Shrinkage-Based Similarity Metric for Cluster Analysis of Microarray Data

Vera Cherepinsky¹

(with Jiawu Feng¹, Marc Rejali¹, and Bud Mishra^{1,2})
 ¹ Courant Institute of Mathematical Sciences, NYU
 ² Watson School of Biological Sciences, CSHL

Yale University April 1, 2003

Transcriptional State of a Cell

4-1-2003

©Vera Cherepinsky, 2003

1

Transcriptional State of a Cell

- Transcriptional state of a cell can be characterized by detecting and quantitating gene expression levels:
 - Northern blots
 - S1 nuclease protection
 - differential display
 - sequencing of cDNA libraries
 - serial analysis of gene expression (cDNA)
 - Array based technologies:
 - ◊ spotted arrays

4-1-2003

◊ oligonucleotide arrays

Gene Expression Data

- \Diamond Microarrays enable one to simultaneously measure the activity of up to 30,000 ($\sim 10^4 \text{--} 10^5$) genes.
- In particular, the amount of mRNA for each gene in a given sample (or a pair of samples) can be measured.

Spotted Arrays

4-1-2003

©Vera Cherepinsky, 2003

Spotted Arrays

Two samples (reference and test) of mRNA are converted to cDNA, labeled with fluorochrome dyes and allowed to hybridize to the array.

Cluster Analysis

Cluster Analysis

Proc. Natl. Acad. Sci. USA Vol. 95, pp. 14863–14868, December 1998 Genetics

Cluster analysis and display of genome-wide expression patterns

MICHAEL B. EISEN*, PAUL T. SPELLMAN*, PATRICK O. BROWN⁺, AND DAVID BOTSTEIN*⁺

*Department of Genetics and [†]Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, 300 Pasteur Avenue, Stanford, CA 94305

Contributed by David Botstein, October 13, 1998

In the above, Eisen *et al.* claim to use "standard statistical algorithms to arrange genes according to similarity in pattern of gene expression."

Distances & Correlations

Let G_i equal the (log-transformed) primary data for gene G in condition i. For any two genes X and Y observed over a series of N conditions, we can compute a similarity score as follows:

$$S(X,Y) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{X_i - X_{offset}}{\Phi_X} \right) \left(\frac{Y_i - Y_{offset}}{\Phi_Y} \right), \tag{1}$$

where

4-1-2003

$$\Phi_G = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(G_i - G_{offset}\right)^2}$$

Let
$$G_{offset} = \gamma \overline{G}$$
.

©Vera Cherepinsky, 2003

Metric Comparison

◊ Pearson Correlation Coefficient:

$$G_{offset} = \bar{G} = \frac{1}{N} \sum_{j=1}^{N} G_i, \quad \text{or} \quad \gamma = 1$$

$$\diamond$$
 Eisen: (prone to False Positives)

 $G_{offset} = 0$ for every gene G, or $\gamma = 0$

◊ We propose using the general form of equation (1) to derive a similarity metric which is dictated by the data and reduces the occurrence of falsepositives (relative to the Eisen metric) and false-negatives (relative to the Pearson correlation coefficient).

Shrinkage Metric: Result

$$S(X_j, X_k) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{X_{ij} - (X_j)_{offset}}{\Phi_j} \right) \left(\frac{X_{ik} - (X_k)_{offset}}{\Phi_k} \right),$$

where

$$(X_{j})_{offset} = \widehat{\theta}_{j}$$

$$= \left(1 - \frac{\widehat{1}}{\frac{\beta^{2}}{N} + \tau^{2}} \frac{\widehat{\beta}^{2}}{N}\right) Y_{j}$$

$$= \underbrace{\left(1 - \left(\frac{M - 2}{\sum_{k=1}^{M} Y_{k}^{2}}\right) \cdot \frac{1}{N} \cdot \frac{1}{M(N-1)} \sum_{k=1}^{M} \sum_{i=1}^{N} (X_{ik} - Y_{k})^{2}\right)}_{\gamma} Y_{j} \qquad (2)$$

$$= \gamma \overline{X}_{\cdot j}$$

and $Y_j = \overline{X}_{\cdot j}$.

