)jT ]��(xn; � ) + �(yn; � )= �n;�+1=jSnj E[�n(xn; x�n(� + 1)) � �n(yn; x�n(� + 1))]< �2� � �n;�+1=jSnj:Taking expectationsE[�(xn; � + 1)��(yn; � + 1)jT ]= E[�(xn; � )��(yn; � )jT ]� 2� � �n;�+1=jSnj:and then telescoping,E[�(xn; t)��(yn; t)] < �2�=jSnjX �n;t = �2�M(t)=jSnj:Let � > 2j�nj.Var[�(xn; t)��(yn; t)] � �2�2�M(t)=jSnj:Thus �(xn; t)��(yn; t)]+ �M(t)=jSnj converges to �1 andhence represents a super-martingale.In other words, xn dominates yn then the player n will dis-cover this fact eventually by repeated experiments.Theorem 6.3.1 For any �nite strategy game �, the sequencefxn(t(k; !))g constructed as described above is consistent withadaptive learning a.s.(almost surely).cMishra 1998



Chapter 7Information Theory andLearning7.1 Information Theory and Games7.1.1 Basic ConceptsDe�nition 7.1.1 Entropy is a measure of uncertainty of a ran-dom variable. Let X be a discrete random variable with alphabetX . p(x) = Pr[X = x]; where x 2 X :The entropy H(X) of the discrete random variable X is de-�ned as H(X) = Ep lg 1p(X)= �Xx2X p(x) lg p(x):Facts1. H(X) � 0. Entropy is always nonnegative. 0 � p(x) � 1;� lg p(x) � 0. Hence, Ep lg(1=p(x)) � 0.)2. H(X) � lg jX j. Consider the uniform distribution u(x).8x2X u(x) = 1=jX j. H(u) = Px(1=jX j) lg jX j = lg jX j.49



50 Information Theory Chapter 73. H(X) = Average number of bits required to encode thediscrete random variable X.7.2 Joint & Conditional Entropy(X;Y ) = A pair of discrete random variables with joint distri-bution p(x; y).Joint Entropy =H(X;Y ) = Ep lg 1p(X;Y )= �Xx2X Xy2Y p(x; y) lg p(x; y):Conditional Entropy =H(Y jX) = Ep lg 1p(Y jX)= �Xx2X Xy2Y p(x; y) lg p(yjx)= �Xx2X p(x)Xy2Y p(yjx) lg p(yjx)= �Xx2X p(x)H(Y jx):7.2.1 Chain Rulep(X;Y ) = p(X) p(Y jX) Bayes' Rulelg p(X;Y ) = lg p(X) + lg p(Y jX)lg 1p(X;Y ) = lg 1p(X) + lg 1p(Y jX)Ep lg 1p(X;Y ) = Ep lg 1p(X) + Ep lg 1p(Y jX) Linearity of ExpectationH(X;Y ) = H(X) +H(Y jX):Corollary 7.2.1cMishra 1998



Section 7.3 Information Theory 511. H(X;Y jZ) = H(XjZ) +H(Y jX;Z):2. H(X) +H(Y jX) = H(Y ) +H(XjY )) H(X) �H(XjY ) = H(Y )�H(Y jX):3. Note that H(XjY ) 6= H(Y jX):7.3 Relative Entropy & Mutual Infor-mationDe�nition 7.3.1 Relative Entropy|Also, Kullback-LieblerDistance between two probability mass functions p(x) and q(x).D(pkq) = Ep lg p(x)q(x) = �Xx p(x) lg q(x)p(x) :Note that D(pkp) = 0. If u(x) = 1jX j, for all x. Then D(pku)isD(pku) = �X p(x) lg 1p(x) +X p(x) lg jX j = lg jX j �H(X):De�nition 7.3.2 Mutual InformationLet X and Y be two discrete random variables with a joint prob-ability mass function p(x; y), and with marginal probability massfunctions p(x) = Xy2Y p(x; y) & p(y) = Xx2X p(x; y):Mutual Information,I(X;Y ) = D p(x; y) k p(x)p(y)!= Ep(x;y) lg p(x; y)p(x)p(y)= �Xx2X Xy2Y p(x; y) lg p(x; y)p(x)p(y) cMishra 1998



