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ABSTRACT

Congestion control algorithms such as TCP-NewReno assume typ-
ical per-flow throughput is at least 1 packet per roundtrip time. En-
vironments where this assumption does not hold, a largely unex-
plored space we call the sub-packet regime, are common in de-
veloping regions, where a 128Kbps–2Mbps access link may be
shared by 50–200 users. This paper investigates the impact of
pathological-sharing on TCP and other end-to-end congestion con-
trol schemes. Through experience and analysis we find that com-
mon congestion control algorithms break down in the sub-packet
regime, resulting in severe unfairness, high packet loss rates, and
flow silences due to repetitive timeouts. To understand TCP’s be-
havior in this regime, we propose a model particularly tailored
to high packet loss-rates and relatively small congestion window
sizes. We validate the model under a variety of network conditions
and discuss how the model can be potentially used in practice to
enhance TCP performance in the sub-packet regime.
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1. INTRODUCTION
Existing congestion control schemes such as TCP-NewReno [8],

TFRC [13] and many others assume the fair-share bandwidth of a
flow is at least 1 packet per roundtrip time (RTT). The TCP-friendly
rate of a flow [22], as defined by the approximate packet rate of
p

3/2/(RTT
√

p), where p is the observed loss rate, also satisfies
this criterion: since the packet loss rate p must be less than 1, the
TCP-friendly rate is at least

p

3/2 packets per RTT.1 Conventional
wisdom is that typical networks provide sufficient per-flow band-
width to satisfy this assumption. However, there are a surprising
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number of environments where low-bandwidth networks are being
shared by too many users, causing this assumption to be flawed.

We define such an environment, where a TCP flow’s fair share
is less than 1 packet per RTT, as the sub-packet regime. The sub-
packet regime is surprisingly common and increasingly important
in developing regions where a low-bandwidth network is often shared
by many users [14,26]. In a developing country such as India, most
academic institutions (universities, high schools) and small compa-
nies have a medium to low bandwidth network shared by many si-
multaneously active users. One premier university in India, for ex-
ample, shares a 2Mbps connection among up to 400 active users at
peak times, frequently causing users to experience stalled web ses-
sions lasting more than 120 seconds. Even as bandwidth increases
in the future, high levels of sharing will continue due to economic
factors of aggregate purchasing power: a single user may not be
able to afford Internet connectivity, but a group of users collec-
tively have sufficient purchasing power to afford and share a single
connection.

The sub-packet regime has not been a traditionally important
region of operation for network flows, and as a result this space
has remained relatively unexplored. The concept of a sub-packet
regime arises in prior work in the context of understanding the be-
havior of TCP in the face of many competing flows [16, 25, 29].
We are specifically interested in exploring both individual and ag-
gregate behaviors of TCP, where the per-flow share is significantly
lower than 1 packet per RTT.

This paper makes several contributions towards characterizing
TCP behavior in sub-packet regimes. By analyzing the per-flow
and aggregate behavior of TCP and other variants in the sub-packet
regime, we show that apart from the well-known problems of high
loss rates and poor performance, flows experience the following:
(a) repetitive timeouts which forces a significant fraction of flows
to observe long silence periods with no packet transmissions; (b)
extreme unfairness over the short time scale; and (c) unpredictable
flow completion times. In addition, we show that none of the stan-
dard TCP variants or known queuing mechanisms offer substantial
performance gains in the sub-packet regime.

To better understand this phenomenon, we introduce an analyt-
ical model to characterize the equilibrium behavior of TCP in the
sub-packet regime. Our model is a simpler variant of a full Markov
model for TCP operating in traditional regimes [10], but with care-
ful attention in modeling repetitive timeouts. Since Markov mod-
els are inherently not suited to keep memory in the state transi-
tions, modeling repetitive timeouts2 is not straightforward (since
one needs memory of the previous timeout value). We address this
problem by determining aggregate transition states which both cap-
ture the memory effect while significantly reducing the number of

2timeouts with backoff values greater than 1.
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states. Our model accurately predicts the stationary distribution of
a TCP flow across different states using few aggregate states. We
discuss possible ways in which the model can be used in practice
to enhance TCP performance and fairness in sub-packet regimes.

The paper is organized as follows. Section 2 defines the sub-
packet regime and explores observed behavior of TCP aggregates.
Section 3 explains what happens in this regime through a TCP
model that we develop, Section 5 discusses the strengths and lim-
itations of the model and Section 6 discusses insights gained from
our model and how it can be potentially used in practice. Sec-
tion 7 discusses related work, and we present our conclusions in
Section 8.

2. THE SUB-PACKET REGIME
In this section, we first define the sub-packet regime and describe

an end-user’s view of web browsing behavior in this regime using
an analysis of real-world access traces. We then use simulations to
analyze TCP’s behavior in the sub-packet regime to explain what
makes TCP break down in this regime.