©Vera Cherepinsky, 2003

10

Simulation

Simulation

 \Diamond Simulation Model:

- Random Variables: X_i and Y_i :

 $X_i = \theta_X + \sigma_X(\alpha_i(X, Y) + \mathcal{N}(0, 1))$ $Y_i = \theta_Y + \sigma_Y(\alpha_i(X, Y) + \mathcal{N}(0, 1))$

- $\theta_X \sim \mathcal{N}(0, \tau^2)$; $\theta_Y \sim \mathcal{N}(0, \tau^2)$ are the means,

 $-\alpha_i \sim \text{Uniform}(L, H)$ - Bias term (or $\alpha_i = 0$ for no bias).

$$\Diamond S(X,Y) = \frac{1}{N} \sum_{i=1}^{N} \frac{(X_i - \theta_X)(Y_i - \theta_Y)}{\sigma_X} = \frac{1}{N} \left[\left(\sum_i \alpha_i^2 \right) + \chi_N^2 + 2\mathcal{N}(0,1) \sum_i \alpha_i \right]$$

12

$$- N =$$
 Number of Experiments $= 100$.

4-1-2003 ©Vera Cherepinsky, 2003

Key Parameters

 $\Diamond N =$ Number of Experiments = 100

♦ $\tau \in \{0.1, 10.0\}$ ← Very low or very high variability among the genes

$$\circ \sigma_X = \sigma_Y = 10.0$$

 $\begin{array}{l} \Diamond \ \alpha = 0 (\sim \mathcal{U}(0,0)) \ \leftarrow \ \text{no correlation or} \\ \alpha \sim \mathcal{U}(0,1) \ \leftarrow \ \text{some correlation between the genes.} \end{array}$

4-1-2003 ©Vera Cherepinsky, 2003

Key Methods

(*Clairvoyant Metric Parameters*)

$$S[X_{1-}, X_{2-}] := \frac{1}{NExpt} \left(\frac{X_1 - \theta_1}{\sigma_1} \cdot \frac{X_2 - \theta_2}{\sigma_2} \right);$$

(*Pearson Metric Parameters*)

$$\mu_1 = \text{Mean}[X_1]; \ \mu_2 = \text{Mean}[X_2];$$

 $\beta_1 = \sqrt{\frac{(X_1 - \mu_1).(X_1 - \mu_1)}{NExpt - 1}};$
 $\beta_2 = \sqrt{\frac{(X_2 - \mu_2).(X_2 - \mu_2)}{NExpt - 1}};$
 $S_p[X_{1-}, X_{2-}] := \frac{1}{NExpt - 1} \left(\frac{X_1 - \mu_1}{\beta_1} \cdot \frac{X_2 - \mu_2}{\beta_2} \right);$

(*Shrinkage Metric Parameters*)

$$ms_{1} = \left(1 - \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \tau^{2}NExpt}\right)\mu_{1};$$

$$ms_{2} = \left(1 - \frac{\sigma_{2}^{2}}{\sigma_{2}^{2} + \tau^{2}NExpt}\right)\mu_{2};$$

$$bs_{1} = \sqrt{\frac{(X_{1} - ms_{1}).(X_{1} - ms_{1})}{NExpt - 1}};$$

$$bs_{2} = \sqrt{\frac{(X_{2} - ms_{2}).(X_{2} - ms_{2})}{NExpt - 1}};$$

$$S_{s}[X_{1-}, X_{2-}] :=$$

$$\frac{1}{NExpt - 1}\left(\frac{X_{1} - ms_{1}}{bs_{1}} \cdot \frac{X_{2} - ms_{2}}{bs_{2}}\right);$$

(*Eisen Metric Parameters*)

$$me_1 = me_2 = 0;$$

 $be_1 = \sqrt{\frac{(X_1 - me_1).(X_1 - me_1)}{NExpt - 1}};$
 $be_2 = \sqrt{\frac{(X_2 - me_2).(X_2 - me_2)}{NExpt - 1}};$
 $S_e[X_{1-}, X_{2-}] := \frac{1}{NExpt - 1} \left(\frac{X_1 - me_1}{be_1} \cdot \frac{X_2 - me_2}{be_2} \right);$

4-1-2003

©Vera Cherepinsky, 2003

Experiment 1

- 1a. When X and Y are not correlated and the noise in the input is low, Pearson does as well as Eisen or Shrinkage:
- $\tau = 0.1;$
- $\alpha = 0;$
- NExpt = 100;
- $\sigma_X = \sigma_Y = 10;$

©Vera Cherepinsky, 2003

Uncorrelated Genes

 \Diamond If two genes are uncorrelated,

 \Diamond and their "base-level values do not vary much"

