Algorithms for Syntax-Aware Statistical Machine Translation

I. Dan Melamed, Wei Wang and Ben Wellington

New York University
Syntax-Aware Statistical MT

- “Statistical” ⇒ involves machine learning (ML) — seems crucial for robustness
- “Syntax-aware” ⇒ involves tree structures — seems crucial for improving quality
- Does not preclude linguistic sophistication, but this talk will use simple examples.
All the non-trivial algorithms are generalized parsers.

Algorithms are easier to design and implement if one understands how they are related to others.
First Things First

- What’s a generalized parser?
- What sort of grammar does it need?
- example of a generalized parser
Generalized Parsers output Multitrees

- multi-dimensional trees
- express nested correspondence between subtrees
- ordinary trees = 1D special case
Generalized Multitext Grammar (GMTG)

- synchronous generalization of CFG
- terminals, nonterminals, start symbol, productions
- allows discontinuous constituents (ignored here)
- admits a Generalized Chomsky Normal Form (GCNF)
- associated derivation process generates multitrees
- special cases: ITG (Wu’97), MTG (Melamed’03)
A Simplified GMTG in GCNF

Terminal productions

1. $WASH \rightarrow \text{Wash}$
 \[\text{(} \rightarrow \text{)}\]

2. $D \rightarrow \text{the}$
 \[\text{(} \rightarrow \text{)}\]

3. $DISH \rightarrow \text{dishes}$
 \[\text{(} \rightarrow \text{)}\]

4. $PAS \rightarrow \text{Pasudu}$
 \[\text{(} \rightarrow \text{)}\]

5. $MIT \rightarrow \text{moy}$
 \[\text{(} \rightarrow \text{)}\]

Nonterminal productions

1. $S \rightarrow V \ NP$
 $S \rightarrow NP \ V$

2. $V \rightarrow WASH$
 $V \rightarrow MIT$

3. $NP \rightarrow D \ N$
 $NP \rightarrow N$

4. $N \rightarrow DISH$
 $N \rightarrow PAS$

Language

Wash the dishes
Pasudu moy
Ordinary CKY Parsing under CFG

- **Input:** 0 wash 1 the 2 dishes 3
- **Scan:**
 - $V \rightarrow wash$
 - $D \rightarrow \text{the}$
 - $N \rightarrow \text{dishes}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Compose:**
 - $D \rightarrow N$
 - $NP \rightarrow D, N$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- **For probabilistic parsing, terms carry probabilities:**

 $\frac{\beta \gamma}{\alpha} \frac{\alpha \rightarrow \beta \gamma}{\alpha}$ means

 $\Pr(\alpha) = \Pr(\beta) \cdot \Pr(\gamma) \cdot \Pr_G(\alpha \rightarrow \beta \gamma)$
CKY Multiparsing under GMTG

Here only in 2D, for simplicity.

Input:

0 wash 1 the 2 dishes 3
0 pasudu 1 moy 2

Scan Component 1:

\[
\begin{align*}
WASH & \rightarrow \text{wash} \\
() & \rightarrow () \\
\hline
WASH & \rightarrow \\
0 & \rightarrow 1
\end{align*}
\]

\[
\begin{align*}
D & \rightarrow \text{the} \\
() & \rightarrow () \\
\hline
D & \rightarrow \\
1 & \rightarrow 2
\end{align*}
\]

\[
\begin{align*}
\text{DISH} & \rightarrow \text{dishes} \\
() & \rightarrow () \\
\hline
\text{DISH} & \rightarrow \\
2 & \rightarrow 3
\end{align*}
\]