2.1 Defining the Sub-Packet Regime
We define the sub-packet regime as the region of TCP operation

when competition between flows results in per-flow fair-shares less
than 1 full-sized segment (maximum segment size or MSS) per ob-
served round-trip time (RTT). A TCP flow with segment size S and
round-trip time of RTT , is in the sub-packet regime if both of the
following conditions hold at the bottleneck link, which has capacity
C:

1. number of competing flows, N ≫ 1, and

2. per-flow fair share is less than S/RTT .

The fair share of a flow on a bottleneck link is inversely propor-
tional to its RTT and is also dependent on the RTT of competing
flows on that link. If all flows have the same RTT , then the fair
share is C/N . The first condition alone holds in the aggregate links
that most Internet traffic goes through, but per-flow fair share on
these high-bandwidth links is usually large enough to keep TCP out
of the sub-packet regime. The second condition alone holds when
one or a few TCP connections use a low-bandwidth link, such as a
WiFi or cellular link, but the minimal sharing keeps these links out
of the sub-packet regime. It is the combination of heavy sharing,
on the order of several 10s to hundreds or thousands of competing
flows, operating over low-bandwidth networks that causes the sub-
packet regime. As we discussed in Section 1, such sharing is all too
common; we now examine why this sharing is pathological.

We note that statistical multiplexing may cause flows to exhibit
sub-packet-regime-like behavior when the average per-flow fair share
approaches 1 packet per RTT. We thus also consider flows in the
region approaching the sub-packet regime.

2.2 Pathological Sharing: An End-User View
We first examine the web browsing experience at a real univer-

sity campus in India. The university is equipped with a 2Mbps
access link to the Internet, and has about 400 computers on campus
usable for Internet access. We start by examining object down-
load times recorded by the university’s web proxy, constrained to
a 2-hour window to minimize the effects of time-of-day load vari-
ations. During this period, the proxy recorded 221 unique client
IP addresses, and downloaded 1.5GB over the access link. Fig-
ure 1 shows a scatter plot of download times for objects of various
sizes, ignoring cached objects and HTTPS connections, based on
logarithmically-sized buckets of object sizes. Figure 1 shows the
10th percentile, 90th percentile, min, max, and average download

times within each bucket.
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Figure 1: Scatter-plot of download times for different object

sizes, taken from a 2-hour observation period at the Univer-

sity’s Squid proxy. Each raw data point is assigned to a bucket,

and the values shown here are the 10th percentile, 90th per-

centile, min, max, and average values per bucket.

The Y-axis spread in the graphs is striking: download times for
objects vary by over two orders of magnitude!3 We can observe
that this variation is pervasive: many flows witness long download
times across all file sizes. Download time variation eventually de-
creases at larger object sizes (e.g., 1MB), but most web pages and
objects reside in the size region where variation is high.4

We make two observations. First, a significant number of users
experience poor performance with large download times even for
very small object sizes where the entire object can be transmitted in
a few packets. Second, the high variation in the download times for
comparable object sizes indicates a high level of unfairness across
flows. To understand these phenomena, we next use simulations to
describe TCP’s behavior in the sub-packet regime.

2.3 TCP in the Sub-Packet Regime
The behavior of TCP in the presence of many flows has been

studied in prior work [16,25,29]. What is known from these works
is that under high contention, TCP flows experience high packet
loss rates leading to poor per-flow throughput and unfairness across
flows. The small pipe case analysis in Qiu et al. [29] also shows
that a small set of flows capture the entire bandwidth while a num-
ber of flows remain shut off; however, flows do not exhibit global
synchronization problems and link utilization remains consistently
high.

Building upon the analysis from prior work, we pinpoint three
specific observations about TCP behavior in the sub-packet regime.
First, individual flows experience repetitive timeouts frequently which
results in long silence periods during which flows do not transmit a
single packet. Second, flows experiences high levels of unfairness
across variable time scales. While long term fairness is better than
short term fairness, we observe that flows experience a random se-
lection process where different small sets of flows progress during
different short time scales. Finally, none of the existing variants of

3After normalizing server latencies via an emulated dumbell topol-
ogy with uniform server latencies we find a reduced, but similar 1.5
to 2 orders of magnitude spread for all but the largest files.
4From a crawl of Alexa’s top 100 websites (Jan 9, 2010), we
found the mean page size (including embedded objects) to be about
350KB and the median to be about 150KB.
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TCP and TFRC or existing variants of queuing mechanisms (RED,
SFQ) address these problems in the sub-packet regime. We now de-
scribe these observations in greater detail using simulations. While
we have performed several simulations under varied conditions, we
present the simplest results that motivate these observations.