52 Information Theory Chapter 7= H(X) +H(Y )�H(X;Y )=  H(X) +H(Y )!�  H(Y ) +H(XjY )!= H(X) �H(XjY ) = H(Y )�H(Y jX) = I(Y ;X):H(X) �H(XjY ) = I(X;Y ) = H(Y )�H(Y jX) = I(Y ;X):I(X;X) = H(X) �H(XjX) = H(X):I(X;Y ) = I(Y ;X) = H(X) +H(Y )�H(X;Y ):7.4 Chain Rules for Entropy, RelativeEntropy and Mutual InformationH(X1;X2; : : : ;Xn)= H(X1) +H(X2jX1) + � � �+H(XnjX1; : : : ;Xn�1)= nXi=1H(XijX1; : : : ;Xi�1):I(X1;X2; : : : ;Xn;Y )= H(X1; : : : ;Xn)�H(X1; : : : ;XnjY )= nXi=1H(XijX1; : : : ;Xi)� nXi=1H(XijX1; : : : ;Xi; Y )= nXi=1H(XijX1; : : : ;Xi)�H(XijX1; : : : ;Xi; Y )= nXi=1 I(Xi;Y jX1; : : : ;Xi�1):cMishra 1998



Section 7.5 Information Theory 53D p(x; y) k q(x; y)!= Xx Xy p(x; y) lg p(x; y)q(x; y)= Xx Xy p(x; y) lg p(x) p(yjx)q(x) q(yjx)= Xx Xy p(x; y) lg p(x)q(x) +Xx Xy p(x; y) lg p(yjx)q(yjx)= Xx p(x) lg p(x)q(x) +Xy p(yjx) lg p(yjx)q(yjx)= D p(x) k q(x)!+D p(yjx) k q(yjx)!:7.5 Information Inequality�D(pkq) = Xx p(x) lg q(x)p(x) lg is a concave function� lgXx p(x)q(x)p(x) � lgXx q(x) = lg 1 = 0:Theorem 7.5.1 D(pkq) � 0 (with equality i� p(x) = q(x) forall x.)Corollary 7.5.2I(X;Y ) = D p(x; y) k p(x)p(y)! � 0;(with equality i� X and Y are independent, i.e., p(x; y) = p(x)p(y)for all x and y.)Let u(x) = 1jX j.D(p k u) = lg jX j �H(X) � 0: cMishra 1998



54 Information Theory Chapter 7Hence, H(X) � lg jX j;(with equality i� X has a uniform distribution over X .)I(X;Y ) = H(X) �H(XjY ) � 0:Theorem 7.5.3 H(XjY ) � H(X):Conditioning reduces entropy.H(X1; : : : ;Xn) = nXi=1H(XijX1; : : : ;Xi�1)� nXi=1H(Xi)Corollary 7.5.4H(X1; : : : ;Xn) � nXi=1H(Xi);with equality i� Xi's are independent.7.6 Stationary Markov Process� MarkovianPr[XnjX1; : : : ;Xi] = Pr[XnjXi]; i � n:� StationaryPr[XnjX1; : : : ;Xi] = Pr[Xn+1jX2; : : : ;Xi+1]:cMishra 1998



Section 7.6 Information Theory 55H(XnjX1) � H(XnjX1;X2) conditioning reduces entropy= H(XnjX2) Markov= H(Xn�1jX1) Stationary :2nd Law of ThermodynamicsTheorem 7.6.1 Conditional entropy H(XnjX1) increases withtime n for a stationary Markov process.Relative entropy D(�nk�0n) decreases with time n.Let �n and �0n be two postulated probability distributions onthe state space of a Markov Process. At time n + 1, the dis-tribution changes to �n+1 and �0n+1, governed by the transitionprobabilities r(xn; xn+1).Thus p(xn; xn+1) = p(xn)r(xn; xn+1)= p(xn)p(xn+1jxn)similarly, q(xn; xn+1) = q(xn)r(xn; xn+1)= q(xn)q(xn+1jxn)Thus, we haveD p(xn; xn+1) k q(xn; xn+1)!= D p(xn) k q(xn)!+D p(xn+1jxn) k q(xn+1jxn)!= D p(xn) k q(xn)!:AndD p(xn; xn+1) k q(xn; xn+1)! cMishra 1998



