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Chapter 1

Introduction

1.1 Stag Hunt Problem

(With Two Players)

Stag Hunt Problem

Stag | Hare
Stag | 22 | 0,1
Hare| 1,0 | 1.1

1. If both row-player and column-player hunt stag, since a
stag is worth 4 “utils”, they each get 2 “utils.”

2. If both row-player and column-player hunt hares, since a
hare is worth 1 “util”, they each get 1 “util.”

3. If row-player hunts hare, while column-player hunts stag
(and hence fails to hunt any thing), then the row-player
gets 1 “util” and the column-player gets 0 “util.”

4. The other case is symmetric.

1



2 INTRODUCTION Chapter 1

Note that if row-player is risk aversive, he will choose to
hunt hare and thus guarantee that he gets 1 “util” independent
of the choice column-player makes. Thus he will maximize the
minimum utility under the two possible pure strategies (“hunt
stag” with a minimum utility of 0 if the opponent hunts hare
vs. “hunt hare” with a minimum utility of 1 regardless of what
the opponent chooses to play) and choose to hunt hare. By
symmetry, it is seen that in fact both players will choose to hunt
hares.

Is this the truly optimal strategy?

Quoting Rousseau (Discourse on the origin and Basis of
Fquality among Men):

“If a group of hunters set out to take a stag, they
are fully aware that they would all have to remain
faithfully at their posts in order to succeed; but if a
hare happens to pass near one of them, there can be
no doubt that if he pursued it without qualm, and
that once he had caught his prey, he cared very little
whether or not he had made his companions miss
theirs.”

Changing the discussion slightly, suppose that column-player
will play a mixed strategy by playing “hunt stag” with some
probability (say, y) and by playing the other strategy (“hunt
hare”) with probability (1 — y). His best choice of these proba-
bilities must be such that row-player is now “indifferent” to the
choice of his own strategies. Thus, we have

2y +0(1—y) =1y +1(1 —y)
and y = 1/2. Thus one expects both row-player and column-

player to play the strategies “hunt stag” and “hunt hare” with
equal probabilities.

1.2 Why are these kinds of analysis im-
portant to us?

1. Economy

©Mishra 1998



Section 1.3 INTRODUCTION 3

2. Evolutionary Biology
3. Large Scale Distributed Systems
4. Resource Allocation

5. Intelligent Agents

1.3 Prisoners’ Dilemma

Prisoners’ Dilemma

C| D
C 21
D|1-2]-1-1

)

There are two prisoners (row-player and column-player) ar-
rested for a particular crime, but the prosecutor does not have
enough evidence to convict them both. He relies one one of them
testifying against the other in order to get a conviction and pun-
ish the second prisoner by sending him to jail. If both of them
testify against the other (defections: “D, D”) then they both go
to jail for 1 year each, thus getting a “util” of —1. If, on the other
hand, both maintain silence (cooperations: “C, C”) then they
go free with “util” of 0 each. If, on the other hand, row-player
testifies (D) and column-player maintains silence (C), then row-
player is rewarded with 1 util and column-player is punished
with —2 util. The other case is symmetric.

The pay-offs can be made all non-negative by adding 2 utils
to each and thus getting a pay-off matrix:

©Mishra 1998



INTRODUCTION Chapter 1

Prisoners’ Dilemma (Modified Pay-offs)

1.

C|D
122103
D|[30][1.1

For column-player the strategy C is dominated by the
strategy D independent of how row-player plays the game.
Thus column player must defect.

Similarly, for row-player the strategy C is dominated by
the strategy D independent of how column-player plays
the game. Thus row player must defect.

Hence the equilibrium strategy for the players is to defect
even when they could have each gotten better pay-offs by coop-
erating.

1.4 Second-Price Auction

1.

2.

Seller has one indivisible unit of object for sale.
There are I potential buyers (bidders) with valuations
0< v <wvgy <oy
(Consider the case when [ = 2.)
The bidders simultaneously submit bids
s; € [0, 00].
The highest bidder wins the object.

But he only pays the second bid (max; s;).

©Mishra 1998



Section 1.5 INTRODUCTION 5

6. His utility is
U; —Inax s;.
JF#i

Consider the special case of just two players

v1, vy = valuations 81, 82 = bids.
Pay-offs

u; = 1f s; > sy then vy — s9 else 0.

us; = 1if s3 > s; then vy — s; else 0.

Let us look at the player 1’s choices.

1. Overbidding

(a) s1 < sy The payoff is zero and the strategy is weakly
dominated.

(b) s3 < wi: The payoff is v1 — sy and the strategy is
weakly dominated with respect to bidding s; = v;.

(c¢) v1 < 83 < s1: The payoff is v; — s3 < 0 negative and
the strategy is strongly dominated.
2. Underbidding
(a) s2 > v1: The payoff is zero and the strategy is weakly
dominated.
(b) s1 > s9: The payoff is is v1 — s and the strategy is
weakly dominated with respect to bidding s; = v;.

(¢) 81 < s2 < vy: The payoff is zero and the strategy is
weakly dominated.

So the best strategy for player 1 is to bid exactly his own
valuation (s; = v1). And by a symmetric argument, the best
strategy for player 2 is also to bid exactly his own valuation

(82 = vq).

©Mishra 1998



6 INTRODUCTION Chapter 1

1.5 Two Person Zero-sum Games

We define a loss matriz M as follows:
M(s;,s;) = M(1, ) = Loss suffered by the row-player for the
strategy profile (s;,s;).

Rock, Paper & Scissors

R|P
R[1/2] 1
Pl 0 [1/2
ST 17012

Row-player’s goal is to minimize the loss. Assume (without
loss of generality) that all the losses are in the range [0, 1].
Row-player’s expected loss

ZUT Joe(s;) M (s, 55)
= Zar (i,7)0e(4)

= O';FMO'C = M(o,,0.).

— O N

o.(s;) = Probability that the row player plays s;
o.(s;) = Probability that the column player plays s;
Similarly,

M(o,,j) ZUT (4,7) and M(i,0.) = > oc(j)M(i, 7).

]
Row-player’s strategy

minmax M(o,, o.).

Ir Tc

©Mishra 1998



Section 1.7 INTRODUCTION 7

A mixed strategy o realizing this minimum is called a minmax
strategy.

Theorem 1.5.1 The MINMAX theorem: von Neumann

minmax M (o,, 0.) = maxmin M(o,, o.).

Ir Tc Tc Ir

1.6 Obstacles

1. Imperfect Information
M (pay off) may be unknown.

2. Computational complexity
M is so large that computing a minmax strategy using a
linear program is infeasible.

3. Irrationality
Opponent (column-player) may not be truly adversarial.

1.7 Repeated Play (with learning)

M unknown

1. The game is played repeatedly in a sequence of rounds.
2. Onround t =1,...,T":

(a) The learner (row-player) chooses mixed strategy o, ;.

(b) The opponent (column-player) chooses mixed strat-
egy Oey.

(c) Row-player observes all possible losses
M(i,000) =Y 0ei(4)M (3, ),
'7‘74

for each row 1.

(d) Row-player suffers loss M (o, 0.+).

©Mishra 1998



8 INTRODUCTION Chapter 1

Row-player’s cumulative expected loss:

T
Z M(O-r,ta Uc,t)-

t=1

The expected cumulative loss of the best strategy

T
ZM :, Oct —mlHZM Ty, Uct)

t=1

1.8 Learning Algorithm

Parameter # to be chosen. Initially,

Wii) = 1, Vi
Wiga(i) = Wy(i)pMthoed

o4(1)

1.9 Analysis of Learning Algorithm

1.9.1 Inequality 1
ZWtH(i) = ZWt (1) M oe)
- (z @) S
M — M(i,0c,¢)
= Zz Wt(l) - Zi:o-r,tﬁ
Zar,t(l - (1 - ﬁ)M(lv Uc,t))

= 1= (1= B8)M(0,s, 004))-

After telescoping, we get

IA

i Wrya (1)
ZT 1;[ M(Ur,t, Uc,t))

©Mishra 1998



Section 1.9 STRATEGIC FORM GAMES 9

Hence,

n (M) < Y In(1 = (1 = B)M(0rs, 0er)

n ¢

< - —5);M(0r,ta Oct)-

N

1.9.2 Inequality 2

ZWT-I—I(i) Z WT.|_1(j) = ﬁth(], Uc,t)

> 621: M(cr,’f,crc,t)‘

Hence

In (M) > (In8) Y. M(07, o)) — Inn.

Y
n ¢

1.9.3 Final Result

Combining the two inequalities:

(1-75) ZM(UM, o.4) <Inn+(Inl/p) Z Mok, o.4)).

t

and,

Z M(O’:, Uc,t) S Z M(O-r,ta Uc,t)
t

U 8) S~ a(o%, 00)) + ﬁ”ﬁ.

IA

-5

©Mishra 1998



Chapter 2

Strategic Form Games

2.1 Games

Games can be categorized in to following two forms as below.
We will start here with the first category and postpone the dis-
cussion of the second category for later.

1. Strategic Form Games (also called Normal Form Games)

2. Extensive Form Games

2.2 Strategic Form Games

1. Let Z={1,...,1} be a finite set of players, where [ € N
is the number of players.

2. Let S;(1 € 7) be the (finite) set of pure strategies available
to player ¢ € T.

5251><52><"'><S[

(Cartesian product of the pure strategies) = Set of pure
strategy profiles.

10



Section 2.2 STRATEGIC FORM GAMES 11

Conventions

We write, s; € 5; for a pure strategy of player :. We also
write, s = (s1, 82,...,57) € S for a pure strategy profile.