All the methods do equally well

◊ True Negatives

Experiment 2

1b. When X and Y are not correlated but the noise in the input is high, Eisen does much more poorly:

- $\alpha = 0;$
- NExpt = 100;
- $\sigma_X = \sigma_Y = 10;$

©Vera Cherepinsky, 2003

Uncorrelated Genes

 \Diamond If two genes are uncorrelated,

 \Diamond and their "base-level values vary quite a bit"

All the methods except Eisen *et al.* do equally well

◊ False-Positives for Eisen

4-1-2003

Experiment 3

- 2a. When X and
 Y are correlated
 and the noise in
 the input is low,
 Pearson does
 worse than Eisen
 or Shrinkage:
- $\tau = 0.1;$
- $\alpha \sim \mathcal{U}(0,1);$
- NExpt = 100;
- $\sigma_X = \sigma_Y = 10;$

©Vera Cherepinsky, 2003

4-1-2003

Correlated Genes

 \Diamond If two genes are correlated,

 \Diamond and their "base-level values do not vary much"

All the methods except Pearson's do equally well

♦ False-Negatives for Pearson

4-1-2003

©Vera Cherepinsky, 2003

Experiment 4

- 2b. When X and Y are correlated and the noise in the input is high, all algorithms fail, i.e., introduce errors:
- $\tau = 10;$
- $\alpha \sim \mathcal{U}(0,1);$
- NExpt = 100;
- $\sigma_X = \sigma_Y = 10;$

©Vera Cherepinsky, 2003

4-1-2003

Correlated Genes

 \Diamond If two genes are correlated,

 \Diamond and their "base-level values vary quite a bit"

– All the methods do equally poorly

◊ False-Negatives

◊ (Eisen may also have some False-Positives.)

4-1-2003 ©Vera Cherepinsky, 2003

Histogram Comparison

4-1-2003

©Vera Cherepinsky, 2003

Summary

	Uncorrelated/ Small Variance	Uncorrelated/ Large Variance	Correlated/ Small Variance	Correlated/ Large Variance
Pearson	OK	OK	False Negatives	False
Eisen	OK	False Positives	OK	False
Shrinkage	OK	OK	OK	False

Yeast Cell Cycle

Yeast Cell Cycle

©Vera Cherepinsky, 2003

Clusters based on Transcriptional Activators

Reduced table of targets of cell cycle activators, based on the availability of genes in our data set.

	Activators	Genes	Functions
1	Swi4, Swi6	Cln1, Cln2, Gic1, Gic2, Msb2, Rsr1, Bud9, Mnn1, Och1, Exg1, Kre6, Cwp1	Budding
2	Swi6, Mbp1	Clb5, Clb6, Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45, Mcm2	DNA replication and repair
3	Swi4, Swi6	Htb1, Htb2, Hta1, Hta2, Hta3, Hho1	Chromatin
4	Fkh1	Hhf1, Hht1, Tel2, Arp7	Chromatin
5	Fkh1	Tem1	Mitosis Control
6	Ndd1, Fkh2, Mcm1	Clb2, Ace2, Swi5, Cdc20	Mitosis Control
7	Ace2, Swi5	Cts1, Egt2	Cytokinesis
8	Mcm1	Mcm3, Mcm6, Cdc6, Cdc46	Pre-replication com- plex formation
9	Mcm1	Ste2, Far1	Mating

Clustering Method used for Yeast Data

Hierarchical clustering pseudocode

Given
$$\{\{X_{ij}\}_{i=1}^{N}\}_{j=1}^{M}$$
:
Switch:
Pearson: $\gamma = 1$;
Eisen: $\gamma = 0$;
Shrinkage: $\{$
Compute $W = (M-2) \left/ \sum_{j=1}^{M} \overline{X}_{\cdot j}^{2} \right|$
Compute $\widehat{\beta}^{2} = \sum_{j=1}^{M} \sum_{i=1}^{N} (X_{ij} - \overline{X}_{\cdot j})^{2} \right/ (M(N-1))$
 $\gamma = 1 - W \cdot \widehat{\beta}^{2}/N$

While (# clusters > 1) do \diamond Compute similarity table: $S(G_j, G_k) = \frac{\sum_i (G_{ij} - (G_j)_{offset}) (G_{ik} - (G_k)_{offset})}{\sqrt{\sum_i (G_{ij} - (G_j)_{offset})^2} \cdot \sum_i (G_{ik} - (G_k)_{offset})^2}},$ where $(G_\ell)_{offset} = \gamma \overline{G}_\ell.$ \diamond Find (j^*, k^*) : $S(G_{j^*}, G_{k^*}) \ge S(G_j, G_k)$ \forall clusters j, k \diamond Create new cluster $N_{j^*k^*}$ = weighted average of G_{j^*} and $G_{k^*}.$ \diamond Take out clusters j^* and k^* .