56 Information Theory Chapter 7= D p(xn+1) k q(xn+1)!+D p(xnjxn+1) k q(xnjxn+1)!� D p(xn+1) k q(xn+1)!:We conclude thatD p(xn) k q(xn)! � D p(xn+1) k q(xn+1)!:Thus the relative entropy for this system must decrease:D(�1k�01) � D(�2k�02) � � � �� D(�nk�0n) � D(�n+1k�0n+1) � � � � � � � ! 0:7.7 Gambling and EntropyHorse Race# horses = m; fH1;H2; : : : ;Hmg:pi = Pr[Hi wins ]ui = pay-o� if Hi wins :If bi = bet on the ith horse then the payo� =( biui; if Hi wins with probability pi;0; if Hi loses with probability (1� pi):Assume that the gambler has 1 dollar. Let bi = fraction ofhis wealth invested in Hi. Thus0 � bi � 1: mXi=1 bi = 1:cMishra 1998



Section 7.7 Information Theory 57Note that the gambler's pay-o� is biui if Hi wins (with prob-ability pi.) S(X) = b(X)u(X)= factor by which the gambler increases his wealth if X wins.Repeated game with reinvestment.S0 = 1;Sn = Sn�1S(Xn); if Xn wins in the nth game.Thus Sn = nYi=1S(Xi) = 2P lgS(Xi):LetEp [lgS(X)] =X pk lg(bkuk) = W (b; p) = Doubling Rate;where b = the betting strategy. Then1n lg Sn ! Ep[lgS(X)] in probability;by \Law of Large Number." HenceSn ! 2nW (b;p):De�nition 7.7.1 Doubling RateW (b; p) = mXk=1 pk lg(bkuk):Theorem 7.7.1 Let the race outcomes X1, : : :, Xn be i.i.d.�p(x). Then the wealth of the gambler using betting strategy bgrows exponentially at rate W (b; p), i.e.Sn � 2nW (b;p): cMishra 1998



58 Information Theory Chapter 7W (b; p) = X pk lg(bkuk)= X pk "lg bkpk � lg 1pk + lg uk#= X pk lg uk �H(p) �D(pkb)� X pk lg uk �H(p);with equality i� p = b.The optimal doubling rateW �(p) = maxb W (b; p) = W (p; p) =X pk lg uk �H(p):Theorem 7.7.2 Proportional gambling is log-optimal.The optimum doubling rate is given byW �(p) =W (b�; p) =X pk lg uk �H(p);and is achieved by the proportional gambling scheme, b� = p.De�ne rk = 1uk = Bookie's estimate of the win \probabili-ties." Thus Xk rk =X 1uk = 1:Odds are fair and there is no track take.W (b; p) = X pk lg bkrk= X pk "lg bkpk � lg rkpk #= D(pkr) �D(pkb):Doubling Rate = Di�erence between the distance of the bookie'sestimate from the true distribution and the distance of the gam-bler's estimate from the true distribution.cMishra 1998



Section 7.7 Information Theory 59Special Case: Odds are m-for-1 on each horse:8k rk = 1m:Thus, W �(p) = D(pku) �D(pkb�) = lgm�H(p):Theorem 7.7.3 Conservation TheoremW �(p) +H(p) = lgmfor uniform odds.Low-Entropy Races are Most Pro�table.Case of a not fully invested gambler.b0 = wealth held out as cashbi = proportional bet on Hi:b0 � 0; bi � 0; mXi=0 bi = 1:Thus S(X) = b0 + b(X)u(X):� Fair Odds: P 1ui = 1.If there is a non-fully-invested strategy with b0, b1, : : :, bm,then there is also a full investment as followsb00 = 0b0i = bi + b0ui ; 1 � i � mmXi=0 b0i = mXi=1 bi + b0 mXi=1 1ui = 1:ThusS(X) = b0(X)u(X) = b0u(X)u(X) + b(X)u(X)= b0 + b(X)u(X):Thus in this case there is a risk-neutral investment.cMishra 1998



60 Information Theory Chapter 7� Super-Fair Odds: P 1ui < 1.\Dutch Book" betting strategy.b0 = 1 �X 1ui ; bi = 1ui ; 1 � i � m:ThusS(X) = �1�X 1ui�+ 1u(X)u(X) = 2 �X 1ui > 1with no risk!This, however, implies a strong arbitrage opportunity.� Sub-Fair Odds: P 1ui > 1.In this case, proportional gambling is no longer log-optimaland this case represents a risky undertaking for the gam-bler.7.8 Side InformationSome external information about the performance of the horsesmay be available|for instance, previous games.X = f1; 2; : : : ;mg, represent the horses.Y = Some other arbitrary discrete random variable(Side Information).p(x; y) = joint probability mass function for (X;Y ) :b(xjy) = conditional betting strategy depending on Y= proportion of wealth bet on horse x given that y 2 Y isobserved.b(x) = unconditional betting strategy.b(x) � 0; Px b(x) = 1:b(xjy) � 0; Px b(xjy) = 1:cMishra 1998