Scan Component 2:

\[
\begin{align*}
PAS & \rightarrow \text{pasudu} \\
() & \rightarrow () \\
\hline
PAS & \rightarrow \\
0 & \rightarrow 1
\end{align*}
\]

\[
\begin{align*}
\text{MIT} & \rightarrow \text{moy} \\
() & \rightarrow () \\
\hline
\text{MIT} & \rightarrow \\
1 & \rightarrow 2
\end{align*}
\]
Two 1D items can be composed into a 2D item.
Word alignment is a special case of multiparsing.
2D items can compose with 1D items.
Multiparsing: Composition (4/4)

\[S \rightarrow NP \ V \]
\[S \rightarrow V \ NP \]

\[
\begin{array}{c}
\text{NP} \\
\downarrow \text{V} \\
\downarrow \\
\text{S} \\
\end{array}
\]

\[
\begin{array}{c}
\text{NP} \\
\downarrow \text{V} \\
\downarrow \\
\text{S} \\
\end{array}
\]
Part 1: Training

- Training multitext
- Prepare training data
- Tree-aligned multitext
- Translation model induction
- Syntax-aware translation model
- Model initialization
PGMTG is a type of syntax-aware translation model.
PGMTG Parameter Estimation

- use expectation semiring (Eisner’02)
 \[
 \begin{array}{c}
 \frac{\beta \gamma \alpha \rightarrow \beta \gamma}{\alpha} \\
 \end{array}
 \]
 means
 \[
 E(\alpha) = E(\beta) \otimes E(\gamma) \otimes G(\alpha \rightarrow \beta \gamma)
 \]

- to estimate production rule probabilities:
 1. use same inference algorithm with exp-counts instead of probabilities
 2. normalize

- multiparsing + trivial normalization
 = a synchronous generalization of the Inside-Outside algorithm (cf. Wu’97 for SITG)

- multiparsing also required for other loss functions — e.g., max-margin à la Taskar et al.’04
TM Induction by Parsing

How to bootstrap a multitreebank?
Bootstrapping

- need multitreebank to initialize PGMTG
- multitreebank \neq parallel treebank (Han et al.’02)
- no multitreebanks currently available (though Uchimoto et al.’04 working on one)
- need generalized parser to create multitreebank
- parser needs to know values that G assigns to productions in order to compute $\frac{\beta \gamma}{\alpha} \rightarrow \frac{\beta \gamma}{\alpha}$
- Stuck?
How to bootstrap $G()$ values?

Consider the bilexical case. Ordinarily, we have

$$G \left(\begin{array}{c}
S[\text{wash}] \\
S[\text{moy}]
\end{array} \rightarrow \begin{array}{c}
V[\text{wash}] NP[\text{dishes}] \\
V[\text{moy}] NP[\text{pasudu}]
\end{array} \right) = \Pr \left(\begin{array}{c}
V[\text{wash}] NP[\text{dishes}] \\
V[\text{moy}] NP[\text{pasudu}]
\end{array} \bigg| S[\text{wash}] \right) \Pr \left(\begin{array}{c}
B[a] C[c] \\
Y[x] Z[z]
\end{array} \bigg| A[a] \right) \Pr(B, C, c| A, a) \times 1.0 \times \Pr(z|c)$$

To bootstrap,

1. Decompose via chain rule.
2. Make independence assumptions, so that
How to bootstrap $G()$ values?

$G \left(\begin{array}{c}
A[a] \\
X[x] \\
\end{array} \rightarrow \begin{array}{c}
B[a] \\
Y[x] \\
C[c] \\
Z[z] \\
\end{array} \right) = \Pr(B, C, c | A, a) \times \Pr(z | c)$

- $\Pr(B, C, c | A, a)$ is an ordinary (monolingual) structured language model, such as lexicalized PCFG.
- $\Pr(z | c)$ is a word-to-word translation model.
- These resources are relatively easy to obtain.
- Now, we can use the same inference procedure!

$$\alpha \rightarrow^{\beta \gamma} \begin{array}{c}
\beta \\
\gamma \\
\alpha \\
\end{array}$$

- a multitext aligner is a generalized parser, where $\dim(\text{grammar}) \leq \dim(\text{input})$
All the non-trivial algorithms are generalized parsers.
Other aligners

