G22.1170: Fundamental Algorithms I
 Problem Set 4
 (Due Wednesday, April, 26 2006)

The problems in this problem set are about order statistics and data structures, and Graph Algorithms. Please consult Chapters 10, $23 \& 24$ from the book (CLR).
Problems from Cormen, Leiserson and Rivest:
10-2 (a,b \& c) Weighted Median (pp. 193)
23.4-5 Different Topological Sort (pp. 488)

10-2 Weighted median
For n distinct elements $x_{1}, x_{2}, \ldots, x_{n}$ with positive weights w_{1}, w_{2}, \ldots, w_{n} such that $\sum_{i=1}^{n} w_{i}=1$, the weighted median is the element x_{k} satisfying

$$
\sum_{x_{i}<x_{k}} \leq \frac{1}{2}
$$

and

$$
\sum_{x_{i}>x_{k}} \leq \frac{1}{2}
$$

a. Argue that the median of $x_{1}, x_{2}, \ldots, x_{n}$ is the weighted median of the x_{i} with weights $w_{i}=1 / n$ for $i=1,2, \ldots, n$.
b. Show how to compute the weighted median of n elements in $O(n \lg n)$ worst-case time using sorting.
c. Show how to compute the weighted median in $\Theta(n)$ worst-case time using a linear-time median algorithm such as Select from Section 10.3.

The post-office location problem is defined as follows. We are given n points $p_{1}, p_{2}, \ldots, p_{n}$ with associated weights $w_{1}, w_{2}, \ldots, w_{n}$. We wish to find a point p (not necessarily one of the input points) that minimizes the sum $\sum_{i=1}^{n} w_{i} d\left(p, p_{i}\right)$, where $d(a, b)$ is the distance between points a and b.
d. Argue that the weighted median is a best solution for the 1-dimensional post-office location problem, in which points are simply real numbers and the distance between points a and b is $d(a, b)=|a-b|$.
e. Find the best solution for the 2-dimensional post-office location problem, in which the points are (x, y) coordinate pairs and the distance between points $a=\left(x_{1}, y_{1}\right)$ and $b=\left(x_{2}, y_{2}\right)$ is the Manhattan distance: $d(a, b)=$ $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$.

23.4-5 Different Topological Sort

Another way to perform topological sorting on a directed acyclic graph $G=(V, E)$ is to repeatedly find a vertex of in-degree 0 , output it, and remove it and all of its outgoing edges from the graph. Explain how to implement this idea so that it runs in time $O(V+E)$. What happens to this algorithm if G has cycles?

Problem 4.1 The input is a sequence of n elements $x_{1}, x_{2}, \ldots, x_{n}$ that we can read sequentially. We want to use a memory that can only store $O(k)$ elements at a time. Give a high level description of an algorithm that finds the k th smallest element in $O(n)$ time.

Problem 4.2 Let L be a sequence of n elements. If x and y are pointers into list L then $\operatorname{Insert}(x)$ inserts a new element immediately to the right of x, $\operatorname{Delete}(x)$ deletes the element to which x points and $\operatorname{Order}(x, y)$ returns true if x is before y in the list. Show how to implement all three operations with worst case time $O(\log n)$.

