
G22.1170: Fundamental Algorithms
Problem Set 1

(Due Tuesday, October 24, 2000)

The problems in this problem set involve notations for orders of growth
(big-oh, big-omega, big-theta) as well as different techniques used in the
analysis of algorithms (such as recursion-tree, telescoping , summing factors,
range- and domain-transformations). The first three problems are rather
easy, but the last problem may require some thought. You may consult the
Hand Out 1, which discusses these materials in depth. Try to give the exact
solutions to the recurrence equations wherever possible.

Problem 0.1 a. Order the following functions by their growth rate (the
most slowly-growing function appearing first); if two functions are same,
group them together.

(1) 1 (2) 7 (3) 7lg n

(4) (lg n)lg n (5)
√
nlg2n (6) n

(7) n lg n (8) n
1

lg n (9) nlg 7

(10) n
1+

lg lg n

lg n (11) nlg lg n (12)
(

1− 1
n

)n

(13)
(

1− 1
7

)n

(14)
(

1 + 1
n

)n

(15)
(

1 + 1
7

)n

b. Suppose T1(n) is Ω(f(n)) and T2(n) is Ω(g(n)). Which of the following
statements are true? Justify your answer.

1. T1(n) + T2(n) = Ω (max(f(n), g(n))) .

2. T1(n)T2(n) = Ω (f(n) g(n)) .

c. Let us change the definition of Ω, as follows: T (n) = Ω(f(n)), if there is
a positive constant C such that

T (n) ≥ C · f(n), infinitely often, i.e., for infinitely many values of n.

Now answer the previous question for this definition of Ω.

Problem 0.2 a. Solve the following recurrence equation

T (n) = T (n− 1) + 4n3.

1



b. One can write a self-recursive algorithm to tile a mutilated checkerboard
using L-trominoes. (See the Solutions to Problem Set 0, for the sketch of an
algorithm.) Write down the recurrence equation for this algorithm, assuming
that it takes a unit time step to place an L-tromino on the checkerboard.
Show that the time, T (N), it takes to tile a chekerboard of size 2N × 2N is
given by

T (N) =
4N − 1

3
=

2N · 2N − 1

3
,

i.e., the number of tiles required to tile the checkerboard.

Problem 0.3 What are the time-complexities of the two Fibonacci Pro-
grams presented in the Problem Set 0? Present the complexities using the O
notations. You may count only the additions and assume that each addition
takes O(1) time irrespective of the size of the summands.

Hint: Finding the exact complexity of Program 1 may be hard, and you
need tools not discussed in the class. You may use a guess based on the
experiments, you ran on the programs and then verify your guess. But if you
are going to do an exact analysis then the following fact will come handy:

Fibonacci(n) =
φn − ψn

√
5

, where φ =
1 +

√
5

2
and ψ =

1−
√

5

2
.

Problem 0.4 Use Recursion-Tree to solve the following Recurrence Equa-
tions:

1.

T (1) = 1
T (n) = T (0.8n) + n, if n > 1.

2.

T (1) = 1
T (n) = T (0.8n) + T (0.1n) + n, if n > 1.

3.

T (1) = 1
T (n) = T (0.8n) + T (0.2n) + n, if n > 1.

2



Problem 0.5 a. Dr. Supe R.Hacker of Happy Hackers, Inc. has discovered
a family of algorithms, A1, A2, A3, . . .. The complexity of these algorithms
are given by the following set of recurrence equations.

T1(1) = T2(1) = · · · = Tm(1) = · · · = 1,

and for n > 1,
T1(n) = 2T1(

n

2
) + n

T2(n) = 2T2(
n

2
) + T1(n)

...

Tm(n) = 2Tm(n

2
) + Tm−1(n)

...

What is the complexity of the mth algorithm Am?

b. Dr. Dupe R.Hacker, also, of Happy Hackers, Inc. has more recently
discovered another set of algorithms, A′

1, A
′

2, A
′

3, . . .. The complexity of
these algorithms are given by the following set of recurrence equations.

T0(n) = T1(1) = T2(1) = · · · = Tm(1) = · · · = 1,

and for n > 1,
T1(n) = 4T0(

n

2
) + n

T2(n) = 8T1(
n

4
) + n

...
Tm(n) = 2m+1Tm−1(

n

2m
) + n

...

What is the complexity of the mth algorithm A′

m
?

c. For what values of m are the Supe R’s algorithms more efficient than
Dupe R’s? How about the converse? Is there any m for which both Supe R’s
and Dupe R’s algorithms have comparable efficiency? Justify your answer(s).

3


