Special Topics in Computational Biology Lecture #3: Phylogeny

Bud Mishra Professor of Computer Science and Mathematics 2 ¦ 1 ¦ 2001

Taxon

Taxon (Taxonomical Unit): *is an entity whose similarity (or dissimilarity) can be numerically measured.* E.g., Species, Populations, Genera, Amino Acid Sequences, Nucleotide Sequences, Languages.

Phylogeny is an organization of the taxa in a rooted tree, with distances assigned to the edges in a such manner that the "tree-distance" between a pair of taxa equals the numerical value measuring their dissimilarity. The dissimilarity and the edge lengths of the phylogenic trees can be related to the rate of evolution (perhaps determined by a molecular clock).

Comparing a Pair of Taxa

Discrete Characters: Each taxon possesses a collection of characters and each character can be in one of finite number of states. One can describe an n taxa withm characters by an $n \pm m$ matrix over the state space. **Character State Matrix**.

Comparative Numerical Data: A distance is assigned between every pair of taxa. One can describe the distances between n taxa by an $n \ge n$ matrix over R_+ . Distance Matrix.

Character States

Some Assumptions:

The characters are inherited independently from one another.

Observed states of a character have evolved from one "original state" of the nearest common ancestor of a taxon.

<u>Convergence</u> or <u>parallel evolution</u> are rare. That is the same state of a character rarely evolve in two independent manners.

Reversal of a character to an ancestral state is rare.

Classifying Characters

Characters:

Unordered / Qualitative Character: All state transitions are possible.

Ordered / Cladistic Character: Specific rules regarding state transition are assumed.

Linear Ordering Partial Ordering (with a derivation tree).

Perfect Phylogeny

A **phylogenic tree** T (with edges labeled by state transitions) is called **perfect**, if it does not allow *reversal* or *convergence*-that is, with respect to any character *c*, and any pair of states *w* and s at most one edge is labeled

w!sors!w.

Example: Binary characters with two states {0=ancestral, and 1=dervied}: any character *c_i* labels at most one edge and implies a transition from

0!1 in the i^{th} position.

Perfect Phylogeny Problem:

<u>Given</u>: A set O with n taxa, a set C of m characters, each character having at most r states. <u>**Decide**</u>: If O admits a perfect phylogeny.

A set of defining characters are **compatible**, if a set of objects defined by a character set matrix admits a perfect phylogeny.

Compatibility Criteria

Allow reversal and convergence properties in the models of evolution. *Parsimony Criteria*: Minimize the occurrences of reversal and convergence events in the reconstructed phylogeny tree.

Dollo Parsimony Criterion: Minimize reversal while forbidding convergence.

Camin-Sokal Parsimony Criterion: Minimize convergence while forbidding reversal.

Compatibility Criteria: Exclude minimal number of characters under consideration so that the reconstructed phylogeny tree is perfect and does not admit any occurrence of reversal or convergence.

Computational Infeasibility

Perfect Phylogeny Problem for arbitrary (> 2) number of unordered characters and arbitrary (> 2) number of states is NP-complete.

Optimal Phylogeny Problem under compatibility criteria is NP-complete.

Optimal Phylogeny Problem either under Dollo or Camin-Sokal parsimony criteria is NP-complete.

Binary Character Set

Each character has two states = $\{0, 1\}$

If a character is ordered then 0 ! 1 (0=ancestral and 1=derived), or converse.

For binary characters (ordered or unordered), perfect phylogeny problem can be solved efficiently

Poly time, for *n* taxa and *m* characters, Time = O(nm).