“—1” denotes the player i’s “opponents” and refers to all
players other than some given player :. Thus, we can write,
Soi = Xjer i

Just as before, s_; € S_; denotes a pure strategy profile for
the opponents of 7. Hence,

s=(s;,8-) €9,

is a pure strategy profile.

u; S — R = Pay-off function (real-valued function on 9)
for player 1.

ui(s) = von Neumann-Morgenstern utility of player i for
each profile s = (s1, $2,...,57) of pure strategies.

Definition 2.2.1 A strategic form game is a tuple

(I, {Sl, SQ, ceey S[}, {ul,u2, .. .,UI})

consisting of a a set of players, pure strategy spaces and pay-off
functions.

Definition 2.2.2 A two-player zero-sum game is a slrategic
form game with T = {1,2} such that

2
Vees Zuz(s) =0.

=1

Definition 2.2.3 A mixed strategy set for player ¢, 3; is the
set of probability distributions over the pure strategy set S;

¥ = {ai; Si — [0,1]] Zi:m(si) - 1}.

The space of mixed strategy profile = ¥ = X ;¢7%;.
As before, we write: o; € ¥;, and 0 = {oy,09,...,07} € ¥.

©Mishra 1998



12 STRATEGIC FORM GAMES Chapter 2

The support of a mixed strategy o, = The set of pure strate-
gies to which o; assigns positive probability.
Player i’s pay-off to profile o is
ui(o) = Esuil,0)
uz’(U) = ui(o-ivo-—i) = Z Ui(Si)ui(Siaa—i)

wilsi, o) = ze% U_Z'(S_j)euii(si, 5 y)
_ S_;q(gaj(sj))ui(si,s_i).
wo) = X S_iezs_ioxs»(jr[#axsj))ui(w_»
= ;(1;[0]‘(5]‘))%(5)-

2.3 Domination & Nash Equilibrium

Definition 2.3.1 A pure strategqy s; is strictly dominated for
player 1 if

Jorex, Vs_jes_uilof, s-i) > wi(si, 5-5).

A pure strategqy s; is weakly dominated for player ¢ if

Jyres, (Vs_ies_iUi(Ufas—z’) > ui(si, 5-i)

A EIS—iGS—iui(O-Z{v 5—2’) > Ui(5i7 S—i))-

Definition 2.3.2 Best Response: The sel of best responses
for player i to a pure strategy profile s € S is

BR;(s) = {Sf € SilVses ui(s),s5-5) > Ui(ShS—i)}-
Let the joint best response set be BR(s) = x;BR;(s).

©Mishra 1998



Section 2.4 STRATEGIC FORM GAMES 13

Definition 2.3.3 Nash Equilibrium: A pure strategy profile
s* is a Nash equilibrium if for all players 1,

\V/Siesi Uz’(SfaS*_i) > ui(sivs*—i)'

Thus a Nash equilibrium is a strateqy profile s* such that s* €
BR(s*).

A Nash equilibrium s* is strict if each player has a unique
best response to his rivals’ strategies: BR(s*) = {s*}.

VS#S:‘“W(S?? 5*—2) > ui(siv 5*—2)
A mixed strategy profile o* is a Nash equilibrium if for all play-
ers 1,

\V/s,‘ESi ui(ajvaii) Z UZ'(SZ',O'* )

—1i

Remark: Since expected utilities are “linear in the probabili-
ties,” if a player uses a non-degenerate mixed strategy in a Nash
equilibrium (non-singleton support), he must be indifferent be-
tween all pure strategies to which he assigns positive probability.
(It suffices to check that no player has a profitable pure-strategy
deviation).

2.4 Example

Example

LIM|R
U 435162
M|2.1[84]36
D [3.0]9.6]238

For column-player, M is dominated by R. Column-player can
eliminate M from his strategy space. The pay-off matrix reduces

to

©Mishra 1998



14 STRATEGIC FORM GAMES Chapter 2

New Pay-ofts

LR
U 4362
M[2.1]3.6
D [3.0]28

For row-player, M and D are dominated by U. Row-player
can eliminate M and D. The new pay-off matrix is

New Pay-ofts
LR
Ul43(6,2

Next, column-player eliminates R as it is dominated by U
and reduces the pay-off matrix to

New Pay-ofts
L
Ul4.3

Note that
BR.(U, L)y=U, & BR.(UL)=L, & BRUL)=(U,L).

(U, L) is a strict Nash equilibrium.
Remark: Mized Strategy (Not a Nash equilibrium.)

©Mishra 1998



Section 2.4 STRATEGIC FORM GAMES 15

o= (1/3,1/3,1/3) & o0.=1(0,1/2,1/2) & o= (0,,0.).
Thus
ur(op,00) = 3 ([Tei(s;))un(s)

= (1/3 x0)4+ (1/3 x 1/2)5 + (1/3 x 1/2)6
+(1/3 x0)24 (1/3 x 1/2)8 4 (1/3 x 1/2)3
+(1/3 x0)3 4 (1/3 x 1/2)9 4 (1/3 x 1/2)2

and

ue(or,00) = ) ([Los(s)))ucls)

= (1/3x0)3+(1/3 x1/2)1 +(1/3 x 1/2)2
+(1/3x0)L+(1/3 x1/2)4+(1/3 x1/2)6
+(1/3x0)0+ (1/3 x1/2)6 + (1/3 x 1/2)8
1
= 4=,
2
Thus this mixed strategy leads to a much better pay-off in
comparison to the pure strategy Nash equilibrium.
A pure strategy may be strictly dominated by a mixved strat-
eqy, even if it is not strictly dominated by any pure strategy.

Example
L | R
U |[20]-1,0
M|0,01]00
D [-1,0] 2,0

©Mishra 1998



16 STRATEGIC FORM GAMES Chapter 2

For row-player M is not dominated by either U or D. But M
is dominated by a mixed strategy o, = (1/2,0,1/2) (payoff:
ur(o) = (1/2,1/2)

Going back to the “Prisoners’ Dilemma” game, note that its
Nash equilibrium is in fact (D, D) [both players defect].
BR.(C,C)=BR.(C,D)=BR,(D,C)=BR.(D,D) = D
BR.(C,C)= BR.(C,D)= BR.(D,C)= BR.(D,D) = D

BR(C,C)= BR(C,D)= BR(D,C) = BR(D,D) = (D,D).

2.4.1 Matching Pennies
Matching Pennies

H|T
H|1-1]-1.1
T 11|11

There are two players: “Matcher” (row-player) and “Mis-
matcher” (column-player). Matcher and Mismatcher both have
two strategies: “call head” (H) and “call tail” (T). Matcher
wins 1 util if both players call the same [(H,H) or (T,T)] and
mismatcher wins 1 util if the players call differently [(H,T) or
(T,H)]. It is easy to see that this game has no Nash equilibrium
pure strategy. However it does have a Nash equilibrium mixed
strategy:

o= (1/2,1/2) & o.=(1/2,1/2).
The pay-offs are
u (o) = (1/2x1/2)1 +(1/2 x 1/2)(—1)
+(1/2 x1/2)(=1)+(1/2 x1/2)1 =0
u(o) = (1/2 x 1/2)(=1) + (1/2 x 1/2)1
+(1/2 x1/2)1 + (1/2 x 1/2)(—1) = 0.

©Mishra 1998



Section 2.6 STRATEGIC FORM GAMES 17

2.5 Key Ingredients for Nash Equilib-
rium
L. Introspection (Fictitious play)
2. Deduction/Rationality
3. Knowledge of Opponents Pay-offs

4. Common Knowledge

2.6 Revisiting On-line Learning

2.6.1 Convergence

Note that in the earlier discussion of the on-line learning strat-
egy, we noted that the on-line learning algorithm is competitive
[with a competitive factor of (In1/8)/(1 =3) =1+ (1 —03)/2+
(1-/)%/3+---, for small (1 — 3)] for any sufficiently large time
interval [0,7]. But it is also fairly easy to note that the proba-
bilities that the row-player chooses do not necessarily converge
to the best mixed strategy. Namely,

Wit = SR e,y = L

We have not explicitly shown that limy_,., 0.7 converges in
distribution to ;. Does the computed distribution converge
to anything? In the absence of any convergence property, one
may justifiably question how the algorithm can be interpreted
as learning a strategy.

2.6.2 Irrationality
Let us look at the “Matching Pennies” problem again:

Matching Pennies

©Mishra 1998



18 STRATEGIC FORM GAMES Chapter 2

H|1-1]-1.1
T 11|11

Suppose the column-player chooses a mixed strategy at time
t such that o.+(H) > 1/2 [and o.4(T) = 1 — o.4(H) < 1/2]
then for the row-player, the best response is BR, (o) = H
and is unique. By a similar reasoning, if o.,(H) < 1/2 [and
o.+(T) > 1/2], then for the row-player, the best response is
BR, (o) = T. Thus, if the rival deviates from his Nash equi-
librium mixed strategy o.+ = (1/2,1/2), then row-player’s (ra-
tional) best response is always a pure strategy H or T'. Thus,
if row-player had a convergent (rational) mixed strategy, then
depending on limy_,..{0.:}L, the row player must converge to
one of the following three (conventional) strategies:

1. RANDOM(1/2,1/2) (the Nash equilibrium mixed strategy),
2. H* (always H), or
3. T (always T).

Anything else would make the row-player irrational. Thus,
a player playing the on-line learning algorithm must be almost
always irrational!

2.6.3 A Meta-Theorem of Foster & Young

Definition 2.6.1 An infinite sequence o.; is almost constant,
if there exists a 0. such that o.; = 0. almost always (a.a.). That

is
) Ht <T:0.:# 0.}
lim =

T—co T 0

If 0., is not almost constant then

V,.— const Tei# 0. infinitely often (i.o.).