Clusters based on Eisen et al.

RN Subsampled Data, Eisen clusters ($\gamma = 0.0$)				
E58	Swi4/Swi6 Cln1, Och1			
E68	Swi4/Swi6 Cln2, Msb2, Rsr1, Bud9, Mnn1, Exg1			
	Swi6/Mbp1 Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45, Mcm			
	Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1			
	Fkh1 Hhf1, Hht1, Arp7			
	Fkh1 Tem1			
	Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5			
	Ace2/Swi5 Egt2			
	Mcm1	Mcm3, Mcm6, Cdc6		
E29	Swi4/Swi6	Gic1		
E64	Swi4/Swi6	Gic2		
E33	Swi4/Swi6	Kre6, Cwp1		
	Swi6/Mbp1	Clb5, Clb6		
	Swi4/Swi6	Hta3		
	Ndd1/Fkh2/Mcm1	Cdc20		
	Mcm1	Cdc46		
E73	Fkh1	Tel2		
E23	Ace2/Swi5	Cts1		
E43	Mcm1	Ste2		
E66	Mcm1	Far1		

4-1-2003

Clusters based on Pearson

RN Subsampled Data, Pearson clusters ($\gamma = 1.0$)				
P1	Swi4/Swi6	Cln1, Och1		
P15	Swi4/Swi6	Cln2, Rsr1, Mnn1		
	Swi6/Mbp1	Cdc21, Dun1, Rad51, Cdc45, Mcm2		
	Mcm1	Mcm3		
P29	Swi4/Swi6	Gic1		
P2	Swi4/Swi6	Gic2		
P3	Swi4/Swi6	Msb2, Exg1		
	Swi6/Mbp1	Rnr1		
P51	Swi4/Swi6	Bud9		
	Ndd1/Fkh2/Mcm1	Clb2, Ace2, Swi5		
	Ace2/Swi5	Egt2		
	Mcm1	Cdc6		
P11	Swi4/Swi6	Kre6		
P62	Swi4/Swi6	Cwp1		
	Swi6/Mbp1	Clb5, Clb6		
	Swi4/Swi6	Hta3		
	Ndd1/Fkh2/Mcm1	Cdc20		
	Mcm1	Cdc46		
P49	Swi6/Mbp1	Rad27		
	Swi4/Swi6	Htb1, Htb2, Hta1, Hta2, Hho1		
	Fkh1	Hhf1, Hht1		
P10	Fkh1	Tel2		
	Mcm1	Mcm6		
P23	Fkh1	Arp7		
P50	Fkh1	Tem1		
P69	Ace2/Swi5	Cts1		
P42	Mcm1	Ste2		
P13	Mcm1	Far1		

Clusters based on Shrinkage

RN Subsampled Data, Shrinkage clusters (here, $\gamma = 0.66$)				
S49	Swi4/Swi6	Cln1, Bud9, Och1		
	Ace2/Swi5	Egt2		
	Mcm1	Cdc6		
S6	Swi4/Swi6	Cln2, Gic2, Msb2, Rsr1, Mnn1, Exg1		
	Swi6/Mbp1	Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45		
S32	Swi4/Swi6	Gic1		
S65	Swi4/Swi6	Kre6, Cwp1		
	Swi6/Mbp1	Clb5, Clb6		
	Fkh1	Tel2		
	Ndd1/Fkh2/Mcm1	Cdc20		
	Mcm1	Cdc46		
S15	Swi6/Mbp1	Mcm2		
	Mcm1	Mcm3		
S11	Swi4/Swi6	Htb1, Htb2, Hta1, Hta2, Hho1		
	Fkh1	Hhf1, Hht1		
S60	Swi4/Swi6	Hta3		
S30	Fkh1	Arp7		
	Ndd1/Fkh2/Mcm1	Clb2, Ace2, Swi5		
S62	Fkh1	Tem1		
S53	Ace2/Swi5	Cts1		
S14	Mcm1	Мстб		
S35	Mcm1	Ste2		
S36	Mcm1	Far1		

4-1-2003

Comparison of Results

Hypothesis: Genes expressed during the same cell cycle stage, and regulated by the same transcriptional activators should be in the same cluster.