Section 7.9 Information Theory 61W �(X) = maxb(x) Xx p(x) lg(b(x)u(x))= Xx p(x) lg u(x)�H(X):W �(XjY ) = maxb(xjy)Xx p(x) lg(b(xjy)u(x))= Xx p(x) lg u(x)�H(XjY ):�W = W �(XjY )�W �(X)= Xx p(x) lg u(x)�H(XjY )�Xx p(x) lg u(x) +H(X)= H(X)�H(XjY ) = I(X;Y ) � 0:Increase in Doubling Rate =Mutual information between the horse race and side information.7.9 LearningfXkg = Sequence of horse race outcomes from a stochastic pro-cess. W �(XkjXk�1;Xk�2; : : : ;X1)= E " maxb(:jxk�1;:::;x1)E[lgS(Xk)jXk�1;Xk�2; : : : ;X1]#= lgm�H(XkjXk�1;Xk�2; : : : ;X1);and is maximized forb�(xkjxk�1; : : : ; x1) = p(xkjxk�1; : : : ; x1):Note that since Sn = nYi=1S(Xi); cMishra 1998



62 Universal Portfolio Chapter 7we have1nE lg Sn = 1nXE lg S(Xi)= 1nX (lgm�H(XijX1; : : : ;Xi�1))= lgm� H(X1; : : : ;Xn)n= lgm�H(X ):H(X ) is simply the entropy rate.

cMishra 1998



Chapter 8Universal Portfolio8.1 Universal Portfolio1. Sequential Portfolio Selection Procedure. An adapted pro-cess.2. No statistical assumption about the behavior of the market.3. Robust procedure with respect to arbitrary market se-quences occurring in the real world.We shall consider growth of wealth for arbitrary market se-quences. For example, our goal may be to outperform the bestbuy-and-hold strategy|i.e., we wish to be competitive againsta competing investor who can predict n future days. A di�er-ent goal may be to outperform all constant rebalanced portfoliostrategies. m = # stocks traded in a marketxi = price relative for the ith stock= stock price at closestock price at open = Pi(c)Pi(o)= 1 + �PiPi : 63



64 Universal Portfolio Chapter 8x = 0BBBB@ x1x2...xm 1CCCCA = stock market vector :8.1.1 Portfoliob = 0BBBB@ b1b2...bm 1CCCCA = portfolio ; ( bi � 0Pi bi = 1:Portfolio is simply the proportion of the current wealth in-vested in each of the stocks.S = b � x = bTx =Xi bixi;= Factor by which the wealth increases in one period.x(1); x(2); : : : ; x(n)= stock market vectors for n consecutive days.b = Fixed (constant) portfolioWe shall follow a constant rebalanced portfolio strategy.Sn(b) = nYi=1 bTx(i); ( S0(b) = 1Sn(b) = Sn�1(b) bTx(n):S�n = maxb Sn(b) = Sn(b�):This is the maximum wealth achievable on the given stock se-quence maximized over all constant rebalanced portfolios.cMishra 1998



Section 8.2 Universal Portfolio 658.2 Universal Portfolio Strategyb̂(k)depends only the past price relatives: x(1), x(2), : : :, x(k � 1).It performs as well as the best constant rebalanced portfo-lio based on a clairvoyant knowledge of the sequence of pricerelatives.8.2.1 QuestionsSince we wish to compete against a clairvoyant in-vestor (who knows the future) and universal portfo-lios only depend on the past (past has no causal orcorrelated relation with the future), how is it possiblethat universal portfolio can be competitive?Malicious/adversarial nature is free to structure thefuture so as to help the competing investor.b̂(1) = 0BBBB@ 1=m1=m...1=m 1CCCCA :Sk(b) = kYi=1 bTx(i); B = (b 2 Rm+ j bi � 0;X bi = 1):b̂(k + 1) = RB bSk(b)dbRB Sk(b)dbNote thatb̂(k + 1)Tx(k + 1) = RB bTx(k + 1)Sk(b)dbRB Sk(b)db = RB Sk+1(b)dbRB Sk(b)dbcMishra 1998