©Mishra 1998



Section 2.6 STRATEGIC FORM GAMES 19

Consider an n-player game with a strategy space S; x Sy x

- x S, = 5 and with the utility functions u; : 5 — R. All

actions are publicly observed. Let Y; = the set of probability

distributions over S;. Let ¥ = x;¥; be the product set of mix-

ture. Before every round of the game, a state can be described
by a family of probability distributions

{(oi,047) izj-

o; € ¥; = Player ¢’s mixed strategy,
o;; € X; = Player i’s belief about player 7’ mixed strategy.

Definition 2.6.2 Rationality: Fach player chooses only best
replies given his beliefs:

\V/Z';,g]‘ Ui(SZ’) >0=3; € BRZ'(UZ'J).

Definition 2.6.3 Learning: Player ¢ has its own determin-
istic learning process { fi, fi;j} which it uses in determining its
strateqy and its beliefs. In particular, let hy = all publicly avail-
able information up to time t. Then, player i chooses its strateqy
and beliefs as follows:

fi ht—1'—>0i,t
fi' : ht—l'_>0'ij,t-

The learning process is informationally independent if o;;; =
fii(hi—1) do not depend on any extraneous information.

Definition 2.6.4 Convergence: The beliefs are said to con-
verge along a learning path {hs, 04,05} if

\V/i;éj 3%62] tliglo Ot = 04 .

The strategies are said to converge along a learning path

{ht7 Oty %,t}SO Zf

\V/i Hgiezi lim Oit = 0j.
t—o00

©Mishra 1998



20 STRATEGIC FORM GAMES Chapter 2

The beliefs are said to be predictive along a learning path if
Viztj tliglo Tijt = Ot

and they are strongly predictive if in addition both the beliefs
and strategies converge.

Theorem 2.6.1 Consider a finite 2-person game (players: row-
player and column-player) with a strict (thus, unique) Nash
equilibrium o* = (o}, 0%) which has full support on S, x S..
Let {(fr, fre)s (fes for)} be @ DRIP learning process (D = Deter-
ministic, R = Rational, I = Informationally independent and P
= Predictive).

On any learning path (hi, (0,4, 0ret), (Tt Ocrt)), if the beliefs
are not almost constant with value o* then the beliefs do not
converge.

Proof:

Assume to the contrary: then o,.; # ¢ i.0. Then, infinitely
often, o,.+ does not have full support and

ElsrytESr Sr,t € BRT’(O-T’C,t)7
and by the finiteness of the strategies .5,
Js,es, $r € BR.(0,c4) i.0.
By rationality of row-player,
Jds,es, 0ri(s,) =010, & djes, t1i>r<£lo or4(s,) = 0.
By a similar argument,
ds.es. tli}r?o oe1(8:) = 0.
Since the learning is assumed to be predictive, we get

lim o 4(s,) =0 & 0opc4(s:) =0.

t—00
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Thus, if the beliefs converge (say, to (o,,0.)) then the beliefs
(and also, strategies—by predictivity) converge to some strate-
gies other than the unique Nash equilibrium (as it is unique with
full support). Hence one of the following two holds at the limit:

3t es\(s,3 0r(tr) >0 and t. & BR,(0.)
or
Fres(s.y 0c(te) >0 and t. & BR.(o,).
But, depending on which equation holds true, we shall conclude

that either row-player or column-player (or both) must be irra-
tional, a contradiction.
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Chapter 3

Nash Equilibrium

3.1 Nash Equilibrium

3.1.1 Fixed Point Theorems

Definition 3.1.1 A point x € K is a fixed point of an injective
function f: K — K, if
v = f(x).

Definition 3.1.2 A point © € K is a fixed point of a mapping
U: K — 28 f
x € W(x).

Theorem 3.1.1 Brouwer’s Fixed Point Theorem: If f :
K — K is a continuous function from a nonempty, compact,
convex subset K of a finite dimensional TVS (topological vector
space) into itself, then f has a fized point, i.e.,

EIQUEIX" r = f(l')

Theorem 3.1.2 Kakutani’s Fixed Point Theorem: If VU :
K — 28 is a conver-valued, uhc (upper hemi-continuous) map
from a nonempty, compact, convex subset K of a finite dimen-
stonal TVS to the nonempty subsets of K, then U has a fized
point, i.e.,

EIJ:EI( T € \I}(:ﬁ)
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Definition 3.1.3 Topological Vector Space: L = vector space
with a Ty topology

(Vaozyer g, = open set T € Ge Ny & Ga)
which admits continuous vector space operations.

Example: R" with standard Euclidean topology. (Only instance
of a finite dimensional TVS.)

Theorem 3.1.3 Existence of a Mixed Strategy Equilib-
rium (Nash 1950). Fvery finite strategic-form game has a mized-
strategqy equilibrium.

Proof: Player i’s reaction correspondence, ¥;, maps each
strategy profile o to the set of mixed strategies that maximize
player ¢’s pay-offs when his rivals play o_;:

q’i(U) = {U; | \V/Siesi Uz’(U;’,U—i) > ui(Si,U—i)}-
Thus,
;0 X — 2%,
Define
U:Y 2% 0 x;W,(o).

Thus this correspondence map is the Cartesian product of W;’s.
A fixed point of W (if exists) is a o* such that

o* e U(o").
Note that
\V/Siesi ui(ai*v Uii) > ui(siv Uti)v
by definition. Thus a fixed point of ¥ provides a mixed strategy
equilibrium o*.
Claims:

1. ¥ = Nonempty, compact and convex subset of a TVS.

¥ = Ajgyj—1 = |5i] — 1 dimensional simplex, since

Y = {(Ui,la---aai,l&l) | 005 > 0,> 01 = 1}-
J
Rest follows since ¥ = x;3..

©Mishra 1998



24 NasH EQUILIBRIUM Chapter 3

2. u; = Linear Function.

Vocr<t wi( Aol 4+ (1 = Nl o)
= Aw(ol,o-;) + (1 = Nwi(o!,o_;).

19 Y —

Hence w; is a continuous function in his own mixed strat-
egy. Since X is compact, u; attains maxima in 2.

Voes W(o) # 0.

Voex U(o) = convex.
Let 0!, 0/ € U(o). By definition,

Vsies, (wilol,o_;) > ui(si,0-;))

A (uiolf o) > ui(si,02;)).
Hence
Voarct Vsies, ui(Aoi + (1 = Mot o-i) 2 uilsi, o),

and

\V/0<A<1 )\O'Z/ + (1 — )\)O'Z/»/ - \I/Z(O')

4. ¥ = uhc. Consider a sequence

We wish to show that

If lim (¢",6")=(0,6) then &€ ¥(o).

n—0oo

Suppose Not! Then

but
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Thus,
E|e>0 30’;621‘ ui(o-z/'7 O-—i) > UZ(OA'“ O-—i) —I_ 36'

Since u; = continuous, there is a sufficiently large N such
that

Ui(O’é,O‘ﬁ) > ui(O'Z/»,O'_Z')—c

> UZ(OA'Z, U—i) + 2¢

> u(ol, o) e

Thus, 6~ € U(aV), a contradiction.

Thus we conclude that ¥ : ¥ — 2% is a convex valued,
uhc map from a nonempty, compact, convex subset ¥ of finite
dimensional TVS to nonempty subsets of 3. Thus by Kakutani’s
fixed point theorem

EIO’*EE 0'* & \I}(U*)7

and o* is a mixed strategy Nash equilibrium.
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Chapter 4

Beyond Nash: Domination,
Rationalization and
Correlation

4.1 Beyond Nash

We have seen that it is impossible to “learn” a Nash equilibrium
if we insist on DRIP conditions. A resolution to this dilemma
can involve one or more of the following approaches:

1. Explore simpler requirements than Nash equilibria: e.g.,
undominated sets, rationalizable sets and correlated equi-
libria. (The first two correspond to minmax and maxmin
requirements. The last one requires some side information
and may make the system informationally dependent.)

2. Requirement of predictivity may need to be abandoned.

3. Requirement of rationality may need to be abandoned.

4.1.1 Correlated Equilibrium

This concept extends the Nash concept by supposing that the
players can build a “correlated device” that sends each of the
players a private signal before they choose their strategy.

26
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Main Ingredients: Predictions using only the assumption
that the structure of the game (i.e., the strategy spaces and pay-
offs, S;’s and w;’s) and the rationality of the players are common
knowledge.

4.2 Tterated Strict Dominance and Ra-
tionalizability

Definition 4.2.1 Iterated Strict Dominance: Let
SP=S8; and ¥} =13
Let for alln > 0

SZn = {Si € S?_l | \Vlgl(ezl?l—l Els_iesﬁi—l ui(sias—i) Z ui(o-z{vs—i)}v

(Thus s; dominates all the mized strategies for some strategy

profile of the rivals) and define
Z?Z{O‘Z'EZZ'|Ui(8¢)>0:>82'€5?}.

Let .
s = ()8
n=0

be the set of player 1’s pure strategies that survive iterated dele-
tion of strictly dominated strategies.

Let
¥ = {O'Z' = mized strategy |
\V/crl'EEi Els—iesﬁ ui(aivs—i) > ui(az{vs—i)}

be the set of player 1’s mixed strategies that survive iterated dele-
tion of strictly dominated strategies.
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Example:

LR
Ul13]20
M|20] 1.3
D|0.1]0.1

Note that
SO ={U,M,D} & X°={o (with full support) }.
Similarly,
S°={L,R} & 3°={o (with full support) }.
Also note that
S = =2 =81 =80 & S¥=...=82= 5 =80

Note, however, that for all values p € (1/3,2/3) the mixed strat-
egy o, = (p,1 — p,0) is dominated by D. Thus,

X C .
4.2.1 Some Properties of Undominated Sets

S =577 x 55 x - x 87, & BT =37 X EF x - x BT

1. The final surviving strategy spaces are independent of the
elimination order.

2. A strategy is strictly dominated against all pure strategies
of the rivals if and only if it is dominated against all of their
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strategies. Thus, the following is an equivalent definition
of the undominated sets:

SZQ:SZ' and Z?:Zi

SZn = {S¢€Sf_1|

Vg;ezf—l Els_,ESfi_l ui(si, i) 2 Ui(Ufas—i)}-
o= {ai exr |

Vg;ezf—l Els_iesfl._l ui(oi, 5-i) = Ui(Ufas—i)}-

SE= (18, & sE=()sn
n=0 n=0

Definition 4.2.2 A game is solvable by iterated (strict) domi-
nance, if for each player i, S is a singleton, i.e., S = {sF}.
In this case, the strategy profile (s, s3, ..., s7) is a (unique)
Nash equilibrium.