A two phase algorithm:

Perfect Phylogeny Decision Problem

Perfect Phylogeny Reconstruction Problem

Compatibility Condition

T = Perfect Phylogeny for *M* iff

 $(8 c_i = character)(9! e = tree-edge) label(e) = {c_i, 0! 1} root(T) = (0, 0, 0, ..., 0)$

A path from root to a taxon *t* is labeled $(c_{i1}, c_{i2}, ..., c_{ij})$

) *t* has 1's in positions $i_1, i_2, ..., i_{j_{-}}$

Perfect Phylogeny Condition

 $M = n \pounds m$ Character State Matrix, $j \ge \{1..m\}$ $O_j = \{i = taxon : M_{ij} = 1\}$ $O_j^c = \{i = taxon : M_{ij} = 0\}$

Key Lemma

Lemma: A binary matrix M admits a perfect phylogeny iff (8 i, j 2 {1, m}) $O_i Å O_i = ;$ or $O_i \mu O_i$ or $O_i \P O_i$

Proof: ()) T_i = subtree containing O_i , T_i = subtree containing O_i , r_i = root(T_i) and r_i = root(T_i)

 r_i is neither an ancestor nor descendant of r_i) O_i Å O_i ;

 r_i is a descendant of r_j) $O_i \mu O_j$

 r_i is an ancestor of r_j) $O_i \P O_j$

(() By induction, Base case m=1 is trivial. Induction case, m=k+1:

 T_k = Tree for *k* characters. O_{*k*+1} is contained in a subtree with minimal # taxa rooted at *r*. *r* must be a leaf node. Either an edge needs to be labeled or the subtree rooted at *r* has to be split. ¤

Simple Algorithm based on the Lemma

Compare every pair of columns for the intersection and inclusion properties. Total of $O(m^2)$ pairs, each comparison can be done in O(n) time.

Total Time Complexity = $O(nm^2)$

Can be improved to O(nm) time.

Improved Decision Algorithm

Algorithm

First radix sort columns of *M* based on the number of 1's in each column. for each *L_{ij}* do *L_{ij}* := 0; for *i* := 1 to n do *k* := -1; for *j* := 1 to *m* do if *M_{ij}* = 1 then {*L_{ij}* := *k*; *k* := *j*} for each column of *j* of L do if 9 *i*, *l L_{ij} L_{ij}* and both nonzero then return False return True. ¤ Example

> Reconstruction Algorithm Two Characters

An $n \pm 2$ Character State Matrix with arbitrary number of states admits a perfect phylogeny iff its corresponding *state intersection graph* (SIG) is acyclic. State Intersection Graph: For each state *s* of character c_j create a vertex *v* of *G*. Let $O_v = \{t_i : M_{ij} = s\}$. $\langle u, v \rangle 2$ Edges iff $O_u \text{ Å } O_v$;

The SIG, G = (V, E) has at most 2*n* vetices and O(*n*) edges. Acyclicity can be tested in time O(|V|+|E|) = O(*n*) time.

For two character taxa with arbitrary number of states the perfect phylogeny problem has an efficient solution.

Rate of Evolutionary Changes

Taxa of nucleotide or amino acid sequences.

Given two taxa s_i and s_j , measure their distance

Distance(s_i , s_j), d_{ij} = Edit distance based on pairwise sequence alignment. Assumptions about the Molecular Clock (governing rate of evolutionary change):

Only independent substitutions

No back or parallel mutations

Neglect selection pressure.

Amino Acid Sequences

= Amino Acid substitution rate per site per year.

varies between organisms and protein classes

Example:

for guinea pig insulin $\frac{1}{4}$ 5.3 £ 10^{-9} for other organisms $\frac{1}{4}$ 0.33 £ 10^{-9}

Other Examples of

Fibrinopeptide $\frac{1}{4}$ 9 £ 10⁻⁹ Histone $\frac{1}{4}$ 1 £ 10⁻¹¹

Estimating

X & Y = homologous proteins of same length n

 n_d = Number of differences between homologous amino acid sites. X and Y are isolated from two distantly related species that diverged *t* time ago.

 $p \frac{1}{4} n_d/n$ = Probability of an amino acid substitution occurring at a given site of either X or Y.

Estimating (Contd.)

 $q = 1 - p = 1 - n_d/n = \Pr[\# \text{ mutations at site } X_i = 0]$ £ $\Pr[\# \text{ mutations at site } Y_i = 0]$

Z = Random variable counting the number of mutations over time t at a fixed site for an amino acid sequence with substitution rate

per site per year » Poisson(t)

$$Pr[Z = k] = \exp\{-t\} (t)^{k}/k!$$

$$q = e^{-2} t$$

$$= \ln(1/q)/2t.$$

Example: Histone H4

X & Y = Hisones from cow and pea. n = 105, $n_d = 2$, $q = 1 - n_d/n = 103/105$ $t = 10^9$; Plants and animals diverged about a billion years ago.