2.3.1 Fairness in the sub-packet regime

What happens to flow-level fairness under pathological sharing?
We look at a simple simulation experiment, using a dumbbell topol-
ogy in which flows congest a core link, which uses a simple tail-
drop queue. Every edge node (user) spawns two TCP-SACK flows [21].
All traffic is one-way, reflecting download-centric web browsing.
Since we wish to focus on congestion control dynamics, which are
often obscured by delayed acks, our TCP receivers do not delay
acks. The senders use an on-the-wire packet size of 500 bytes.

As the number of flows increases at the congested link, the over-
all average goodput remains consistently high (greater than 90%),
for varying link bandwidths. But fairness among flows suffers, as
Figure 2 demonstrates using the Jain Fairness Index (JFI) [15]:

fairness =
(
P

xi)
2

n
P

(xi)2

The JFI is a value between 1 and 1/n, with 1 being the best
fairness (exactly equal shares), and 1/n being the worst (one flow
hogs the entire link). JFI values are most readily comparable when
the number of flows is the same across the scenarios being com-
pared; otherwise, interpreting the JFI can be problematic because
worst-case fairness depends on n. We nevertheless use this index
to note deviations from the ideal fairness of 1 since the focus of the
experiment is not to measure the exact amount of unfairness in the
system.

Long-term fairness is high, as seen for the flows that run for
10000 seconds ( 17 minutes). Unfairness over shorter periods of
20 seconds sets in, however, as per-flow fair-share drops below
30Kbps, or, with an RTT (including queueing delay) of about 400ms,
below 3 packets per RTT. The choice of a 20 second window for our
analysis is pragmatic: as expected, fairness becomes worse with
shorter windows and better with longer windows.
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Figure 2: Long- and short-term Jain-fairness as a function of

ideal per-flow fair-share, for different capacity bottleneck links.

To better understand how the network manages and how the sys-
tem distributes bandwidth among sub-packet regime flows, we now
take a closer look at the dynamic behavior of the flow aggregate.
We simulate a 1Mbps link with a propagation RTT of 200ms and
a 200ms packet buffer (1 RTT worth of buffer), leading to a max-
imum observed RTT of 400ms. Figure 3 shows a CDF of flow

goodput when 100 flows are sharing this link (a per-flow fair-share
of 10kbps or 1 packet-per-RTT). Each curve shows average good-
put over a 20-second timeslice.
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Figure 3: CDF, with 100 flows, of TCP goodput in 20-second

slices

We make the following observations. First, in any given slice, at
most 70 flows are active; the remaining 30 flows in every slice get
zero bandwidth. Second, the distribution of goodput among flows is
highly consistent across all the timeslices. While 70% of the flows
are active in any given slice, there are 3 distinct groups of flows in
each slice: 40% of the flows get about 80% of the link, about 30%
of the flows share the remaining 20% of the link, and about 30%
of the flows get “locked out” of the system in each slice. Third, no
flow starves forever, since, as we’ve seen in Figure 2, every flow
gets its fair-share of the link in the long term.

These observations lead us to the following significant result:
While ensuring that all flows get admitted for equal shares in the
long-term, the emergent flow management mechanism in the sys-
tem is to perform arbitrary admission control of flows within shorter
time slices. The admission control helps the few admitted flows
make progress, but its arbitrariness causes the huge download time
variation seen in Figure 1.

2.3.2 Repetitive timeouts

Consider a user who spawns a pool of TCP connections from a
web browser. We define a user-perceived hang as an event where
the user receives no data and observes no progress on the web
browser for some time. The length of a user-perceived hang is the
duration during which none of the browser’s pool of simultaneous
TCP connections receives any data. We look at simulation traces of
such web transfers in the ns2 simulator on a pathologically-shared
link, by creating users that spawn multiple TCP connections each
(a web session pool), all sharing a bottleneck link of 1Mbps ca-
pacity. The propagation RTT is 200ms, and the bottleneck link has
50 packets worth of buffer space (one RTT worth of delay). The
experiment is run for 10 minutes.

Figure 4 shows the longest hang experienced by the different
users in the system. This figure shows only the single longest hang,
not the total of hang times experienced by the user—that number
would be higher.

With four flows per user and 200 active users, all users perceive
at least one hang time longer than 20 seconds, and with 400 users,
almost 50% of the users perceive at least one hang longer than a
minute. While spawning fewer connections per user helps reduce
congestion, Figure 4 also shows that fewer connections worsen the
user experience by increasing the chance that all of a user’s con-
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nections stall at once.5

We briefly describe TCP’s behavior under these web transfers.
First, the TCP flows experience a high loss rate ( 30%) which is
about the same as the average loss rate at the link. Second, an anal-
ysis of the timeout values used by TCP senders for setting their re-
transmission timers reveals huge variance. Exponentially increas-
ing timer backoffs indicate that flows are repeatedly losing packets,
without an opportunity to reset their retransmission timer with a
successful new transmission. These repeated timeouts result in in-
creasing silence periods on the link for those flows.