Deviations from hypothesis: Possible False Positives:

- Bud9(1) + Egt2(7) + Cdc6(8): in E68, P51, and S49.
- Mcm2(2) + Mcm3(8): in E68, P15, and S15.
- {Cln2, Rsr1, Mnn1}(1) + {Cdc21, Dun1, Rad51, Cdc45}(2): in E68, P15, and S6.
- {Htb1, Htb2, Hta1, Hta2, Hho1}(3) + {Hhf1, Hht1}(4): in E68, P49, and S11.
- In addition, E68 also contains Tem1(5) and {Clb5, Ace2, Swi5}(6).

Possible False Negatives: Group 1 (Budding) is split into

- 5 clusters by Eisen,
- 8 clusters by Pearson, and
- 4 clusters by Shrinkage.

Notation for Cluster comparison

 \Diamond Each cluster set can be written as follows:

$$\left\{x \to \{\{y_1, z_1\}, \{y_2, z_2\}, \dots, \{y_{n_x}, z_{n_x}\}\}\right\}_{x=1}^{\# \text{ of groups}}$$

 $-\ x$ denotes the group number,

 $- n_x$ is the number of clusters group x appears in, and

- for each cluster $j \in \{1, \ldots, n_x\}$ there are

 $\diamond y_j$ genes from group x and

 $\diamond z_j$ genes from other groups.

Eisen, Shrinkage, and Pearson clusters in Set Notation

$\gamma = 0$	$.0(E) \Longrightarrow$	γ	= 0	$.66(S) \Longrightarrow$	γ	= 1	$.0(P) \Longrightarrow$
$igg\{1 ightarrow$	$\{\{6,23\},\{2,0\},$	$\left\{ 1\right.$	\rightarrow	$\{\{6,6\},\{3,2\},$	{1	\rightarrow	$\{\{3,6\},\{2,0\},\{2,1\},$
	$\{2,5\},\{1,0\},\{1,0\}\},$			$\{2,5\},\{1,0\}\},$			$\{1,0\},\{1,0\},\{1,0\},$
							$\{1,5\},\{1,5\}\},$
$2 \rightarrow$	$\{\{7,22\},\{2,5\}\},$	2	\rightarrow	$\{\{6,6\},\{2,5\},\{1,1\}\},\$	2	\rightarrow	$\{\{5,4\},\{2,4\},$
							$\{1,2\},\{1,7\}\},$
$3 \rightarrow$	$\{\{5,24\},\{1,6\}\},$	3	\rightarrow	$\{\{5,2\},\{1,0\}\},$	3	\rightarrow	$\{\{5,3\},\{1,5\}\},\$
$4 \rightarrow$	$\{\{3,26\},\{1,0\}\},$	4	\rightarrow	$\{\{2,5\},\{1,3\},\{1,6\}\},$	4	\rightarrow	$\{\{2,6\},\{1,0\},\{1,1\}\},$
$5 \rightarrow$	$\{\{1, 28\}\},\$	5	\rightarrow	$\{\{1,0\}\},\$	5	\rightarrow	$\{\{1,0\}\},\$
$6 \rightarrow$	$\{\{3,26\},\{1,6\}\},$	6	\rightarrow	$\{\{3,1\},\{1,6\}\},$	6	\rightarrow	$\{\{3,3\},\{1,5\}\},$
$7 \rightarrow$	$\{\{1,0\},\{1,28\}\},$	7	\rightarrow	$\{\{1,0\},\{1,4\}\},$	7	\rightarrow	$\{\{1,0\},\{1,5\}\},$
8 →	$\{\{3,26\},\{1,6\}\},$	8	\rightarrow	$\{\{1,0\},\{1,1\},$	8	\rightarrow	$\{\{1,1\},\{1,5\},$
				$\{1,4\},\{1,6\}\},$			$\{1,5\},\{1,8\}\},$
9 \rightarrow	$\{\{1,0\},\{1,0\}\}\Big\}$	9	\rightarrow	$\{\{1,0\},\{1,0\}\}\Big\}\Big\}$	9	\rightarrow	$\{\{1,0\},\{1,0\}\}\Big\}\Big\}$