More sophisticated aligners certainly possible — e.g. Smith & Smith @ EMNLP’04
Part 2: Application of the Model
Translation: Scanning

- **Input:** \(0\) wash \(1\) the \(2\) dishes \(3\)

- **Scan Component 1, as usual:**

 \[
 \begin{array}{ccc}
 \text{WASH} & \text{wash} & \\
 () & () & \\
 \hline
 \text{WASH} & \\
 0 & 1
 \end{array}
 \quad
 \begin{array}{ccc}
 D & \text{the} & \\
 () & () & \\
 \hline
 D & \\
 1 & 2
 \end{array}
 \quad
 \begin{array}{ccc}
 \text{DISH} & \text{dishes} & \\
 () & () & \\
 \hline
 \text{DISH} & \\
 2 & 3
 \end{array}
 \]

- **Scan (Load) Component 2, independent of the input:**

 \[
 \begin{array}{ccc}
 \text{MIT} & \text{moy} & \\
 () & () & \\
 \hline
 \text{MIT} & \\
 \text{PAS} & \text{pasudu} & \\
 () & () & \\
 \hline
 \text{PAS} & \\
 \end{array}
 \]

- No position info stored in 2nd component.
The grammar also functions as a translation model.
Translation: Composition (2/2)

\[
\begin{align*}
D & \quad N \\
1 & \quad 2 & \quad 3 \\
N & \quad NP & \quad DN \\
NP & \quad N \\
\end{align*}
\]

\[
\begin{align*}
NP & \quad V \\
1 & \quad 3 & \quad 0 & \quad 1 \\
S & \quad V & \quad NP \\
S & \quad NP & \quad V \\
\end{align*}
\]
To recover the output string from the multitree:

- keep track of inferences used
 (automatic under Viterbi-derivation semiring)
- recursively order the output words according to the production rules in those inferences.
- — a trivial linear-time post-process
A translator is a generalized parser where $\dim(\text{grammar}) \geq \dim(\text{input})$.
To incorporate a target LM, need only to redefine $G()$ terms.
The Space of Generalized Parsers

Generalized parsers infer multitrees.

$\dim(\text{grammar}) = d$; $\dim(\text{input}) = i$

Possible to use the same piece of code for all d and i!
Part 3: Automatic Evaluation

Reference translation → Evaluation → Score

Test output
Problems with Existing Methods

(R) *Pat asked* Sandy *on Friday about the man from Oslo.*

(T1) *On Friday, Pat asked Sandy about the man from Oslo.*

(T2) *Pat from Oslo asked Sandy on Friday about the man.*

- String-based evaluation methods prefer T2, because it has a longer-matching n-gram with R.
- Methods that don’t refer to R cannot tell the difference – T1 and T2 are both grammatical.
- More sophisticated MT systems require more sophisticated evaluation methods.
Syntax-Aware MT Evaluation

catalogue of meaning-preserving syntactic alternations

easy to express using synchronous production rules

e.g., include the production

\[\text{NP} \rightarrow \text{NN PP}_1 \text{ PP}_2 \]
\[\text{NP} \rightarrow \text{NN PP}_2 \text{ PP}_1 \]

also include all productions that have identical components in both dimensions, such as

\[\text{NP} \rightarrow \text{NN PP}_1 \text{ PP}_2 \]
\[\text{NP} \rightarrow \text{NN PP}_2 \text{ PP}_1 \]
MT Evaluation by Parsing – Ideal World

Given
- reference R
- MT output T
- grammar of syntactic alternations G

T is an acceptable translation w.r.t. R and G iff
the multitext (R, T) is parsable under G.

Parser will fail if
- T and R mean different things, or
- T is ungrammatical.
MT Evaluation by Parsing – Real World

Challenges:
- Hard to get good coverage of syntactic alternations by hand.
- Would like a numerical grade of translation quality, not just a yes/no.

Solution 0 (Leutsch et al., 2003): Use trivial grammar with 1 non-terminal.