66 Universal Portfolio Chapter 8The \learned" portfolio is the performance weighted average ofall portfolios b 2 B.ThusŜn = nYk=1 b̂(k)Tx(k) = RB Sn(b)dbRB db = (m� 1)! ZB Sn(b)db:We will show thatŜn � S�n (m� 1)!(q2�=n)m�1qjJnj;where Jn = a positive semide�nite (m� 1)� (m� 1) sensitivitymatrix.8.3 Properties & AnalysisLet F be some arbitrary probability distribution for price rela-tives over Rm+. Let Fn be the empirical distribution associatedwith x(1), x(2), : : :, x(n). Pr[X = x(i)] = 1=n. Pr[X 6=x(i);8i] = 0. limn!infty Fn ! F:8.3.1 Doubling RatioW (b; F ) = Z lg(bTx)dF (x)W (b; Fn) = nXi=1 1n lg(bTx(i))W �(F ) = maxb W (b; F )W �(Fn) = maxb W (b; Fn)S�n = maxb Sn(b) = maxb nYi=1 bTx(i) = 2nW �(Fn):cMishra 1998



Section 8.3 Universal Portfolio 67Let ej be the vectorej = 0BBBBBBBBBBBB@ 0...010...0 1CCCCCCCCCCCCA 1 in jth position only.Sn(ej) = nYk=1 eTj x(k) = nYk=1 xj(k)= Wealth due to buy-and-hold strategyassociated wit the jth stock:Since S�n is a maximization of Sn(b) over the entire simplex,8j S�n � Sn(ej):Corollary 8.3.11. Target Exceeds Best Stock.S�n � maxj Sn(ej):2. Target Exceeds Value Line.S�n � 0@Yj Sn(ej)1A1=m3. Target Exceeds Arithmetic Mean.S�n �Xj �jSn(ej); �j � 0;Xj �j = 1:4. S�n(x(1), x(2), : : :, x(n)) is invariant under permutationsof the sequence x(1), x(2), : : :, x(n). cMishra 1998



68 Universal Portfolio Chapter 8Lemma 8.3.2 Ŝn = nYk=1 b̂(k)Tx(k) = RB Sn(b)dbRB dbwhere Sn(b) = nYi=1 bTx(i):Ŝn = Wealth from universal portfolio is the average of Sn(b)over the simplex.Proof:Recall that b̂(k + 1)Tx(k + 1) = R Sk+1(b)dbR Sk(b)db :Telescoping the productsŜn = nYk=1 b̂(k)Tx(k)= R Sn(b)dbR Sn�1(b)db � � � � � R S1(b)dbR db= R Sn(b)dbR db= RBQni=1 bTx(i)dbRB db= EbSn(b) = Eb2nW (b;Fn):Corollary 8.3.3 Ŝn(x(1), x(2), : : :, x(n)) is invariant underpermutations of the sequence x(1), x(2), : : :, x(n).Claim EbW (b; Fn) � 1mXj W (ej; Fn):EbW (b; Fn) = Eb Z lg(bTx) dFn(x)cMishra 1998



Section 8.4 Universal Portfolio 69= Eb Z lgX bj(eTj x) dFn(x)� EbX bj Z lg(eTj x) dFn(x)= 1mXZ lg(eTj x)dFn(x)= 1mXj W (ej; Fn):By Jensen's inequalityEb2nW (b;Fn) � 2nEbW (b;Fn)� 21=mPnW (ej ;Fn)� �Y 2nW (ej ;Fn)�1=m :ThuŝSn = EbSn(b) = Eb2nW (b;Fn)� �Y 2nW (ej ;Fn)�1=m � 0@ mYj=1Sn(ej)1A1=m :Corollary 8.3.4 Universal portfolio exceeds Value Line index.Ŝn � 0@ mYj=1 Sn(ej)1A1=m :8.4 CompetitivenessFn(x) = Empirical probability mass function. Mass on eachx(i) 2 Rm+ is 1n .Sn(b) = nYi=1 bTx(i) = 2nW (b;Fn) = enV (b;Fn);b�(Fn) = b� = arg maxSn(b) = arg maxV (b; Fn) 2 Rm+:S�n = maxb2B Sn(b) = enV �(Fn): cMishra 1998