4-1-2003

©Vera Cherepinsky, 2003

36

Scoring Function

 \Diamond Each cluster set can be scored according to:

$$\begin{aligned} \mathsf{FP}(\gamma) &= \frac{1}{2} \sum_{x} \sum_{j=1}^{n_x} y_j \cdot z_j \\ \mathsf{FN}(\gamma) &= \sum_{x} \sum_{1 \le j < k \le n_x} y_j \cdot y_k \\ \mathsf{Error_score}(\gamma) &= \mathsf{FP}(\gamma) + \mathsf{FN}(\gamma) \end{aligned}$$

 \Diamond For previously listed cluster sets:

- Error_score(0.0) = 370 + 79 = 449 (Eisen)
- $Error_score(0.66) = 76 + 88 = 164$ (Shrinkage)
- $Error_score(1.0) = 69 + 107 = 176$ (Pearson)

Choice of Cut-off Threshold

A Receiver Operator Characteristic (ROC) curve plots sensitivity against (1–specificity), with the curve parametrized by the cutoff threshold in the range of [-1, 1]. Here,

Sensitivity = fraction of positives detected by a metric $= \frac{\mathsf{TP}(\gamma)}{\mathsf{TP}(\gamma) + \mathsf{FN}(\gamma)},$

Specificity = fraction of negatives detected by a metric = $\frac{TN(\gamma)}{TN(\gamma) + FP(\gamma)}$,

4-1-2003

ROC Definitions (cont'd)

 $TP(\gamma)$, $FN(\gamma)$, $FP(\gamma)$, and $TN(\gamma)$ denote the number of True Positives, False Negatives, False Positives, and True Negatives, respectively, arising from a metric associated with a given γ .

• $FP(\gamma)$ and $FN(\gamma)$ defined under scoring function

• TP(
$$\gamma$$
) = $\sum_{x} \sum_{j=1}^{n_x} {y_j \choose 2}$

- $TN(\gamma) = Total (TP(\gamma) + FN(\gamma) + FP(\gamma))$
- Total= $\binom{44}{2}$ = 946 is the total # of gene pairs $\{j,k\}$ in Transcriptional Activator table.

ROC Curves

40

4-1-2003

FP count as a function of threshold

4-1-2003

©Vera Cherepinsky, 2003

FN count as a function of threshold

4-1-2003

©Vera Cherepinsky, 2003

References

 \Diamond Full technical report:

Cherepinsky, V., Feng, J., Rejali, M., and Mishra, B. (2003) (to be published on NCSTRL, PDF available for download from http://www.cs.nyu.edu/cs/faculty/mishra/)

- Yeast cell cycle Transcriptional Activators data:
 Simon, I. *et al.* (2001), *Cell* **106**, 697–708.
- Stein Estimation a recent review:
 Hoffman, K. (2000), *Statistical Papers*, **41(2)**, 127–158.

Derivation

Pearson Correlation Coefficient

 \Diamond Random Variables: X & Y

$$- X = (X_1, \dots, X_N) = \{X_i\}_{i=1}^N; \quad \mu_X = \left(\sum_i X_i\right) / N; \quad \sigma_X^2 = \left(\sum_i (X_i - \mu_X)^2\right) / N \\ - Y = (Y_1, \dots, Y_N) = \{Y_i\}_{i=1}^N; \quad \mu_Y = \left(\sum_i Y_i\right) / N; \quad \sigma_Y^2 = \left(\sum_i (Y_i - \mu_Y)^2\right) / N$$

 $\Diamond S(X,Y) = \frac{1}{N} \sum_{i} (X_i - \mu_X) (Y_i - \mu_Y) / (\sigma_X \sigma_Y) = \mathsf{R.V.}$

- $\Diamond S(X,Y) =$ Ratio of two χ^2 distributions, and hence an F distribution. Its variance depends on N.
 - Its statistical significance can be estimated from the distributions of $X \And Y$ and hence, it is a function of N.
 - For small values of N (e.g., 100), its statistical significance is poor.
 - Prior beliefs about μ_X and μ_Y can improve the reliability of S(X,Y). E.g., $\mu_X \approx 0$ and $\mu_Y \approx 0$.
- ♦ This argument suggests a Bayesian approach that accounts for prior knowledge.
- 4-1-2003 ©Vera Cherepinsky, 2003

Bayesian Analysis NYU SHRINK

Bayesian Approach

 \Diamond Given:

 $\left\{\left\{X_{ij}\right\}_{i=1}^{N}\right\}_{j=1}^{M}, \text{ where } M \gg N$

are data points.

$$- \ \left\{ X_{ij}
ight\}_{i=1}^N$$
 is a data vector for

- gene j (1 $\leq j \leq M$), corresponding to
- N experimental conditions: $1 \le i \le N$.