Proof: Suppose that it is not a Nash equilibrium: That is for
some ¢
s; ¢ BRi(sZ,)
Thus
Jsies, ui(siv 5*—2) > Ui(Sfa 5*—2)

But suppose s; was eliminated in round n: Then
!
Elsgesin—l \Vls_ieszi—l wi(8y, 8-) > ui( 8, 8-4).

Since s*; € 5%, we have w;(s}, s%;) > u;(s;,8%;). Repeating in
this fashion we get a sequence of inequalities:

ui(s* Stz) > > ui(S;/,Sti) > Ui(S;,Sti) > ui(Si,StZ’),

7

resulting in a contradiction.
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4.3 Rationalizability

This notion is due to Bernheim(1984), Pearce(1984) and Au-
mann(1987) and provides a complementary approach to iterated
strict dominance. This approach tries to answer the following
question:

“What are all the strategies that a rational player
can play? ”

Rational player will only play those strategies that are best
responses to some beliefs he has about his rivals’ strategies.

Definition 4.3.1 (Rationalizable Strategies) Let

S0 =¥,

K3

Forn >0, let
Yr = {ai eyt

'
EIU_iEXJ;éiCOnU(i;l_l) vcrl’.eEf_l uZ(U“ 0—2) > ul(aiv U—Z)}'

The rationalizable strategies for player ¢ are
Ri= ()3
n=0

A strategy profile ¢ is rationalizable if o; is rationalizable for
each player i. Let o* = (o7, 03, ..., 07) be a Nash equilibrium.
Note first, 0¥ € X9, for all i. Next assume that o™ € x; 2771
Thus o € X771, and ¢*; € Xj#ii?_l. Hence,

Vores, ui(0],07,) > ui(o},07,) = o € ¥

K3

Thus, c*e R= Xsz

Hence,

Theorem 4.3.1 Fvery Nash equilibrium is rationalizable.
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Theorem 4.3.2 (Bernheim/Pearce (1984))

The set of rationalizable strategies is nonempty and contains
at least one pure strateqy for each player. Further, each o; € R;
is (in ;) a best response to an element of X j; Conv(R;).

Comparing the constructions of undominated strategies with
rationalizable strategies, we note that

¥0=%;, and Y=Y,

In the nth iteration, the undominated strategies are constructed
as

¥ = {O'Z' € Z?_l |
Va;ezf—l EIO'_iEXJ#iCOHV(E;L_l) ui(oi,0-;) > ui(U;aU—i)}a
where as rationalizable strategies are constructed as
¥n = {ai e x|
!
3o _iex g Convisr—) Voresr—t ui(0,0-i) = ui(aiva—i)}'
Finally,

¥ = ﬂ YEYT =27, and R; = ﬂ i?,R = x;R;.
n=0 n=0

A direct examination of these constructions reveals that if -
% and hence, R C ¥*°. Also, note that the undominated strate-
gies are computing the minmax values where as the rationalizable
strategies compute maxmin values.

4.4 Correlated Equilibrium

Aumann’s Example
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LR
U51]00
D|44[15

There are 3 Nash equilibria:

e A pure strategy: (U, L) — Pay-off = 5,1,
e A pure strategy: (D, R) — Pay-off = 1,5, and

e A mixed strategy: ((1/2,1/2), (1/2,1/2)) — Pay-off =
(2.5, 2.5).

Suppose that there is a publicly observable random variable
with Pr(H) = Pr(T) = 1/2. Let the players play (U, L) if the
outcome is H, and (D, R) if the outcome is T. Then the pay-off
is (3, 3).

By using publicly observable random variables, the players
can obtain any pay-off vector in the convex hull of the set of
Nash equilibria pay-offs.

Players can improve (without any prior contracts) if they can
build a device that sends different but correlated signals to each
of them.

4.4.1 Formal Definitions

o “Expanded Games” with a correlating device.

e Nash equilibrium for the expanded game.
Definition 4.4.1 Correlating device is a triple

(Q,{H;}z,p)

e () = a (finite) state space corresponding to the outcomes
of the device.
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o p = probability measure on the state space )

o H; = Information Partition for player 1.

Assigns an h;(w) to each w € Q such that w € h;(w).

hi + Q= H;, © wr— h(w).

Player ¢ ’s posterior belief about ) are given by Bayes’ law:

\V/wehi p(w|h2) = p(w) .

4.4.2 Pure Strategies for the Expanded Game

Given a correlating device (Q, {H;}, p), we can define strategies
for the expanded game as follows: Consider a map

Q=5 we n(w),

such that 7;(w) = 7(w'), if W € hi(w).
The strategies are adapted to the information structure.

Definition 4.4.2 DEF(1) A correlated equilibrium 7 relative
to information structure (Q,{H;},p) is a Nash equilibrium in
strategies that are adapted to information structure. That is,

(11, T2, ..., T1) is a correlated equilibrium if
Vi 3 plelui(n() (@) 2 3 (i), mi())
wEe wen

Using the Bayes’ rule, an equivalent condition would be:

Vi vhiEHi7p(hi)>0 vsl‘ESi

S plwlhi)ui(ri(w), —i(w))

wlhi(w)=h;

> plwlhi)ui(si, Ti(w)).
wlhi(w)=h;
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4.4.3 Correlated Equilibrium and Universal De-
vice

“Universal Device” that signals each player how that player
should play.

Definition 4.4.3 DEF(2) A correlated equilibrium is any prob-
ability distribution p(.) over the pure strategies Sqx Sg X+ -+ x Sy
such that, for every player i, and every function d(i) : S; — S;

dop(s)uilsiys—i) > D pls)uild(si), s-i).

sES SES

Using the Bayes’ rule, an equivalent condition would be:

\V/i \V/S,ES,' ,p(5:)>0 \V/SQES,'

Y plsilsiui(siy s )

5_;ES_;

> D pls—ilsiui(sy, s-i).

5_;ES_;

Equivalence of correlated equilibria under Def(1) and Def(2):
Claim:

Def(1) < Def(2):

Choose 2 = S. h;(s) ={s|s; = s;}. Leave p(s) unchanged.
Claim:
Def(1) = Def(2):

Let 7 be an equilibrium w.r.t. (,{H,;},p). Define

p(s) = {pw)|n(w) = s1,...,71(w) = sp,w € Q.

Ji(s:) = {w|n(w) = s:}.

p(Ji(s:)) = p(si) = probability that player ¢ is told to play s;.
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Pw)
LI )
wETi(s:) p(‘]l(sl))
It is the mixed strategy of the rivals that player i believes he
faces, conditional on being told to play s;, and it is a convex
combination of the distributions conditional on each £; such that

Tz(hz) = 5;.
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Chapter 5

Adaptive and Sophisticated
Learning

5.1 Adaptive and Sophisticated Learn-
ing

The idea of best reply dynamics goes back all the way to Cournot’s
study of duopoly and forms the foundation of Walrasian equi-
librium in economy and is created by the classical Tatonnement
learning process.

The underlying learning processes can be categorized into
successively stronger versions:

¢ Best-Reply Dynamics: However, it’s also known that
this dynamics lead to non-convergent, cyclic behavior. In
this model, an outsider with no information about the util-
ities (payoffs) of the agents could eventually predict the
behavior of the agents more accurately than they them-
selves.

e Fictitious-Play Dynamics: The agents choose strate-
gies that are best reply to predictions that the probability
distributions of the competitors’ play at the next round is
based on the empirical distribution of the past plays. Even
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this dynamics lead to (if there is no zero-sum restriction)
cycles of exponentially increasing lengths.

e Stationary Bayesian Learning Dynamics: The agents
choose strategies as functions from the information set
(empirical distribution of the past plays) without relying
on any intermediate prediction. The distribution over the
strategies changes as the empirical distribution changes.
(Reactive Learning: involves no model building.)

The dynamics may converge—but to a (mixed) strategy
profile that is not necessarily the perfect (Nash) equilib-
rium.

5.2 Set-up

Player n plays a sequence of plays: {z,(¢)}. Each x,() is a
pure strategy and is chosen by the rules of player n’s learning
algorithm. We are interested in two properties that may be
satisfied by {x,(¢)}: it is approximately best-reply dynamics,
then it is consistent with adaptive learning; it is approximately
fictitious-play dynamics, then it is consistent with sophisticated
learning.

Definition 5.2.1 {x,(?)} is consistent with adaptive learn-
ing. Player n eventually chooses only strategies that are nearly
best replies to some probability distribution over his rivals joint
strateqy profiles, where near zero probabilities are assigned to
strategies that have not been played for sufficiently long time.

Definition 5.2.2 {x,(?)} is consistent with sophisticated
learning. Player n eventually chooses only nearly best replies to
his probabilistic forecast of rivals’ joint strategy profiles, where
the support of probability may include not only past plays but
also strategies that the rivals may choose if they themselves were
adaptive or sophisticated learners.
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We will look at the effect of these algorithms on finite player
games, with compact strategies and continuous pay-off func-
tions.

