
Lecture #6 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 6

Programming Languages • MISHRA 2008



Lecture #6 • 1

—Slide 1—

PASCAL
Aggregate Types

• Each element of an aggregate type is com-
posed of another type

• Sets

type foo: set of Mon .. Thu;

bar: set of shortweek;

—shortweekmust be a finite discrete prim-
itive type

• The base type can be any enumerated type,
subrange type, Boolean, Character or Inte-
ger
— But not Real

Programming Languages • MISHRA 2008



Lecture #6 • 2

—Slide 2—

Aggregate Types (Contd)

• In Pascal, sets are implemented by bit vec-
tors.

• Each element of the base type is represented
by a bit.

• You cannot have infinite bit vectors.
— The base type must be finite. — The
base type must be primitive
— The base type cannot be Real or another
aggregate type.

Programming Languages • MISHRA 2008



Lecture #6 • 3

—Slide 3—

Using Set Types: Example

var y, x, z: set of shortweek;

begin

z := [Tue, Thu];

x := [Mon, Wed];

y := x * z; (*Set Intersection*)

x := y + z; (*Set Union*)

...

end;

—Operations also include:
Set Difference -; Set Equality and Inequality =,
<>; Subset and Superset <=, >=

Programming Languages • MISHRA 2008



Lecture #6 • 4

—Slide 4—

Array Types

• Syntax

type <name> = array [ <finite-type> ]

of <type>

—Index Type: enumerated, subrange or fi-
nite primitive type
—Base Type: any type

• An array type is a homogeneous aggregate
type, since all entries are of the same type

• Pascal arrays are static
— Size is fixed at the compile time

Programming Languages • MISHRA 2008



Lecture #6 • 5

—Slide 5—

Multidimensional Arrays

• Multidimensional Arrays are Arrays of Ar-
rays

• Example: Following are equivalent

var a: array [1..10]

of array [1..10] of integers;

var a: array [1..10, 1..10] of integers;

• This is only for syntactic convenience.

Programming Languages • MISHRA 2008



Lecture #6 • 6

—Slide 6—

Examples

• Examples

type foo = array [1..10] of integers; (*simple*)

string = array [1..10] of char;

MonthLength = array [Jan..Dec] of DayOfMonth;

• In the last type definition, the indexes (a
subrange) and the base type (an enumerated
type) must have already defined.

var x: foo;

y, z: string;

w: array [Mon..Fri] of Mon..Fri;

Programming Languages • MISHRA 2008



Lecture #6 • 7

—Slide 7—

Record Types

• Syntax

type <name> =

record

speed : integer;

direction : (N, S, E, W);

color : red .. violet;

end;

• A record type is a heterogeneous aggregate
type
— More general than homogeneous aggre-
gate type
— Can be composed of elements of different
types

Programming Languages • MISHRA 2008



Lecture #6 • 8

—Slide 8—

Records (Contd)

• Arrays

A [ <exp> ] (* Less general *)

— Allows arbitrary expression <exp> eval-
uating to a value of the index type

• Records

John.Age (* More general *)

John.Address

— Fields must be named and fixed at com-
pile time

Programming Languages • MISHRA 2008



Lecture #6 • 9

—Slide 9—

Variant Records

• The available fields are determined by a (tag)
value computed at run time

• Example

type car =

record

status : (driving, parked);

road : (I95, NYSThruway, NJTurnpike);

ParkSpace : 1 .. 100;

end;

— But a car cannot be both driving and
parked at the same time!
— One of the fields contains the correct in-
formation
— This also presents a “security” loophole

Programming Languages • MISHRA 2008



Lecture #6 • 10

—Slide 10—

Variant Records (Contd)

• Variant Record (Union type):

type car =

record

case status : (driving, parked) of

driving: (road: (I95, NYSThruway, NJTurnpike));

parked: (ParkSpace : 1 .. 100);

end;

— If a car is driving its field is road
— If a car is parked its field is ParkSpace
— It creates a typing loophole in Pascal.

Programming Languages • MISHRA 2008



Lecture #6 • 11

—Slide 11—

Pointer Types

• The value of a pointer is the address of a
variable (L-value)

var p : ^real;

q : ^person;

• Example
— Declare an element of a linked list.

type foo =

record

name : string;

next : ^foo;

end;

— Singly-linked list

+---+----+ +---+----+ ++

foo -->[ |next]-->[ |next]-->||

+---+----+ +---+----+ ++

Programming Languages • MISHRA 2008



Lecture #6 • 12

—Slide 12—

Typing

• Typing is the set of rules determining the
correct use of types
— Type checking is the process of deciding
if types are used correctly

• What constitutes a valid use of types? —
Using only the operations that apply to the
elements of the type of the operands.

• Example

var x: integer;

y: char;

begin

x := 5 + 6;

y := x + 1; (* type mismatch *)

Programming Languages • MISHRA 2008



Lecture #6 • 13

—Slide 13—

Strongly Typed Languages

• A language that allows one to completely
determine if types are being used correctly
— Can determine the type of every object
in the program
— Example: Algol, Pascal,...

• Weakly Typed Language: A language that
is not strongly typed
— Example: C, ... — Compiler may not be
able to perform type-checking
— Type-checking must be deferred to run-
time.

• Interpreted languages must be weakly-typed!

Programming Languages • MISHRA 2008



Lecture #6 • 14

—Slide 14—

Type Equality

• When are two objects of the same type?

• Consider for instance,

car x: record

MyId: integer;

end;

y: record

MyId: integer;

end;

— Are x and y of the same type?

• Two approaches:
— Name Equivalence: Have the same type
as their type names. x 6≡ y

— Structural Equivalence: Have the same
type as their type structures. x ≡ y

Programming Languages • MISHRA 2008



Lecture #6 • 15

—Slide 15—

Name Equivalence

• Pascal uses name equivalence (+ declara-
tion equivalence)

• Two types can be explicitly declared to be
equivalent.

• Problem with name equivalence: Consider

var x: 1..30;

y: integer;

begin

...

y := 25; x := y;

...

y := 100; x := y;

...

end;

— Note, x and y are not of the same type?

Programming Languages • MISHRA 2008



Lecture #6 • 16

—Slide 16—

Type Violation Through Variant Records

• Problems with variant records

var x: record

case a : (1, 2) of

1: (r: real);

2: (c: char);

end;

y: 1..2;

begin

...

y := y+1;

x.a := y;

x.r := 1.15; (*improper usage, if y=2*)

...

end;

— Compiler cannot detect improper use!

• Is Pascal strongly-typed?

Programming Languages • MISHRA 2008



Lecture #6 • 17

—Last Slide—

Summary

Pascal Design

• Good!

1. Simple, useful for pedagogic purposes

2. Block-structured (Algol-like)

3. User defined types

• Bad!

1. Too simple for large applications

2. No modules or facilities for separate com-
pilation

[End of Lecture #6]

Programming Languages • MISHRA 2008