70 Universal Portfolio Chapter 8De�nition 8.4.1 All stocks are active at time n, if9b�;Sn(b�)=S�n 8i2[1::m] (b�(Fn))i > 0:All stocks are strictly active at time n, if8b�;Sn(b�)=S�n 8i2[1::m] (b�(Fn))i > 0:If Lin (x(1); x(2); : : : ; x(n)) = Rm;then we say that the price relatives x(1), x(2), : : :, x(n) are offull rank. J(b) = (m� 1) � (m� 1) matrix :J(b) = Sensitivity Matrix Function of a market with respect todistribution F (x), x 2 Rm+.Jij(b) = Z (x(i)� x(m))(x(j)� x(m))(bTx)2 dF (x):J� = J(b�) = Sensitivity Matrix.J�ij = �@2V ((b�1; : : : ; b�m�1; 1 �Pm�1i=1 b�i ); F )@bi @bj= Positive Semide�nite Matrix.It is positive de�nite if all stocks are strictly active.Let C = ((c1; c2; : : : ; cm�1) j ci � 0;X ci � 1):De�ne b(c) =  c1; : : : ; cm�1; 1� m�1Xi=1 ci!:ThusVn(c) = 1n nXi=1 ln b(c)Tx(i)! = Z ln(bTx) dFn(x) � EFn ln(bTx):cMishra 1998



Section 8.4 Universal Portfolio 71Using Taylor series expansion:Vn(c) = Vn(c�) + (c� c�)TrVn(c�)� 12(c� c�)TJ�n(c� c�)+ 16Xijk (ci � c�i )(cj � c�j)(ck � c�k)�EFn (x(i)� x(m))(x(j)� x(m))(x(k)� x(m))S3(~c)where ~c = �c� + (1 � �)c; � � 0;S(~c) = m�1Xi=1 b(~c)iX(i):Assume that all stocks are strictly active:J� = � " @2V@ci@cj # = positive de�nite.Hence its determinant is strictly positive:jJ�j > 0:Let u = pn(c � c�). Then since the second term is 0 in theTaylor series formulation, we havenVn(c) = nV �(Fn)� 12uTJ�nu+ 16pnX uiujuk�EFn (x(i)� x(m))(x(j)� x(m))(x(k)� x(m))S3(~c) :Next assume that 0 < a � x(i) � c <1.S(~c) � a; x(i)� x(m) � 2c: cMishra 1998



72 Portfolios and Markets Chapter 8Thus the last term in the preceding expression can be boundedby � 16pnkuk3m3=2 (2c)3a3 :Hence, we havenVn(c) = nV �(Fn)� 12uTJ�nu� 4m3=2c33pna3 kuk3:We thus conclude thatSn(c) = 2nWn(c) � e(nV �n )�(uT J�nu=2)�(4m3=2c3kuk3=3pna3)= S�n e�(uT J�nu=2)�(4m3=2c3kuk3=3pna3):Since Ŝn = R Sn(b)db= R db, and since R db = 1=(m � 1)!, wehaveŜn � S�n(m�1)! Zu2U e�(uT J�nu=2)�(4m3=2c3kuk3=3pna3)  1pn!m�1 du:Thus, Ŝn � S�n (m� 1)!(2�=n)(m�1)=2jJnj1=2 :In other words,1n lg S�nŜn = 1n lg jJnj1=2(m� 1)!(2�=n)(m�1)=2 ! 0; as n!1 :Summarizing, we have1n lg S�n � 1n lg ŜnV �n � V̂n:cMishra 1998



Chapter 9Portfolios and Markets9.1 Portfolio Theory9.1.1 Itô CalculusX = asset price at time t. In a continuous time model, one canstudy the return on the asset dX=X over a small period of timedt. dXX = � dt+ � dZ:This is a so-called Itô process.� = average rate of growth: DRIFT� = volatility: DIFFUSION9.1.2 Market ModelAssume that there are m stocks, represented bym Itô processes:X1(t);X2(2); : : : ;Xm(t):Furthermore, dXiXi = �i dt+ mXj=1�ij dZj ;73