Solution 1: Use multiple-translations corpora to estimate a monolingual PGMTG.

A *probabilistic* multiparser can then return the *probability* that T and R mean the same thing.

Imperfect, but probably better than current methods.

Competing multitext models can be evaluated in terms of their perplexity on held-out multitext.
All the non-trivial algorithms are generalized parsers.
MT Evaluation by Parsing

Advantages over existing methods:

- Sensitive to meaning-preserving syntactic alternations.
- Multiple references conceptually straightforward.
- The evaluation method itself can be objectively evaluated, without relying on human judgments.
All the non-trivial algorithms are generalized parsers.

Algorithms are easier to design and implement if one understands how they are related to others.
Accurate SMT by Parsing

will need better
- knowledge representations
 - GMTG is not the final word
 - e.g., synch. tree substitution grammars (Eisner’03)
 - have parser, will translate

- parsing logics:
 - e.g., for optimization (Melamed’03)
 - How about an Earley translator (cf. Wu & Wong’98)?

- semirings & objective functions: beyond MLE

- search strategies
 - e.g. based on A* parsing (Klein & Manning 2003)

Every innovation in parsing is directly useful for MT!
http://cs.nyu.edu/~melamed/pubs.html

Thank you!
Multitext Modeling

- There are different ways to estimate a PGMTG.
- Which method should we use for MT evaluation?
- Quality of PGMTG $G \propto \text{Pr}_G(\text{unseen multitext})$.
- Analogous to perplexity of a language model.
- Multitext modeling $=$ synchronous language modeling.
- All methods of ordinary language modeling apply.
- E.g., all productions with identical components smoothed with non-zero probability.
A common objection to SMT by Parsing

You can’t really run algorithms in $O(n^{10})$!

- Current SMT systems are based on algorithms that run in exponential time, but that doesn’t stop them!
- Worst-case bounds indicate the size of the search space.
- Practical algorithms do not search the whole space – they prune.
- Still, it’s nice to know that PGMTGs constrain the search better than currently popular models.
Translation by Parsing with a Target LM

To evaluate inference rules, a naive translator evaluates

\[
G \left(\begin{array}{c}
S \\
S
\end{array} \rightarrow \begin{array}{c}
V[\text{wash}] \ NP[\text{dishes}] \\
V[\text{moy}] \ NP[\text{pasudu}]
\end{array} \right) =
\]

\[
\text{Pr} \left(\begin{array}{c}
V[\text{wash}] \ NP[\text{dishes}] \\
V[\text{moy}] \ NP[\text{pasudu}]
\end{array} \right| S, S \right)
\]

Simplifying a bit,

\[
\text{Pr} (V[\text{wash}], NP[\text{dishes}], V[\text{moy}], NP[\text{pasudu}]|S, S) =
\]

\[
\text{Pr} (V[\text{moy}], NP[\text{pasudu}]|S, S) \\
\times \text{Pr} (V[\text{wash}], NP[\text{dishes}]|V[\text{moy}], NP[\text{pasudu}], S, S)
\]
Translation by Parsing with a Target LM

\[
\Pr (V[\text{wash}], NP[\text{dishes}], V[\text{moy}], NP[\text{pasudu}] | S, S) = \\
\Pr (V[\text{moy}], NP[\text{pasudu}] | S, S) \\
\times \Pr (V[\text{wash}], NP[\text{dishes}] | V[\text{moy}], NP[\text{pasudu}], S, S)
\]

- 2nd factor: conditionalized PGMNTG
- 1st factor: \textit{n-gram grammar}
- encapsulates ordinary n-gram language model
- adds facility to compose discontinuous strings
- mixture need not be uniform
SMT by Parsing vs. Tree Transducers

- Tree transduction is the special case of synchronous parsing where the inferences are constrained by a tree on one component.
- Past and future work on parsing (more) easily generalizable, using the approach described here.
- See Klein & Manning (EMNLP’02) on conditional structure vs. conditional estimation.