Prior Belief

 \Diamond A prior belief:

$$- \{X_{ij}\}_{i=1}^N \sim \mathcal{N}(\theta_j, \beta_j^2),$$

- where $\theta_j \sim \mathcal{N}(0, \tau^2)$.

$$\implies$$
 Prior distribution of θ_j is given by:

$$\pi(\theta_j) = \frac{1}{\sqrt{2\pi\tau}} \exp\left(-\theta_j^2 / 2\tau^2\right)$$

 \Diamond We wish to obtain the posterior distribution of θ_j , $\pi(\theta_j|X)$.

 \Diamond From the posterior distribution we compute $\mathbf{E}_X(\theta_j)$.

Bayes' Theorem

$$\Diamond \ p(\theta|y)p(y) = p(\theta, y) = p(\theta)p(y|\theta)$$

$$\Diamond p(\theta|y) = cp(y|\theta)p(\theta) \propto l(\theta|y)p(\theta) = f(\theta|y)$$

$$\Diamond \quad p(\theta|y) = f(\theta|y) \left/ \left[\int_{-\infty}^{\infty} f(\theta'|y) d\theta' \right] \right.$$

- where $f(\theta|y) \propto p(y|\theta)p(\theta)$

Combining a Normal Prior with a Normal Likelihood

- \Diamond Assume two random variables θ and y:
 - Assume their variances are known...(An assumption that will have to be relaxed subsequently.)
 - Suppose a priori θ is distributed as $\theta \sim \mathcal{N}(\theta_0, \sigma_0^2)$.

$$p(\theta) = \frac{1}{\sqrt{2\pi\sigma_0}} \exp\left[-\left((\theta - \theta_0)/\sigma_0\right)^2/2\right], \quad -\infty < \theta < \infty$$

– The likelihood function of θ is proportional to a normal function: $y\sim \mathcal{N}(\theta,\sigma_1{}^2)$

$$l(\theta|y) \propto \exp\left[-\left((\theta-x)/\sigma_1\right)^2/2\right],$$

where x is some function of the variable y.

4-1-2003 ©Vera Cherepinsky, 2003

Posterior Distribution

 \Diamond The posterior distribution of θ given the data y is

$$p(\theta|y) = p(\theta)l(\theta|y) \left/ \int_{-\infty}^{\infty} p(\theta')l(\theta'|y)d\theta' \right.$$
$$= \left. f(\theta|y) \right/ \int_{-\infty}^{\infty} f(\theta'|y)d\theta', \quad -\infty < \theta < \infty,$$

where

$$\frac{f(\theta|y) \propto p(\theta) \cdot l(\theta|y)}{\propto (1/\sqrt{2\pi}\sigma_0) \exp\left[-((\theta - \theta_0)/\sigma_0)^2/2\right] \times \exp\left[-((\theta - x)/\sigma_1)^2/2\right]}$$

51

 \Diamond Simplify...

$$f(\theta|y) = \exp\left[-\frac{1}{2}\{((\theta - \theta_0)/\sigma_0)^2 + ((\theta - x)/\sigma_1)^2\}\right]$$

4-1-2003 ©Vera Cherepinsky, 2003

Simplification

 \Diamond Now use the following identity:

$$A(z-a)^{2} + B(z-b)^{2} = (A+B)(z-c)^{2} + \frac{AB}{A+B}(a-b)^{2},$$

where

$$c = \frac{Aa + Bb}{A + B}$$

 \Diamond The critical parameter c is simply the weighted average of a and b with weights A and B, respectively.

Final Result

 \diamondsuit It follows that

$$\begin{split} [(\theta - \theta_0)/\sigma_0]^2 + [(\theta - x)/\sigma_1]^2 \\ &= \left(1/\sigma_0^2 + 1/\sigma_1^2\right)(\theta - \theta_X)^2 + \text{Terms independent of } \theta_{\dots} \end{split}$$

 \Diamond Thus

$$\theta_X = \left(\frac{\theta_0}{\sigma_0^2} + \frac{x}{\sigma_1^2} \right) / \left(\frac{1}{\sigma_0^2} + \frac{1}{\sigma_1^2} \right) \\ = \left(\frac{\sigma_1^2 \theta_0}{\sigma_0^2 + \sigma_0^2 x} \right) / \left(\frac{\sigma_1^2}{\sigma_1^2} + \frac{\sigma_0^2}{\sigma_0^2} \right)$$

 \diamond Since $\sigma_0^2 > 0$ and $\sigma_1^2 > 0$, we have $\theta_0 \le \theta_X \le x$.