Note that these assumptions are consistent with the usual
model of exchange economy with infinitely divisible goods. Note
that in this model, serially undominated set is a singleton and
thus the Walrasian equilibrium. One of the main results that we
will see is that in any process, consistent with adaptive learning,
play tends towards the serially undominated set and hence, in an
exchange economy, adaptive learning would lead to equilibrium.

5.3 Formulation

Definition 5.3.1 Noncooperative game

I'=(N,(S.;n € N),m).

N = Finite Player Set
S, = Player n’s strategy
Compact Subset of some Normed Space
7 = Pay-off Function

Assumed Continuous.

S = XpenSn €S == (2,1,

x_, 18 the strateqy choice of n’s rivals.

m S — RN = Pay-off Function, Continuous
™ S —=R
(Tp, @) > mo().
Let T be a set. Then A(T') = Set of all probability distribu-
tions over T'.
A(S,) = Mized strategies on S,. A_, = X;z,A(1}) =

Mixed strategies of n’s rivals.
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Definition 5.3.2 A strategy x,, € S,, is e-dominated by another
strategy &, € A(S,) if

vz_nES_n ﬂ-n(xny Z—n) +e< Wn(jfn, Z—n)-

If V. x, is e-dominated by x,, then x, is dominated by z,
(in the classical sense).

Let T C S. Define T,, = T|s, = projection of T onto 9,.
T_n = Xj#nT]‘.

Definition 5.3.3 Given T C S. Let

U;(T) = {l’n - Sn :\V/yneA(Sn) EIZ_nET_n
Wn(wnv Z—n) +e2> Wn(yn, Z—n)}
UAT) = xnenU(T).

Us(T) = Pure strategies in S,, that are not e-dominated when
n’s rivals are limited to T, .

Fact 1
The operator U* is monotonic. Let R and T be sets of strategy
profiles.
RCT = UYR)CUYT).
Fact 2
A U(T) ¢ T.

In general, starting with some arbitrary set of strategy profile T
one may not be able to create a monotonically descending chain
of sets of strategy profiles:

TOU(T)2UT)D - DUNT) QU T)D -

Fact 3
However, S 2 U(S). Since S is the whole nothing new can get
introduced.

By the monotonicity of U¢, we see that if

UHT) 2 0T,
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then
US(USH(T)) 2 US(U=*(T))

and

Ue,k—l—l (T) 2 UE,k—I—Q (T)

Putting it all together, we do have
SOUNS)DUS)D--- DUKS) DU (S D ---

We then define
Ue(8) = UF(9).
k=0

Hence, U%°(S) = lim.o U“*(S) = Serially undominated strat-
egy set. We say z is serially undominated, if € U%>(S).

Definition 5.3.4 A sequence of strategies {x,(t)} is consistent
with adaptive learning by player n iof

Veso Vi Je Vst an(t) € U ({:1;(5) i<s< t})

A sequence of strategy profiles {x(t)} is consistent with adap-
tive learning if each {x,(t)} has this property.

5.4 Looking Forward
FOt ) =U* ({:1;(5) i<s< t})

Vk>1:

Feki ) = Ue (Fe’k_l(f,t) U {z(s):f<s < t})
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Lemma 5.4.1
FOE,8) C PN ) C oo C PR ) C PR C -
Proof

By the monotonicity of U,
FEO>E 1) C F9Y (i),
Assume by inductive hypothesis,
FER=Y(E ) C PR .
Then

FERYE ) U {a(s) 1 <
C FRE ) U {x(s)

By the monotonicity of U*,

C UE(FE’k(f,t) U {a(s): 1< s <t}).

Thus
FoR(E, 1) C FoRY(4 ).

Definition 5.4.1 A sequence of strategies {x,(t)} is consistent
with sophisticated learning by player n if

Veso Vi 3¢ Vist 2a(t) € UL(F(1,1)).

A sequence of strategy profiles {x(t)} is consistent with so-
phisticated learning if each {x,(t)} has this property.

Veso Vi 37 \V/tzf x(t) € FEOO(Z?, t).
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Learning a la Milgrom and
Roberts

6.1 Adaptive Learning and Undominated
Sets

Example: Battle of Sexes

WAM Ballet(B) | Football(F)
Ballet(B) 2.1 0,0
Football(F) | 0,0 1,2

Let {x(¢)} be a sequence of strategy profiles. We show that
x(t) = (F, B) is consistent with sophisticated learning.

v fels)li < s < 1} = {(F. B)}.

Thus, we have
Fifia) = vy () -5
Fifia = vi((ren) -
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Thus A
FE’O(t,t) ={(B,F)}.

Similarly,

Felit)y = U* ({(B, ), (F, B)}) ={B,F} x {B, F}.
Continuing in this fashion, we get
Fe=(t,t)={B,F} x {B, F}.

Thus
z(t41) = (F,B) € F=°(i,1),

is consistent with sophisticated learning.

6.2 Convergence

Definition 6.2.1 A sequence of strategy profiles {x(t)} con-
verges omitting correlation to a correlated strateqy profile

G e A(S)
if (1) and (2) hold:

1. Gt converges weakly to the marginal distribution G, for
all n.

2.
ve>0 EILT \V/th \V/nEN d[xn(t)v Supp(Gn)] <6
Define djx, T| = infyer |2 — y||.

The sequence converges to the correlated strategy G € A(S)
if in addition

G converges weakly to G.

Definition 6.2.2 A sequence {x(t)} converges omiltting corre-
lation to a mixed strateqy Nash equilibrium if
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1. It replicates the empirical frequency of the separate mived
strategies and

2. It eventually plays only pure strategies that are in or near
the support of the equilibrium mized strategies.

Theorem 6.2.1 [f {x(t)} converges omitting correlation to a
correlated equilibrium in the game ', then {x(t)} is consistent
with adaptive learning.
Proof Sketch:
G converges to a correlated equilibrium G.
= (7, consists of best responses to G_,
= For sufficiently large ¢, x,(¢) is within € of G,
= Since 5, is compact and 7 is continuous

\V/yneGn 3Z—nec;’—n 35>0 Trn(xn(t)7 Z—n) —I_ 5 Z Trn(yn7 Z—n)

za(t) € US ({:1;(3) 11<s< t}).

Theorem 6.2.2 Suppose that the sequence {x(t)} is consistent
with adaptive learning and that it converges to x*. Then =™ is a
pure strateqy Nash equilibrium.
Proof Sketch:
Assume that «* is not a Nash equilibrium
= uen Voso {03} £ ({2},
= Player n must play ] # 2} i.o0.
= x,(t) does not converge to a7
= Contradiction.

Theorem 6.2.3 Let {x(t)} be consistent with sophisticated learn-
ing. Then for each € >0 and k € N there exists a time t. after
which (i.e., fort > t.)

x(t) € Uﬁk(S).

Proof Sketch:
Fix € > 0. Define t;, = ¢ (Change in notation).
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Case k= 0:t, =0. z(t) € U(5).
Case k& = j + 1: By the inductive hypothesis there exists a
t; such that

vtztj l’(t) - UE](S)

Hence

{z(s) | t; < s <t} CUY(S).

Since {x(t) is consistent with sophisticated learning, we can

choose
t=t;, tiy1 =max({,1).
Then
Vist, 2(l) € F°°(L5,0).
Claim:
Fe(t,6) CUSHH(S).
Equivalently,

\V/i FEi(t]‘,t) - UE’j+1(S).
It then follows that
U (ECIVEIY)

C UE(UEJ(S)) = USTT(S).

ettt = U* (Fﬁvi(tj,t) U {z(s) |t; <s< t})

c U
= UE(

USTH(SYU U (9))
US(S)) = UT(S).

1 U*ES) ZO UPH(S) = U(S).

kE e>0
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Theorem 6.2.4 Let {x(t)} be consistent with sophisticated learn-
ing and S be the set of strategies that are played infinitely often
in{x,(t)}. Then

5% = XuenSe2 C (Y UF(S) = U(S)

k >0

Corollary 6.2.5 In particular, for any finite game U, all play
lies eventually in the set of serially undominated strategies U(S).

Theorem 6.2.6 Suppose U°*(S) = {z}.
Ja(t) = ]| =0
iff {x(t)} is consistent with adaptive learning.
Proof Sketch:
(=)
|x(t) — z|]| — 0.

Since 7 is continuous,
Veso it Vit Vaen muln(l), 2-n(t)) — max{m,(yn, v-n(l))|yn € Su}
< ma(@) + /2] = [max{mn(yn, T-n)|yn € Sn} — €/2)]
) € Uiltatn) € (ol < s <)),

= {x(?)} is consistent with adaptive learning.

(<)
Let 2* = accumulation point of {xz(t)}.

Vi di Viss l’(t) - UEk(S).

LA ﬂﬁUE’k(S)

= NN 04 =0(8) = 42)
=
(1) = 2l| = 0.
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Theorem 6.2.7 Suppose U°<(S) = {z}.
le(t) — 2| = 0

iff x(t) is consistent with sophisticated learning.

6.3 Stochastic Learning Processes

We now allow the players to experiment as we will now assume
that each user may not know his own pay-off function. See

Freudenberg & Kreps (1988).

Glame consists of alternations among

o Fxploration: Every strategy is experimented with equi-
probability.

o Faxploitation: Good strategies —based on exploration—
are played.

At each date t, player n conducts an experiment with prob-
ability €,, in an attempt to learn its best play.

1. Independence: Decision to experiment is independent of
other players’ decisions.

2. Rare: ¢,;, — 0 as t — oo.

3. Infinitely Often: >, ¢,, = oo.

{t(k,w)} = Subsequence of dates at which player n conducts
no experiment.

w = Realization of the players’ randomized choices.