2.4 Understanding the Alternatives
We now consider the effect of buffer size on fairness, and briefly

discuss what happens with other end-to-end schemes and queueing
mechanisms.

2.4.1 Using larger buffers

In dealing with pathological sharing, Morris [25] observes that
provisioning the bottleneck router to buffer up to 10 packets per
flow restores fairness. Increasing buffer sizes simply trades in de-
lay and delay variance for fairness. Figure 5 shows the tradeoff
required for achieving fairness for a small part of the sub-packet
regime. Increasing buffers is infeasible, particularly deep in the
sub-packet regime. After increasing buffer sizes, the corresponding
increases in delay can be disproportionately high. At 1000 bytes a
packet, with 800 TCP connections competing at a bottleneck link of
2Mbps capacity, the maximum queueing delay necessary to achieve
fairness is 32 seconds—a delay which most traditional applications
are not equipped to deal with, and many others (such as real-time
apps) would find unacceptable. Under low load, these large queues
result also in large RTT variations that can be problematic for ap-
plications and for TCP’s RTT estimator.

2.4.2 TFRC vs. TCP in the sub-packet regime

TFRC uses equation-based congestion control and pacing, which
makes it less bursty than TCP and a distinctly different candidate as
compared to other TCP variants. Pacing allows TFRC to perform
better than TCP in terms of short-term fairness, as shown in Fig-
ure 6. but coarse-grained timers in non-realtime operating systems

5The longest hang time experiences a plateau at 64 seconds which
is an artifact of the longest TCP timeout (RTO) period of 64 sec-
onds in the ns2 simulator [28].
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hinder TFRC’s ability to pace well [13].
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across different loads.

While TFRC’s pacing allows for finer rate control than TCP in
sub-packet regimes, TFRC too breaks down, albeit deeper in the
sub-packet regime than TCP, when it encounters timeouts.

A noteworthy and unintuitive result is that while link utilization
is the same for both, and while TCP is the bursty sender of the two,
TFRC observes a loss rate (20.7%) much higher than TCP does
(12.8%). Bursty TCP senders send more than one packet in a burst,
and a loss episode often results in the entire burst being dropped;
such TCP flows appear locked out and are silent afterwards. With
TFRC however, the pacing of transmissions results in fewer burst
losses within any flow and therefore fewer flows appearing locked
out; consequently, while the flows are fairer to each other, more
packet losses are observed due to more active senders than with
TCP.

2.4.3 AQM and other TCP variants

Using other queueing schemes such as Random Early Detection
(RED) [9] or Stochastic Fair Queueing (SFQ) [23] under the same
settings does not change the behavior of the aggregate by much.
RED and SFQ both need much larger buffer sizes for the number
of flows being managed, and they fall short of their promise in this
regime. XCP [17] offers rate controls, again assuming at least one
packet per RTT. Delay-based end-to-end mechanisms such as TCP
Vegas [6] break down in this domain as well, since the levels of
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flow-level contention and queue occupancy are too high, and Vegas
too assumes at least a packet per RTT of bandwidth. TCP variants
that are in common use—NewReno [8], SACK [21], Compound
TCP [35], Cubic TCP [12]—all implicitly assume that the fair share
is at least one packet in each RTT. A fair share that is less than 1
packet per RTT sends TCP into timeout periods, since that is the
only way TCP can send at at rate lesser than 1 packet per RTT.

3. MODELING TCP IN SUB-PACKET

REGIMES
In this section, we build a simple model particularly tailored for

analyzing the behavior of TCP-NewReno in sub-packet regimes
with high-packet loss-rates and with relatively small average con-
gestion windows. The main purpose of this model is to analyze
the stationary distribution of a set of TCP flows, which provides a
detailed characterization of the state of a TCP connection. In other
words, the model results in the stationary distribution probability,
P (congestion window = W ), for low-values of W , and the
probability of a flow being in a timeout or in a repetitive timeout
phase. Since the model is ergodic, its stationary distribution corre-
sponds to the probability that a set of flows is in a particular set of
states at any point in time; the probability distribution holds irre-
spective of flow size.

There are several key insights we draw from this model. First, all
the transition probabilities in this model are modeled using a single
parameter p, the packet-loss probability at the bottleneck link. Sec-
ond, under conditions where p is roughly a constant, the stationary
distribution probability is only dependent on p and is independent
of RTT . Third, we observe a shift in the stationary distribution
beyond p = 0.1 where the probability of repetitive timeouts sig-
nificantly increases thereby lowering the effective throughput of a
TCP flow.