74 Portfolios and Markets Chapter 9Here, Zj 's are independent Brownian motions.� = Drift Vector = 0BBBB@ �1�2...�m 1CCCCA :� = Di�usion Matrix = 0BBBB@ �11 �12 � � � �1m�21 �22 � � � �2m... ... . . . ...�m1 �m2 � � � �mm 1CCCCA� = Instantaneous Covariance Matrix = � �T :In general, the term dZ corresponds to a Wiener Process.� dZ = Normal Random Variable.� dZ � N (0;pdt). Mean of dZ is zero and variance of dZis dt. dZ = �pdt; E[�] = 0; E[�2] = 1:This holds in continuous time in the limit as dt ! 0.Lemma 9.1.1 Itô's Lemma [Analogous to Taylor's theoremin case of functions of random variables. The key ideas is basedon the observation that with probability 1, dZ2 ! dt as dt! 0.]Suppose f(X) is a function of X (where X is possibly stochas-tic). df = @f@X dX + 12 @2f@X2dX2 + smaller order termsdX2 = (�Xdt + �XdZ)2= �2X2dZ2 + 2��X2dZdt + �2X2dt2! �2X2dt as dt! 0df = @f@X (�Xdt+ �XdZ) + 12�2X2 @2f@X2dt=  �X @f@X + 12�2X2 @2f@X2! dt+ �X @f@XdZ:cMishra 1998



Section 9.2 Portfolios and Markets 75Example dXX = � dt+ � dZLet f(X) = lnX. Then@f@X = 1X ; & @2f@X2 = � 1X2df = @f@X dX + 12 @2f@X2dX2= dXX � 12X2�2X2dt= dXX � �22 dtd(lnX) = dXX � �22 dtdXX = d(lnX) + �22 dtZ t0 dXX = Z t0 d(lnX) + 12 Z t0 �2dt= lnX(t)� lnX(0) + 12 Z t0 �2dtexp(Z t0 dXX ) = X(t)X(0) exp�12 Z t0 �2dt�9.2 Rebalanced PortfolioMarket Model with m stocks:dXi(t)Xi(t) = �i(t)dt+ mXj=1 �ij(t)dZj(t)�(t) = �(t)�(t)T : cMishra 1998



76 Portfolios and Markets Chapter 9A portfolio of long stocks at time t is identi�ed by its weightedvector process b(t) 2 B.B = (b 2 Rm j bi � 0; mXi=1 bi = 1):Rebalanced Portfolio(A self-�nancing portfolio without dividends).dS(t)S(t) = mXi=1 bi(t)dXi(t)Xi(t)=  mXi=1 bi(t)�i(t)! dt+ 0@ mXi=1 mXj=1 bi(t)�ij(t)dZj1A :Let g(S) = lnS and f(X) = P bi lnXi = lnQXbii .dg = dSS � 12S2 (bT�b)S2dtdSS = d(lnS) + 12(bT�b)dtdf = X bidXiXi �X 12X2i (bi�ii)X2i dtX bidXiXi = d(X bi lnXi) + 12X bi�iidtHenced(ln S) = d(X bi lnXi)� 12bT�bdt+ 12X bi�iidtln S(t; b)S(0) = X bi ln Xi(t)Xi(0) � 12bT�b+ 12X bi�ii;where � � R t0 �(s)ds.S(t; b) = S(0) mYi=1 Xi(t)Xi(0)!bi exp��12bT�b+ 12X�iibi� :cMishra 1998



Section 9.2 Portfolios and Markets 77Maximizing the above expression we haveS�(t) = maxb2B S(t; b) = S(t; b�(t))Note that b�(t) = optimal solution of the following quadraticprogramming problem:maxb2B �12bT�b+ mXi=1  ln Xi(t)Xi(0) + 12�ii! bi:De�ne the matrix V , an (m�1)�(m�1) symmetric positivesemide�nite matrixV = (Vij) Vij = �ij � �im � �jm + �mm; 1 � i; j � m:Lemma 9.2.1 If V = positive de�nite then the portfolio prob-lem has a unique optimal solution.De�nition 9.2.1 A stochastic process X(t) is weakly regularif 8t jE[X(t)]j <1:lim E[X(t)]t = � existsX(t)t ! � in probability as t!1:The stock market model is weakly regular (easily satis�ed ifthe market is stationary)8t jE[�(t)]j <1; & jE[lnX(t)]j <1;lim E[�(t)]t = �1; & lim E[lnX(t)]t = �1 exist�(t)t ! �1; & lnX(t)t ! �1 in probability as t!1:cMishra 1998