- If $\sigma_0^2 \gg \sigma_1^2$ (there is more uncertainty in θ_0 than in x), then $\theta_X \approx x...$ In other words, if our observation is much better than our prior belief, then we put more weight on our observation.
- Conversely, if $\sigma_1^2 \gg \sigma_0^2$, then $\theta_X \approx \theta_0$. Put more trust in our prior beliefs than the observation.

Shrinking

$$\theta_X = \left(\theta_0 / \sigma_0^2 + x / \sigma_1^2\right) / \left(1 / \sigma_0^2 + 1 / \sigma_1^2\right) = \left(\sigma_1^2 \theta_0 + \sigma_0^2 x\right) / \left(\sigma_1^2 + \sigma_0^2\right)$$

 $\Diamond\,$ A simpler form

$$\theta_X = \left[1 - \left\{\sigma_1^2 / (\sigma_1^2 + \sigma_0^2)\right\} \{1 - \theta_0 / x\}\right] x$$

- \Diamond The observation x is "shrunk" towards the belief θ_0 .
- \Diamond The estimator swaps "bias" for "variance".

Recall our Model

 \Diamond Prior belief:

$$- \{X_{ij}\}_{i=1}^N \sim \mathcal{N}(\theta_j, \beta_j^2),$$

- where $\theta_j \sim \mathcal{N}(0, \tau^2)$.

$$\Diamond$$
 Thus $p(\theta_j | \{X_{ij}\}_{i=1}^N) \sim \mathcal{N}(\theta_{jX}, \sigma_{jX}^2)$

$$\theta_{jX} = \left[1 - (\beta_j^2/N)/(\beta_j^2/N + \tau^2)\right] \mathbf{E}[X_{j}]$$

$$\sigma_{jX}^2 = \beta_j^2/(N + \beta_j^2/\tau^2)$$

$$\Diamond S(X_j, X_k) = \frac{1}{N} \sum_i (X_{ij} - \theta_{jX}) (X_{ik} - \theta_{kX}) / (\sigma_{jX} \sigma_{kX})$$

4-1-2003 ©Vera Cherepinsky, 2003

James-Stein Estimator

 $\Diamond \ \theta_{jX} = \left[1 - (\beta_j^2/N)/(\beta_j^2/N + \tau^2)\right] \mathbf{E}[X_{\cdot j}]$

- But since neither β_j^2 nor τ^2 are known a priori, they have to be estimated.
- \Diamond Note that $\mathbf{E}[X_{j}] \sim \mathcal{N}(\theta_{j}, \beta_{j}^{2}/N)$, and hence

$$Q = \sum_{j=1}^{M} \mathbf{E}[X_{\cdot j}]^2 \sim \left(\tau^2 + \beta_j^2 / N\right) \chi_M^2$$

- Thus, $\mathbf{E}\left[(M-2)/\sum_{j=1}^{M} \mathbf{E}[X_{j}]^{2}\right]$ is an unbiased estimator for $1/(\beta_{j}^{2}/N + \tau^{2})$.

 \diamond Similarly: $S = \sum_{i=1}^{N} (X_{ij} - \mathbf{E}[X_{\cdot j}])^2 \sim \beta_j^2 \chi_N^2$.

- Thus, $E[S/N(N+2)] = \beta_j^2/N$.

James-Stein Estimator: Final Form

$$\theta_{jX} = \left[1 - \frac{M-2}{N(N+2)} \frac{S}{Q}\right] \mathbf{E}[X_{.j}]$$

where

$$S = \sum_{i=1}^{N} \left(X_{ij} - \mathbf{E}[X_{\cdot j}] \right)^2 \sim \beta_j^2 \chi_N^2$$
$$Q = \sum_{j=1}^{M} \mathbf{E}[X_{\cdot j}]^2 \sim \left(\tau^2 + \beta_j^2 / N \right) \chi_M^2$$

4-1-2003

©Vera Cherepinsky, 2003