Our model is different from and extends previously proposed
models of Padhye et al. [27], Fortin-Parisi et al. [10]. The funda-
mental problem with using a generic Markov model for capturing
TCP behavior is state space explosion. One of the advantages in
the sub-packet regime, however, is that state space is constrained
and may be accurately captured using appropriate state transitions.
Our model focuses on high loss rates and captures exponentially
increasing silence periods due to repetitive timeouts, the dynamics
of which are not captured in detail in previous work. The major
challenge in the sub-packet regime model that we address is accu-
rately capturing the timeout behavior of TCP flows, with a simple
model of small windows. We distinguish our model from related
work in more detail in Section 7.

The overall model is described in Figure 8. Given the complex-
ity of the model, we will describe how we arrive at this model in
stages, by first developing the approximate model in Figure 7. First,
we describe how we start with a simple window-state based Markov
model and how we arrive at transition probabilities. Then, we de-
scribe how we model simple timeouts and timeouts with memory
of previous backoff value using three aggregate states. Finally, we
describe how we expand the model to accurately handle timer back-
offs.

3.1 Assumptions
We make the following simplifying assumptions. (1) We as-

sume that the TCP flow is operating in sub-packet regimes, with
most flows having a small congestion window (cwnd) [3] size. We
assume a maximum window size in our model, Wmax; the model
may be extended to higher states by increasing Wmax. (2) We as-
sume that all TCP flows experience medium to high loss-rates in

sub-packet regimes. In addition, we assume that the packet-loss
probability is modeled using a single parameter p; this is a reason-
able assumption since most TCP flows are operating in very low
cwnd sizes (cwnd = 1 or cwnd = 2) resulting in packets of a
TCP flow often being single or spaced-out. (3) We assume that tra-
ditionally “short-lived” flows do not experience the effects of losses
any differently than “long-lived” flows; in sub-packet regimes, even
a short flow that carries about 50 packets appears as a “long-lived”
flow in the network, particularly due to extended silence periods
from timer backoffs. (4) Finally, we assume that the typical slow

start threshold (ssthresh) [3] is small enough that flows operate in
congestion avoidance and not in slow start. With a maximum win-
dow size of Wmax, the maximum ssthresh value is Wmax/2. In
this section, we use Wmax = 6 and ssthresh ≤ 3, but in prac-
tice, this could be extended for larger values. ssthresh ≤ 3 also
simplifies the TCP window increment function to be only additive,
since window doubling does not go beyond 3.

3.2 Starting with a Simple Chain
We begin with a simple congestion window based chain model

for TCP as illustrated in the top part of the approximate model in
Figure 7 where Sn represents a cwnd of n. There are three possible
transitions from Sn:

• Sn → Sn+1, when all transmissions are successful, resulting in
an increase of 1 in the sender’s cwnd;

• Sn → S⌊n/2⌋, when at least one transmission is lost and loss
recovery happens through fast retransmissions;

• Sn → S1, when at least one transmission is lost and loss re-
covery happens through a timeout. Note that S1 represents a
timeout retransmit state, and the only way to reach S1 is through
a timeout.

Since each packet has an independent loss probability p, we have:

P (Sn → Sn+1) = (1 − p)n
(1)

The ability to recover from a packet loss without timeout is de-
pendent on fast retransmissions which is triggered by 3 duplicate
acks (dupACKs); at least 3 packets must be successfully transmit-
ted in the same window to recover from a packet loss. Therefore,
no fast retransmission occurs in our model if a loss occurs when the
sender’s cwnd is smaller than 4.

While TCP-NewReno is equipped to handle multiple losses in a
window [8], studies [30–32] have shown that both TCP-NewReno
and TCP-SACK are unable to handle beyond a threshold of losses
at low congestion windows. Also, if a flow experiences k packet
losses in Sn, to recover using fast retransmit, k loss-free roundtrips
are required to recover fully from all the losses [8]. Thus, in sub-
packet regimes with high-loss rates, handling multiple losses for
low-cwnds is fundamentally hard. In the loss recovery period fol-
lowing the fast retransmit (or, the fast recovery period), dropping
any packet will lead the sender into a timeout period. In our model
with Wmax = 6, we assume that for states S4, S5, S6, we are able
to recover from at most one loss using a fast retransmission, and 2
or more losses result in a timeout at the sender.