78 Portfolios and Markets Chapter 9Note that dXiXi = �idt +X�ijdZjd(lnXi) = dXiXi � dX2i2X2i= ��i � �ii2 � dt+X�ijdZj�1i = �1i � �1ii2 :Thus �1i = �1i + �1ii2 :Similarly,dSS = X bi�idt+XX bi�ijdZjd(lnS) = �bT�� 12bT�b�dt +XX bi�ijdZjr(b) = lim E[lnS(t; b)]t = �12bT�1b+ bT�1:Asymptotically optimal constant weight b1 2 B.r(b1) = maxb2B r(b) = maxb2B �12bT�1b+ bT�1:9.2.1 Optimal PortfolioRecallS(t; b) = S(0) mYi=1 Xi(t)Xi(0)!bi exp��12bT�b+ 12X�iibi� :Vij(t) = �ij � �im � �jm + �mm:De�ne �i = ln Xm(t)Xm(0)!� ln Xi(t)Xi(0)!� Vii(t)2 :cMishra 1998



Section 9.2 Portfolios and Markets 79Notation:b = (b0; bm) b01 + � � �+ b0m�1 + bm = 1; b0i � 0; bm > 0:Rewriting the previous equation, we haveS(t; b) = S(0)Xm(t)Xm(0) exp��12b0TV b0 � �T b0� :The above value S(t; b) is maximized at b0 = ��V (t)��(t) = ��(t)��(t) = �V �1(t)�(t)S�(t) = S(0)Xm(t)Xm(0)e��TV ��=2;and S(t; b) = S�(t) exp��12(b0 � ��)TV (b0 � ��)� :S(t; b)S�(t) = exp��12(b0 � ��)TV (b0 � ��)� :9.2.2 Long Term E�ectsVij = �ij � �im ��jm + �mmJ1ij = �1ij � �1im � �1jm + �1mm ) lim V (t)t = J1�i = ln �Xm(t)Xm(0)�� ln �Xi(t)Xi(0)�� Vii(t)21i = �1m � �1i � J1ii2= �1m � �1mm2 � �1i � �1ii2� �1ii2 + �1im � �1mm2= �1m � �1i + �1im: 9>>>>>>>=>>>>>>>; lim �i(t)t = 1icMishra 1998



80 Portfolios and Markets Chapter 9Since r(b) = �12bT�1b+ bT�1= �12b0TJ1b0 � b0T1;it is maximized at �1 = �(J1)�11:Note, however, that��(t) = � V (t)t !�1  �(t)t !! �(J1)�11 = �1:Problem: Construction of b1 requires the long-term averageof future instantaneous expected returns and covariances. Thishowever is impossible.Remedy: Universal Portfolio9.3 Universal PortfolioRebalanced portfolio with weights:b̂i(t) = RB biS(t; b)dbRB S(t; b)db :Let �S = RB S(t; b)dbRB dbNote that �S(0) = Ŝ(0):Furthermore,d �S�S = RB dS(t; b)dbRB S(t; b)db = RBPi S(t; b)bi(dXi=Xi)dbRB S(t; b)db= Xi b̂i(t)dXiXi= dŜ̂ScMishra 1998



Section 9.3 Portfolios and Markets 81Hence, 8t Ŝ(t) = �S(t):Lemma 9.3.1 The wealth accumulated by a universal portfoliois given by Ŝ(t) = RB S(t; b)dbRB db :This is the average wealth accumulated by all possible portfolios.9.3.1 CompetitivenessS(t; b) = S�(t)e� 12 (b0���)TV (b0���):Let x = V 1=2(t)(b0 � b0�). Thus�(t) = V 1=2(t)(B0 � b0�);where B0 = (b0 2 Rm�1 j b0i � 0;X b0i < 1):Note that Vol (B0) = 1(m� 1)! :We have Ŝ(t) = S�(t) R�(t) e�jxj2=2 dxjV (t)j1=2(1=(m � 1)!) :Ŝ(t)S�(t) = (m� 1)! R� e�jxj2=2dx����V (t)t ����1=2 tm�1=2= (m� 1)!(p2�)m�1jJ1j1=2tm�1=2= (m� 1)!jJ1j1=2 �2�t �m�1=2 : cMishra 1998



82 BibliographyThus, 1t ln Ŝ(t)S�(t) = C(m)�C 0(m) ln tt ! 0and ln Ŝ(t)t ! lnS�(t)t ! lnS(t; b1)t :

cMishra 1998
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