G22.1170: Fundamental Algorithms
Final Take-Home Exam
(Due Tuesday December 19 2000)

Problem. 1 Order the following functions in increasing order of growth:
(a) n !
(b) $\lg \lg n$
(c) $n^{\lg \lg n}$
(d) $n^{1 / \lg n}$
(e) $2^{3 \lg n}$
(f) n^{2}
(g) $(\lg \lg n)^{n}$
(h) $n \lg ^{2} n$

Problem. 2 The input is a sequence of n elements $x_{1}, x_{2}, \ldots, x_{n}$ that we can read sequentially. We want to use a memory that can only store $O(k)$ elements at a time. Give a high level description of an algorithm that finds the k th smallest element in $O(n)$ time.

Problem. 3 Let L be a sequence of n elements. If x and y are pointers into list L then $\operatorname{Insert}(x)$ inserts a new element immediately to the right of x, $\operatorname{Delete}(x)$ deletes the element to which x points and $\operatorname{Order}(x, y)$ returns true if x is before y in the list. Show how to implement all three operations with worst case time $O(\log n)$.

Problem. 4 A simple undirected graph $G=(V, E)$ without self-loops has at most one edge between every pair of vertices and no edge from a vertex to itself. A graph is p-colorable if all vertices can be assigned one of p colors with no edge receiving the same color at both of its ends.

Let $d(v)$ denote the degrees of a vertex v, i.e., the number of edges incident at v. let $d(G)$ denote $\max _{v \in V} d(v)$, the maximum degree of the vertices of the graph G.

Design an efficient algorithm and prove its correctness, which determines $(d(G)+1)$-coloring of the graph.