The probability that a fast retransmission is triggered in state Sn

is given by the probability that exactly one packet is lost, which
is np(1 − p)n−1. The probability that a retransmission, once trig-
gered, is successful is (1−p). Hence, the fast retransmission transi-
tion probability from state Sn (for n = 4, 5, 6) is given as follows:

P (Sn → S⌊n/2⌋) = np(1 − p)n−1 × (1 − p) (2)

In our model for Wmax = 6, there are two circumstances un-
der which a sender experiences a timeout: (i) when there are two
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Figure 7: The Approximate Model. States S1 and S2 get expanded in the full model.

or more losses in a window, and (ii) when a retransmitted packet
is dropped. This probability is simply computed as the residual
probability:

P (Sn → RTO) = 1 − P (Sn → Sn+1) − P (Sn → S⌊n/2⌋)
(3)

The upper part of Figure 7 shows these transitions put together.
Note that S2 and S3 do not have fast retransmission transitions,
and the sender never reaches a cwnd smaller than 2 through fast
retransmissions [3].

3.3 Modeling Timeouts
Since timeouts are very common in the sub-packet regime, we

capture two forms of timeouts in our model: (a) Simple timeouts;
and (b) Timeouts with memory of the previous backoff value (repet-
itive timeouts). A simple timeout occurs when a TCP sender hits a
timeout without memory of a previous timeout. In other words,
when hitting a timeout, the sender’s retransmission timer has a
backoff value of 1. On hitting the timeout, the backoff value is
doubled to 2. This increased backoff value extends the next time-
out period by twice the base timer value, and “collapses” to the base
value of 1 only when a new roundtrip time measurement is avail-
able, which only happens when cumulative acknowledgements ar-
rive for newly transmitted (not retransmitted) data [28]. A repeti-

tive timeout occurs when a flow hits a timeout before memory of
previous timeouts is lost. In other words, when hitting a timeout,
the sender’s retransmission timer has a backoff value greater than
1. On hitting the timeout, the backoff value is doubled again by the
TCP sender, causing increasingly extended silence periods.

3.3.1 Modeling simple timeouts

In our model with Wmax = 6, we assume that we are in a simple
timeout when we transition to a timeout state from a window size
of 4, 5, 6 (states S4, S5, S6) since at least one new packet has been
cumulatively acknowledged by the time the flow leaves state S3

and reaches S4, thereby resetting the timeout value. For simplicity,
we consider the base timeout period T0 = 2 × RTT . Thus, in
the event of a timeout, we capture the 2 × RTT silence period by
modeling transitions from S4, S5, S6 to the first timeout state S1

through an empty buffer state b0; the transition to state b0 takes one
epoch (RTT ), and the transition to S1 takes another epoch.

3.3.2 Modeling repetitive timeouts

When the flow is in small window states of 2 and 3, the time-
out value may contain memory of the previous timeouts, which is
harder to model due to the Markov chain’s memoryless property.
As follows, we model these timeouts using an aggregate state to

capture the expected wait time before a packet retransmission on a
repetitive timeout.

RFC2988 [28] recommends that the maximum timeout period be
larger than 60 seconds, and the Linux OS uses a 120 second period.
Since these constants are large as compared to typical roundtrip
times, we assume infinite timeout states for simplicity of model-
ing6. Let S1/2 represent the state if the sender enters the timeout
period with the base timer value of 2 × RTT , S1/4 if the timer
has backed-off to 4 × RTT , S1/8 if the timer has backed-off to
8×RTT , and so on. These states will get aggregated, and are thus
not shown in Figure 7.

We model S1/2, S1/4, S1/8, and other other infinite timeout
states as follows. If a sender enters at S1/4, it must wait for 3
idle periods before retransmitting, and if a sender enters S1/8, it
must wait for 7 idle periods before retransmitting. On a successful
retransmission, which happens with probability (1− p), the sender
leaves the timeout state and enters S2, since the new cumulative ac-
knowledgment received in response to the retransmission increases
the sender’s congestion window to 2. On an unsuccessful retrans-
mission, which happens with a probability p, the sender doubles its
timer period and enters the next longer timeout state.

To be able to incorporate these infinite timeout states into our
Markov chain, we aggregate them into two states: a buffer state
(b∗) where the sender waits for an amount of time, and the re-
transmit state introduced earlier (S1), where the timer goes off and
the sender retransmits. With these aggregated states, the following
transitions are possible:

• From a small congestion window (S2, S3) entering a timeout
period, Sn→b∗;

• staying idle, b∗→b∗; and

• transition from idle period into retransmission state, b∗→S1.

The expected wait time at the aggregated buffer state, b∗, may be
calculated as follows. A TCP flow waits for 1 epoch in S1/2 before
entering the retransmit state, 3 epochs in S1/4, 7 epochs in S1/8,
and so on. Thus, once in a timeout period, the expected amount
of time that a TCP flow must wait in the timeout period before
retransmitting is computed as:

Expected idle time =P (S1/2 | RTO) + 3P (S1/4 | RTO)+

7P (S1/8 | RTO) + ... (4)

To resolve equation (4), we note that:

P (S1/2n | RTO) ÷ P (S1/n | RTO) = p (5)

6This assumption leads to our model being limited to p < 0.5, as
discussed in Section 6
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Figure 8: The Full Model. This model is limited to a max cwnd of 6, and can be easily extended to larger cwnds.