Thus the interval [0,¢] consists of experiment dates P,(x,,1)
and play dates M, (x,,t). Write M(t) to denote the expected
total number of experiments.

o ll(x,,t) = Total Pay off received with M, (x,,1)

e 1l(y,,t) = Total Pay off received with M, (y,,1)
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Claim:
Let T' = set of strategy profiles.

Vet Tul@ny 2—n) < Tp(Yny 2n) — 2€

= For large ¢

(1) < I(yn, t) — eM(1)/]Snl.

Ell(x,, 7+ 1) — Wy, 7+ D|T] — (2, 7) + U(yn, 7)
= €nrt1/|| Elmn(n, 2_n(m+ 1)) — mn(Yn, (7 + 1))]
< =2€-€ur41/]5].

Taking expectations

Ell(x,, 7+ 1) — Uy, 7+ 1)|T]
= B[ () — Dy DIT] — 26 o]0

and then telescoping,
Bl (2 t) = Wy )] < =26/1Su 2 cur = —2eM(1)/]5,.
Let A > 2|7,
Var[ll(z,,t) — H(y,,t)] < —2A%M(t)/|S.].

Thus H(x,,t) — U(yu, t)] + €M (t)/]S,] converges to —oo and
hence represents a super-martingale.

In other words, x,, dominates y, then the player n will dis-
cover this fact eventually by repeated experiments.

Theorem 6.3.1 For any finite strateqy game ', the sequence
{z,(t(k,w))} constructed as described above is consistent with
adaptive learning a.s.(almost surely).
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Chapter 7

Information Theory and
Learning

7.1 Information Theory and Games

7.1.1 Basic Concepts

Definition 7.1.1 Entropy is a measure of uncertainty of a ran-
dom variable. Let X be a discrete random variable with alphabet
X.

p(x) = Pr[X = z], wherex € X.

The entropy H(X) of the discrete random variable X is de-
fined as

H(X) = Eplg]ﬁ

= — > pla)lgp(x).

zeX
Facts

1. H(X) > 0. Entropy is always nonnegative. 0 < p(z) < 1;
—lgp(x) > 0. Hence, E,1g(1/p(x)) > 0.)

2. H(X) < lg|X|. Consider the uniform distribution u(x).
Veex u(e) = 1/|X]. H(u) =32, (1/]X]) g |¥] = 1g | ¥].

49



50 INFORMATION THEORY Chapter 7

3. H(X) = Average number of bits required to encode the
discrete random variable X.

7.2 Joint & Conditional Entropy

(X,Y) = A pair of discrete random variables with joint distri-
bution p(x,y).
Joint Entropy =
1
E,lg ————
T p(XY)
= = > > plz,y)lgp(z,y).

zeX yey

H(X,Y)

Conditional Entropy =

1
&l
= —=> > plz,y)lgply|z)

zeX yey

= = > plx) D plylz) g ply|e)

rzeX yeY

= = pla)H(Y]2).

reX

HY|X) =

7.2.1 Chain Rule

p(X,Y) = p(X)p(Y|X) Bayes Rule
lgp(X,Y) = lgp(X)+lgp(Y]X)
1 1 1

Loxy) T TR

1 1 1
Blenyy T Rty
H(X,Y) = H(X)+ H(Y]X).

Linearity of Expectation

Corollary 7.2.1
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1. H(X,Y|Z)= H(X|Z) + HY|X, Z).

2. H(X)+ H(Y|X) = H(Y) + H(X|Y)
= H(X)— H(X|Y) = H(Y) - HY|X).

3. Note that H(X|Y") # H(Y|X).

7.3 Relative Entropy & Mutual Infor-
mation

Definition 7.3.1 Relative Entropy—Also, Kullback-Liebler
Distance between two probability mass functions p(x) and g(x).

P )
D(pllg) = E, lg o) = Zl;p( )lgp(x).

Note that D(p||p) = 0. If u(x) = % for all . Then D(p|ju)
is

Dipllu) = - 3 plx) % £ Y ple)lg ¥ = Ig | X] — H(X).

Definition 7.3.2 Mutual Information

Let X and Y be two discrete random variables with a joint prob-
ability mass function p(x,y), and with marginal probability mass
functions

=Y ple,y) & ply) = pla,y).

yeY reX

Mutual Information,

I(X}Y) = D(p(xay) | p(l’)p(y))

B pry)
= B 18,0

= -3 % pla,y)lg BT plz:y)

veX yeY ( ) (y)
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H(X)+ H(Y)— H(X,Y)

(H(X) + H(Y)) - (H(Y) + H(X|Y))
= H(X)—H(X|Y)=H(Y)— H(Y|X) = I(Y;X).

H(X)— H(X|Y)=I[(X;Y)=H(Y) - HY|X) = [(Y; X).

[(X;X)=H(X)— H(X|X) = H(X).

I(X:Y)=I1(Y:X) = H(X)+ H(Y) - HX,Y).

7.4 Chain Rules for Entropy, Relative

Entropy and Mutual Information

H(X:, Xs,. .., X,)
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i q(
B N p(x) p(y|z)
= L eyl e
= Tt e+ Xl e 54
B e P e PWIE)
= Zx:p( )1gq = +Zy:p(y| )lg 1o

= (b)) + 0 (ol o))

7.5 Information Inequality

—D(pllg) = > p(z)lg m lg is a concave function
< Y < Y g = g1 =0,

Theorem 7.5.1 D(p|lq) > 0 (with equality iff p(x) = q(x) for
all )

Corollary 7.5.2

1(X:Y) =D(p<x,y> H p<x>p<y>) > 0,

(with equality iff X and Y are independent, i.e., p(x,y) = p(x)p(y)
for all x and y.)
Let u(x) = I?lf_l

D(p | w) =lg|¥] = H(X) = 0.
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Hence,

H(X) <lgl|X|,

(with equality iff X has a uniform distribution over X'.)

I(X;Y)=H(X)-HX|Y) > 0.
Theorem 7.5.3
H(X|Y) < H(X).

Conditioning reduces entropy.

A
M-
o
s

Corollary 7.5.4
H(Xy,...,X,) <> H(X)),
with equality iff X;’s are independent.
7.6 Stationary Markov Process

o Markovian

Pr[Xn|X177XZ]:PT[Xn|XZ]7 Zgn

e Stationary

PT[Xn|X1,. . 7X2] = PT[Xn_|_1|X2,. . .,XH_l].
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H(X,|X1) > H(X,|X1,X;) conditioning reduces entropy
= H(X,|X;) Markov
= H(X,-1|X1) Stationary .

2nd Law of Thermodynamics

Theorem 7.6.1 Conditional entropy H(X,|X1) increases with
time n for a stationary Markov process.

Relative entropy D(m,||7!) decreases with time n.

Let m, and 7/, be two postulated probability distributions on
the state space of a Markov Process. At time n + 1, the dis-
tribution changes to m,4; and 7, governed by the transition
probabilities r(x,,, ,41).

Thus

p(l‘n, wn-l-l) = p(l‘n)r(l‘n, wn-l-l)

= plen)p(nt|es)

similarly,

Q(xmxn-l-l) = Q(xN)r(xmxn-l-l)

= q(@n)q(wnsrzn)

Thus, we have
T )
= D(pte o)) + Do) L aorerle)
= Do) o))

And

P )
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= (plawen) Latean)) + D{soules) L oalenn)
> Do) o))

We conclude that

D(ste 1 aten)) = D ptessn) L atasn))

Thus the relative entropy for this system must decrease:

D(mllm}) = D(mallm;) = -

> D(m||nl) > D(mpgal|mly) = oo e 0.

7.7 Gambling and Entropy

Horse Race

# horses =m, {H;, Hy,...,H,}.

pi = Pr[H; wins |

u; = pay-off if H; wins .
If b; = bet on the ¢th horse then the payoff =

biu;, if H; wins with probability p;;
0, if H; loses with probability (1 — p;).

Assume that the gambler has 1 dollar. Let b; = fraction of
his wealth invested in H;. Thus
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Note that the gambler’s pay-off is b;u; if H; wins (with prob-
ability p;.)

= factor by which the gambler increases his wealth if X wins.
Repeated game with reinvestment.

So = 1,
Sn = Sac15(Xy), if X, wins in the nth game.

Thus
_ 9) lgS(X
=1
Let
E,[lg S(X)] = > prlg(brug) = W(b, p) = Doubling Rate,

where b = the betting strategy. Then
1 : .
—lg S, — E,[lg S(X)] in probability,
n

by “Law of Large Number.” Hence

S, — 2"V (b

Definition 7.7.1 Doubling Rate
Z Pk lg bkuk

Theorem 7.7.1 Let the race outcomes X1, ..., X, be i.i.d.~
p(x). Then the wealth of the gambler using betting strategy b
grows exponentially at rate W(b,p), i.e

S = 9nWbp)
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Wi(b,p) = > prlg(brug)
by 1
_ lg 2% _lg — +1lgu
Zpk gpk gpk &
= Y pelgur — H(p) — D(pl|b)

with equality iff p = .
The optimal doubling rate

W*(p) = maxW(b,p) = W(p,p) = >_ prlgus — H(p).

Theorem 7.7.2 Proportional gambling is log-optimal.
The optimum doubling rate is given by

W*(p) = W(b*,p) = prlgur — H(p),

and is achieved by the proportional gambling scheme, b* = p.

Define rp, = i = Bookie’s estimate of the win “probabili-

ties.” Thus |

Zrk:Z—:l.
k Uk

Odds are fair and there is no track take.

b

W(b,p) = Zpklgi
by, rk]
= le = —lg =
Zpk [gpk gpk

= D(plr) = D(pl|).
Doubling Rate = Difference between the distance of the bookie’s

estimate from the true distribution and the distance of the gam-
bler’s estimate from the true distribution.
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Special Case: Odds are m-for-1 on each horse:

1
\V/k T = —.
m

Thus,
W=(p) = D(pl|lu) — D(p||b") = lgm — H(p).
Theorem 7.7.3 Conservation Theorem
W(p) + H(p) =lgm
for uniform odds.