= (1/2t) (-ln $(1 - n_d/n)$) $\frac{1}{4} (n_d/n)/(2t)$ $\frac{1}{4} (2 \pm 10^{-2})(2 \pm 10^9)$ $\frac{1}{4} 10^{-11}$ Other Approaches

BLOSUM matrix

PAM (Accepted Point Mutation) matrix WAC (Wei-Altman-Chang) matrix

Nucleotide Sequences

Synonymous or Neutral Substitutions:

= Nucleotide substitutions with no effect on expressed amino acid sequences

Genetic code is redundant—Most substitutions to 3rd positions are synonymous.

Often a single non-synonymous nucleotide substitution is likely to change one amino acid into a related amino acid (e.g., both hydrophobic).

Molecular clock is modeled based on non-synonymous substitution rate.

Variability of Nucleotide Mutation Rate

Transitional Mutations:

purine-purine, i.e. A \$ G pyrimidine-pyrimidine, i.e. C \$ T

Transversal Mutations:

purine-pyrimidine: A \$ T, A \$ C, G \$ C, G \$ T

Usually transitional mutations are more likely. Mutation into A is more likely.

Effect of DNA repair mechanism

for higher primate $\frac{1}{4}$ 1.3 £ 10⁻⁹ /site/yr for sea urchins & rodents $\frac{1}{4}$ 6.6 £ 10⁻⁹/site/yr for mammalian mtDNA $\frac{1}{4}$ 10⁻⁸/site/yr for plant cpDNA $\frac{1}{4}$ 1.1 £ 10⁻⁹/site/yr

Markov Process Model of Mutation

Evolution is modeled by a stochastic process, X(t) with real-valued time parameter t = 0A time-homogeneous Markov process $(\mathbf{Q}, \mathbf{P}(t))$ $Q = \{A, C, G, T\} = States$ = { A, C, G, T } = Initial Distribution $\mathbf{P}(t) =$ Markov Process (Contd.) p(t) = Pr[|, t] = Pr[X(t) = |X(0) =]= Probability that a nucleotide with a value at time 0 mutates to a by time t $\mathbf{P}(t+s) = \mathbf{P}(t)\mathbf{P}(s)$ $p_i(t) = \Pr[X(t) = i] = k_{2_{*}} \{A, C, G, T\} \ k \ p_{k,i}(t)$ = { $A^{*}, C^{*}, G^{*}, T^{*}$ is a stationary distribution for **P**(*t*) 8 t * **P**(t) = Markov Process (Contd.) $P'(t) = P(t) \lim_{t \ge 0} [P(t) - P(0)]/[t]$ $= \mathbf{P}(t)$ Solution to the differential equation: $\mathbf{P}(t) = \exp(t) = n_{n=0}^{1} n_{n} t^{n} / n!$ Row-sum for is 0: $_{j}$ $_{i,j} = \lim_{t \ge 0} [p_{i,j} - 1]/[t] = 0.$ Juke-Cantor Model $(A, T, C, G) = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ = = Juke-Cantor Model (Contd.) = -4 (I -)P(t) = e⁻⁴ (I -) t $= \mathbf{I} \begin{bmatrix} n = 0^{1} (-4 t)^{n} / n! \end{bmatrix} \begin{bmatrix} n = 0^{1} & n (4 t)^{n} / n! \end{bmatrix}$

$$= \mathbf{I} e^{-4} t \{ \mathbf{I} + (e^{4} t - 1) \}$$

= $e^{-4} t \mathbf{I} + (1 - e^{-4} t)$
 $p_{i,i}(t) = \frac{1}{4}(1 + 3 e^{4} t)$
 $p_{i,j}(t) = \frac{1}{4}(1 - 4 e^{-4} t), i j.$