We also know that

P (S1/2 | RTO)+P (S1/4 | RTO)+

P (S1/8 | RTO) + ... = 1 (6)

Combining equations (5) and (6), we get

P (S1/2 | RTO)(1 + p + p2 + p3 + ...) = 1

P (S1/2 | RTO) = (1 − p) (7)

Equation (4) may now be resolved using equations (5) and (6) to
give the expected idle time in the timeout state as follows:

Expected idle time = 1(1 − p) + 3p(1 − p) + 7p2(1 − p)+

15p3(1 − p) + ...

= 1/(1 − 2p) (8)

Thus,

P (b∗ → S1) = 1/(Expected idle time in b∗)

= 1 − 2p (9)

Consequently, the probability of staying idle,

P (b∗ → b∗) = 2p (10)

Finally, on a successful retransmission in S1, the sender enters
S2 with a probability of (1− p), while an unsuccessful retransmis-
sion leads the flow back into the timeout state, b∗, with a probability
of p.

3.3.3 Capturing timer backoffs accurately

To model repetitive timeouts more precisely, we need to break
up the timeout retransmit state S1 further as illustrated in the bot-
tom part of the expanded full model in Figure 8. So far we have

assumed that after one successful timeout retransmission, the flow
re-enters the state S2. What this transition misses is that while
the sender’s cwnd grows to 2 on successfully retransmitting after a
timeout, the sender’s backoff value has not yet collapsed, since TCP
needs an ack for a new data transmission (not a retransmission) to
be received to collapse the backoff value.

The approximation used so far of going back to b∗ from S1 on a
timeout while simple, loses information. We know that the sender
has timed-out at least once when the flow is in state S1, so we may
put a larger lower-bound on the amount of time that the sender will
be in an idle state on a subsequent loss.

After one timeout, we arrive at S1 (either with memory or with-
out) and the minimum timeout value is 2 × RTT , resulting in an
expected wait time of 1/(1 − 2p). However, if we experience a
loss at S1, the minimum timeout value is 4 × RTT with a min-
imum wait time of 3 × RTT . This may be viewed as the same
infinite state machine described earlier in equation 4 to represent
infinite timeout states, but starting here with 3 wait states at S1/4.
The aggregate representation of this new infinite state may be mod-
eled using a single state with a corresponding expected wait time
calculated as:

Expected idle time = 3p(1 − p) + 7p2(1 − p)+

15p3(1 − p) + ...

= (3 − 2p)/(1 − 2p) (11)

This may be represented by breaking up the S1 and S2 states
in Figure 7 using an aggregated three state transition diagram of
S1(1r), S2(1r) and b∗(1r), as shown in the bottom left part of Fig-
ure 8 (grayed oval). S1(1r) represents the retransmit state after the
first timeout, S2(1r) represents the state where a new transmission
is attempted after a successful retransmission in S1(1r), and b∗(1r)

7
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Figure 9: Stationary probabilities from the model and from simulations for 6 of the sending states that a TCP connection can be in.

Error bars show 10th and 90th percentile flow values.

represents the aggregate buffer state for idle time on the first repet-
itive timeout (or, a timeout after at least one backoff), which occurs
if the retransmission in S1(1r) is unsuccessful. Note that S2(1r)

now becomes a distinct state, separate from S2. On successful
transmissions of the entire window in S2(1r), which happens with

probability (1−p)2, the flow loses backoff memory and enters state
S3, since we expect new transmissions to be sent in S2(1r).

To model just one repetitive timeout, we could put a loop from
b∗(1r) to S1(1r). However, to model further repetitive timeouts for
better accuracy, we replicate the 3−state diagram to S1(2r), S2(2r)

and b∗(2r)—states representing a second repetitive timeout (or, a
timeout after at least two backoffs)—where the minimum backoff is
8×RTT . The expected wait time is calculated as (7−6p)/(1−2p).
To model a third repetitive timeout, we add three more states with a
minimum timeout of 16 × RTT . This is modeled in Figure 8 with
the states: S1(3r), S2(3r) and b∗(3r).

While more repetitive timeout states may be similarly modeled,
we end our model in Figure 8 at three repetitive timeouts, with a
loop back from b∗(3r) to S1(3r).