Low-Entropy Races are Most Profitable.
Case of a not fully invested gambler.

by = wealth held out as cash
b; = proportional bet on H,.
bo>0, b; >0, > bi=1.

Thus
S(X) = bo + b(X)u(X).

e Fair Odds: > uL = 1.

If there is a non—fully—invested strategy with bg, by, ..

then there is also a full investment as follows
by = 0

= by + b(X)u(X).

Thus in this case there is a risk-neutral investment.

°9 bm7
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e Super-Fair Odds: uL < 1.
“Dutch Book” betting strategy.

1 1
Thus
1 1
S(X) = (1_ZE)+U(X)U<X>: S

with no risk!

This, however, implies a strong arbitrage opportunity.

e Sub-Fair Odds: uL > 1.
In this case, proportional gambling is no longer log-optimal
and this case represents a risky undertaking for the gam-

bler.

7.8 Side Information

Some external information about the performance of the horses
may be available—for instance, previous games.

X ={1,2,...,m}, represent the horses.

Y = Some other arbitrary discrete random variable

(Side Information).
p(x,y) = joint probability mass function for (X,Y) .

b(x|y) = conditional betting strategy depending on Y’
= proportion of wealth bet on horse x given that y € Y is
observed.

b(x) = unconditional betting strategy.

b(x) >
b(z|y)

0, Yab(x) = 1.
>0, Y.b(zly) =1.
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Wi(X) = maxzp(l‘) lg(b(z)u(z))

= Zp Vgu(z)— H(X).

WHXTY) = maxzp(l‘) lg(b(xly)u(x))

= Zp Vgu(x)— H(X|Y).

AW = W*(X|Y)—W*(X)
= Lp@)lgule) — HX|Y) =3 plr) g u(e) + H(X)
_HX) = HX]Y) = 1(X:Y) > 0,

Increase in Doubling Rate =
Mutual information between the horse race and side information.

7.9 Learning

{X,} = Sequence of horse race outcomes from a stochastic pro-
cess.

W (X | X—1, Xg—g, ..., X1)
= E b max )E[lgS(Xk)|Xk_1,Xk_2,...,Xl]
ATk —14ee0s T
= lgm — H(Xg| X1, Xy—2, ..., X1),
and is maximized for
b*($k|$k_1, s ,$1) = p(xk|xk—17 . '7x1)-
Note that since .
~[Is(x
=1
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we have

1 1
—FElgS, = —=> FlgS(X;)
n n

— lZ(lgm — H(X;|Xq,..., Xi21))

n

= lgm — (X, Xo)
n

= lgm — H(X).

H(X) is simply the entropy rate.
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Universal Portfolio

8.1 TUniversal Portfolio

1. Sequential Portfolio Selection Procedure. An adapted pro-
cess.

2. No statistical assumption about the behavior of the market.

3. Robust procedure with respect to arbitrary market se-
quences occurring in the real world.

We shall consider growth of wealth for arbitrary market se-
quences. For example, our goal may be to outperform the best
buy-and-hold strategy—i.e., we wish to be competitive against
a competing investor who can predict n future days. A differ-
ent goal may be to outperform all constant rebalanced portfolio
strategies.

m = # stocks traded in a market

x; = price relative for the ith stock

stock price at close  Pi(c)

stock price at open  P;(0)
AP;

P,

- 1+

63



64 UNIVERSAL PORTFOLIO Chapter 8

T = ] = stock market vector .

8.1.1 Portfolio

by

by . b >0
b= = portfolio , { b= 1.

by,

Portfolio is simply the proportion of the current wealth in-
vested in each of the stocks.

S=b-a=bla=3 bay,

= Factor by which the wealth increases in one period.

= stock market vectors for n consecutive days.

b = Fixed (constant) portfolio

We shall follow a constant rebalanced portfolio strategy.

L So(b) = 1
Sn(b)ng (i), {Sn((b)) = S, 1(b) bTx(n).

Sy = max Sa(b) = S, (b7).

This is the maximum wealth achievable on the given stock se-
quence maximized over all constant rebalanced portfolios.
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8.2 Universal Portfolio Strategy

b(k)

depends only the past price relatives: (1), x(2), ..., z(k —1).

It performs as well as the best constant rebalanced portfo-
lio based on a clairvoyant knowledge of the sequence of price
relatives.

8.2.1 Questions

Since we wish to compete against a clairvoyant in-
vestor (who knows the future) and universal portfo-
lios only depend on the past (past has no causal or
correlated relation with the future), how is it possible
that universal portfolio can be competitive?

Malicious/adversarial nature is free to structure the
future so as to help the competing investor.

1/m
b(1) = 1/:m
1/‘m

k

Sp(b) = [[ b7 2(i), B= {b ERT[b; >0, b = 1}.

=1
A [ bSk(b)db
blk+1)= 22—+ "—
( ) [ Sk(b)db
Note that

) S bTa(k+ 1)Sp(b)db  fg Spia(b)db
bk+D)Ta(k+1) =28 [ 5. (0)db = ]j”BSk(b)db
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The “learned” portfolio is the performance weighted average of
all portfolios b € B.
Thus

T [ Su(b)db B

S, = gb(k)%(k) = B o) S = 1)!/Bsn(b)db.
We will show that

4 5 (m — D)I(y/27/n)™

n ~
|l

where .J, = a positive semidefinite (m — 1) x (m — 1) sensitivity
matrix.

8.3 Properties & Analysis

Let F' be some arbitrary probability distribution for price rela-
tives over R7!. Let [}, be the empirical distribution associated

with 2(1), (2), ..., z(n). Pr[X = z@)] = 1/n. Pr[X #
x(1),¥;] = 0.
i B

8.3.1 Doubling Ratio

Wb, F) = / le(b72)dF (2)
Wb F) = 3 et ()

W+(F) = mbaXW(b,F)
W=(F,) = mbaXW(b,Fn)

* _ = T N onWH(Fy)
Sr= méaXSn(b) = méaXHb x(1) =2 :

=1
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Let e; be the vector

0

e; =11 1 in jth position only.

Su(ej) = Tl ejak) =] zi(k)
k=1 k=1
=  Wealth due to buy-and-hold strategy
associated wit the jth stock.

Since S} is a maximization of S, (b) over the entire simplex,
v, Sr > Su(e;).
Corollary 8.3.1
1. Target Exceeds Best Stock.

S* > max .S, (e;).
J
2. Target Exceeds Value Line.
1/m
S,z (H Sn(ej))
J
3. Target Exceeds Arithmetic Mean.

52 > Zajsn(ej)v a; > 072%‘ =1
J J

4. Sx(x(1), x(2), ..., ®(n)) is invariant under permutations
of the sequence x(1), x(2), ..., x(n).
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Lemma 8.3.2

VT [ Su(b)db
S, = kl;[lb(k)%(k) =B b

where

Su(b) = T[ 67 (i).

S, = Wealth from universal portfolio is the average of S, (b)
over the simplex.
Proof:

Recall that

. Sk+1(b)db
bk + 1)k 4 1) = S 21 (Db
(k+1) z(k+1) TS (b)db
Telescoping the products
S, = TIb(k) (k)
k=1
S, [ S, (b)db
= T Sab)db 7 db
_ J Sa(b)db
B [ db
_ fB H?:l bT[E(Z)db
s b
= [E Sn(b) = EanW(b’Fn).
Corollary 8.3.3 5, (z(1), ©(2), ..., x(n)) is invariant under
permutations of the sequence (1), x(2), ..., x(n).
Claim |
EbW(b, Fn) Z —_— Z W(ej, Fn)
m =

EW(b,F,) = E / lg(bT2) dF, ()
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- Eb/ngbj(e]Tx) dF,(z)
> Ebej/lg(e]Tx) dF,(x)
= %Z/lg(e]rx)an(x)

= i Z W(ej, Fn)

m
By Jensen’s inequality
E, oW b)) s onkyW(b.Fn)
> gU/mY nWi(e; k)
> (HQnW(eJ,Fn))l/m‘
Thus
Sn = EbSn(b) — EanW(b,Fn)

Y

m Hm
(HQnW(eJ’Fn))l/m > (H Sn(ej)) ’
j=1

Corollary 8.3.4 Universal portfolio exceeds Value Line indez.
m 1/m
Sp > (H Sn(ej)) .
7=1

8.4 Competitiveness

F.(x) = Empirical probability mass function. Mass on each
x(i) € Ry is £

Y

Su(b) = JIbTa(i)=27W0I) = VFn)
=1

b*(F,) =0 = argmaxS,(b) = argmaxV(b, F},) € RY.

S = max S, (b) = "V (F),
beB
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Definition 8.4.1 All stocks are active at time n, if

Forssn)=s3 Viet.m) (07(F2)); > 0.

All stocks are strictly active at time n, if

Vi, (b%)=s% Vieqt.m] (0°(Fn)); > 0.

If
Lin (z(1),2(2),...,2(n)) =R™,
then we say that the price relatives x(1), x(2), ..., (n) are of
full rank.

J(b)= (m—1) x (m—1) matrix .

J(b) = Sensitivity Matrix Function of a market with respect to
distribution F'(x), = € RY.

J* = J(b*) = Sensitivity Matrix.

Je PV b 1 = T, )
i

ab; b,

= Positive Semidefinite Matrix.
It is positive definite if all stocks are strictly active.

Let
C = {(CI,CQ,...,cm_l) e >0,> ¢ < 1}.
Define o
b(c) = (cl,...,cm_l,l — Z: c)
Thus .
Vi(c) = %ﬁ;ln(b(c)Tx(i)) - / In(bT) dF,(z) = Ep, In(bTz).
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Using Taylor series expansion:

Vile) = V(&) + (e — c*)TVVn(c*)

1
— o= i(e— )

FE 2l e )=
(2() = 2(m)(2(4) — 2(m))(w(k) — 2(m)
@)

xEp,
where
¢ = A+ (1—=Xe, A>0,
S(e) = 721 b(¢); X (7).
Assume that all stocks are strictly active:

2
L o°V
8c2»8cj

] = positive definite.

Hence its determinant is strictly positive:
|.J*| > 0.

Let u = y/n(c — ¢*). Then since the second term is 0 in the
Taylor series formulation, we have

1
nVo,(e) = nV*(F,) — §uTJ;u

1
+ m Z UiU;UE

g, o) = a(m)(a(G) = o)) a(k) = afm))
" S90)

Next assume that 0 < a < (1) < ¢ < 0.

Se)>a, x(i)—x(m) < 2
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Thus the last term in the preceding expression can be bounded
by

1 2¢)?
_ HuH3m3/2( C) )
6/n a?

Hence, we have

1 4m3/2e3

nV,(c) = nV*(Fn)—ﬁuTJ;u— NG

el

We thus conclude that
S,(c) = 9nWa(e) > (Vi) = (" T u/2) = (4m> 12|l /3\/na)

_ *
= Sre

—(u" T/ 2) = (4m3 12 ||ul|* /3+/ma®)

Since S, = [ S, (b)db/ [ db, and since [db =1/(m — 1)}, we
have

A * 3/2.3 3 3 1 m-l
&Zﬁmqﬂ/eﬂ%WHm”Wmﬁ”&a du.

uelU

Thus,
o e tm = DT/
n WAL
In other words,
L Sy 1 PARE 0
n 8% T 0 S m = Dl T AT e
Summarizing, we have
1 1. 4
—lg S, ~ —lgs5,
n n
Ve o~ V..

n
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Chapter 9

Portfolios and Markets

9.1 Portfolio Theory

9.1.1 Ito Calculus

X = asset price at time ¢. In a continuous time model, one can
study the return on the asset dX/X over a small period of time
dt.

dX

This is a so-called It6 process.

@ = average rate of growth: DRIFT
o = volatility: DIFFUSION

9.1.2 Market Model

Assume that there are m stocks, represented by m It6 processes:
Xl(t)v X2(2)7 te 7Xm(t)‘

Furthermore,

dX;

X = M dt + ZO‘Z']‘ dZ]‘,

i=1
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Here, Z;’s are independent Brownian motions.

H1

p = Drift Vector = /“L:Q

Hm
o1l Ol2 +° Oim
o = Diffusion Matrix = 021 022 " Oo2m
Omi Om2 - Omm

Y = Instantaneous Covariance Matrix = o o’.

In general, the term dZ corresponds to a Wiener Process.

e d/ = Normal Random Variable.

o d/ ~ N(O \/_) Mean of d7 is zero and variance of dZ
is dt.

dZ = ¢Vdi,  El¢]=0,  E[¢"]=1
This holds in continuous time in the limit as dt — 0.

Lemma 9.1.1 It6’s Lemma [Analogous to Taylor’s theorem
in case of functions of random variables. The key ideas is based
on the observation that with probability 1, dZ? — dt as dt — 0.]

Suppose f(X) is a function of X (where X is possibly stochas-
tic).

af Pl
df = aXalX + 58)(2 dX* + smaller order terms
dx? = (Mth—I—O‘XdZ)

= o*X?%d7* + ZUMXZdZdt + /,L2X2dt2
— o2 X%dt  asdt — 0

_9f L 242 0°f

I = SuXdi4oXdZ) + 50X S st
_ af 22 82f of
B (’“‘Xax+ 7N xE) X
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Example
dyX =updt+odZ
Let f(X)=1InX. Then

2
a1 P 1

X X’ ox? X2
af 10°f
df = —dX + — dX?
I = ox™N*3axe
dX 1,
= X _QXQUth
2
— d_X_U_dt
X 2
dX o?
dln X) = — — —di
(In X) % T3
dX

0.2
~ = d0nX)+ i

o X 0

th 1 1 1
“ /d(lnX)—|—§/ o2dt
0

1 t
- 1nX(t)—1nX(0)—|—§/ oldt
0

o[} - (2 [ )

9.2 Rebalanced Portfolio

Market Model with m stocks:

©Mishra 1998
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A portfolio of long stocks at time ¢ is identified by its weighted
vector process b(t) € B.

=1

Rebalanced Portfolio
(A self-financing portfolio without dividends).

dS(t) m dXi(1)
Sty ;bi(t) X:(t)
= ibi(t)/«%(t)) dt + (f Z:bi(t)Uij(t)de) .

Let g(S) =1nS and f(X) =Y bIn X; = In[] X/

dg = % — 2%(#25)5%
% = d(InS) + %(bTEb)dt
df = Zbidj(? = ;TE(biZii)XEdt
Zbi?i = dX biln X;) + %ZbiZﬁdt
Hence
d(lnS) = d(3 biInX;)— %bTZbdt + %ZbiZﬁdt
n 2 5(*20[))) = Y bln j((((é; — %bTAb + %me,

where A = [ X(s)ds.

S(1:6) = S(0) [T (j((((é)))b exp {—%bTAb + %ZA”@} .

=1
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Maximizing the above expression we have

S*(t) = max S(t;b) = S(t;6%(¢))

beB

Note that b*(¢) = optimal solution of the following quadratic
programming problem:

Xi(t)
X;(0)

1 7 1
rgleaBX—ﬁb Ab + ; (ln + 5/\“) b;.

Define the matrix V, an (m—1) x (m —1) symmetric positive
semidefinite matrix

V:(‘/Z) ‘/”:/\”—/\Zm—/\]m—l—/\mm7 1§@7]§m

Lemma 9.2.1 If V = positive definite then the portfolio prob-
lem has a unique optimal solution.

Definition 9.2.1 A stochastic process X(t) is weakly regular

of
Y, |B[X(1)]] < co.

BIX()]
t

lim

=0 exists

X(t
¥ — 0 in probability as t — oo.

The stock market model is weakly regular (easily satisfied if
the market is stationary)

YV, |E[A(@)]] < 0o, & |E[lnX(1)]] < oo,

limM =¥ & limw =n> exist
At In X (¢
Q - ¥> & n X(t) — 1™ in probability as ¢ — oo.

t
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Note that
dX;
X = /,Lidt + Z O'Z']‘dZ]‘
dX;, dX?
dln X;) = L :
(In ;) X, 2x?
Yis
= (/,LZ — 5 ) dt + ZO‘ide]‘
Thus
= pne 4+ Z_Zo
Similarly,
dS

S = sz/,bzdt —|— ZZbZUZ]dZ]
1
d(lnS) = (bT,,L - 51#25) dt+ 33 bioyd?,
t 2
Asymptotically optimal constant weight 6> € B.

r(b) = lim

0o\ _ 1 Txv00 T oo
r(b )—rgleanr(b)—rgleaBX—ﬁb Yb 4+ b p.

9.2.1 Optimal Portfolio
Recall

S(1:6) = S(0) [T (j((((é)))b exp {—%bTAb + %ZA”@} .

=1

Vii(t) = Aij — Mo — Njo + A
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Notation:
b=(b,b,) b, +---+0b _,+b,=1, b >0,0b,>0.
Rewriting the previous equation, we have

X (1)
X (0)

S(t:b) = S(0) @m{—%HTVH—ATH}.

The above value S(t;b) is maximized at ' = 3*

and

9.2.2 Long Term Effects

Vi = Ay =N =N A A | V()
Jo= Mo —wee gy

)

o Xt _ X (¢ _ Vi@
b= (3) - (5)
VOF My TN T Ai(t)
o Xy co _ Xy im = —

R T lim = i

= gy — 47+ X5
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Since
1
r(b) = —§sz°% + bT
1
_ __b/T oob/_ b/T 00
2 J ’
it 1s maximized at
ﬁoo — _(Joo)—l,yoo
Note, however, that
. VIO (A I
== () (M) = — -

Problem: Construction of b> requires the long-term average
of future instantaneous expected returns and covariances. This
however is impossible.

Remedy: Universal Portfolio

9.3 Universal Portfolio

Rebalanced portfolio with weights:
Z;Z(t) _ /5 biS(t;b)db‘
f5 S(t;b)db

Let
o Jn S
 [ydb
Note that )
S(0) = S(0).
Furthermore,
dS [dS(tib)db  f5 5 S(t;0)bi(dX:/Xi)db
S JpS(tb)dd [ S(t;b)db
~ o dX;
_dS
S
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Hence,
Lemma 9.3.1 The wealth accumulated by a universal portfolio
is given by
A f5 S(t;b)db

S =2

This is the average wealth accumulated by all possible portfolios.

9.3.1 Competitiveness

S(t;b) = S (t)e"z¢=FITVE=5")
Let z = Vl/z(t)(b’ — b™). Thus

A(t) = VI2()(B' = ),

where
B = {b’ ER™|b >0, b < 1}.
Note that |
1 (B)= ——.
Vol (B) = 10—,
We have

S7(1) Jagy €12 da

S0 = oG

Sty (m =)y e P2y

S=(t) (‘M‘)I/th—wz

t

(m — l(v/27)"!

|Joo|1/2tm—1/2

_ (m—1)! (2#)”1_1/2‘

| Joo|1/2 N
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Thus,

and
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S(t)  C(m)—C'(m)Int
—In 20 ; — 0
InS(t)  InS*(t)  InS(t;b>)
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