4. VALIDATING THE MODEL
We validate the model using ns2 simulations of TCP flows op-

erating in sub-packet regimes. We use a simple network topology
with a single bottleneck link. TCP-SACK is used at the endpoints
and the simulations are run for 5000 seconds each. We measure
loss rate as the fraction of packets that are dropped at the bottle-
neck queue and consider epochs of average-RTT size to estimate
the senders’ probabilities of being in one of the model’s states. We
get the different loss rates shown in the figure by modifying the
number of competing flows at the bottleneck link.

Figure 9 shows the model’s predicted probability distribution for
varying loss rate p, overlaid with results from simulations where
we measure and plot probability against observed loss rate. For this
simulation set, the flows all have a propagation RTT of 200ms, the
bottleneck capacity is 1Mbps, and the bottleneck link is equipped

with an RTT’s worth of buffer (50 packets, at 500 bytes per packet).
Note that “0 sent” is the sum of probabilities for all the b* states

in the model, and similarly “1 sent” and “2 sent” represent the sums
of the S1 states and S2 states, respectively. The other graphs are
self-explanatory7 . Simulation results agree well with our model at
loss rates greater than or equal to p = 0.1. We note that the simu-
lations slightly differ from our model for p < 0.1 for the following
reason: under lower loss rates flows grow to window-sizes larger
than 6, whereas state S6 in our model (Figure 8), representing a
flow window-size of 6, is a “limiting” state. Flow window-sizes
that are larger than 6 are considered anomalies which the model
does not capture. There will thus be some probability that flows
back from S6 return to the lower states in our model that will not
occur in reality when loss rates are low.

Figure 10 shows results for simulations under a variety of link
bandwidths (up to 1Mbps), The buffer size for each simulation was
set to an RTT’s worth. The simulations all agree equally well with
the model. Figure 11 shows results from a simulation set with
mixed-RTT flows. We simply divide the flows evenly into eight
groups, and each group is assigned one of eight RTTs chosen ran-
domly between 200ms and 400ms. While measuring the average
probabilites, note that since the flows have different RTTs, epoch-
sizes used for the different flows are different, and depend on the
flow’s RTT. We find that simulation results agree well with our
model.

We also ran simulations under a variety of propagation RTTs,
and under RED and SFQ AQM schemes, and obtained similar agree-
ment with the model. Note that RED and SFQ do not significantly
influence the behavior of TCP aggregates in the sub-packet regime,
and thus do not impact the agreement of simulation results with the
model.

7We do not show S6 in this graph, but the agreement is similar.
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Figure 10: Validating the model with different bottleneck bandwidths

5. MODEL STRENGTHS AND LIMITATIONS
The most important strength of the model is that it provides de-

tailed information about the states of a TCP flow in the sub-packet
regime. This information is more fine-grained than the expected
throughput (as predicted by the Padhye model [27]) and can be
used to control flow dynamics in the network. Our model predicts
the stationary probability distribution of a flow across its different
states, which is more detailed information and therefore harder to
estimate than an expected value of a single flow parameter such
as throughput. The stationary distribution of a flow across states
is representative of the long-term behavior of a flow; hence, a sin-
gle trial run of a flow may not exactly follow the exact distribution
unless the flow is run over a very long time period. This explains
the variance in the actual observed values in the validation experi-
ments.

Our model is specifically designed to accurately capture the de-
tails of the TCP’s timeout behavior including repetitive timeouts,
idle time, and backoff behavior. While the example version of the
model presented in this Section is for Pmax = 6, we can certainly
extend the model by adding states higher than S6, to more accu-
rately capture TCP behavior with larger windows. However, our
model is not designed for analyzing TCP behavior under low-loss
conditions (p < 0.05) where timeouts are a relatively rare occur-
rence. The model can also be extended to handle other variants and
extensions of TCP such as Early Retransmit [2] (that modify the
loss detection and recovery behavior of TCP) by simply adjusting
the probabilities of the fast-retransmit transitions in the model.

Our model trades-off broader applicability for simplicity. Many
of the states in our model, such as the wait states, are aggregate
states which model the expected behavior across sets of infinite
states. This aggregation achieves two important simplicity goals:
it avoids state space explosion, and it allows for a compact repre-
sentation of the full state diagram. The model still achieves a good
approximation of the stationary probability distribution of a flow
at a given loss rate albeit only within the sub-packet regime. Our
model is also simple in that it depends on only parameter p, the

loss rate. A TCP flow that sends several packets in a short time
period may experience bursty loss patterns; however, a TCP flow
in a sub-packet regime transmits very few packets every RTT and
packet losses for such flows are more spread out. Hence, using
a single loss parameter p is a reasonable approximation for flows
within this regime. The state transitions in the model are at the
granularity of RTT epochs, which was done to make the model in-
dependent of flow RTT. As shown in the validation, the model is
fairly accurate even when flows have different RTTs and when the
bottleneck capacity varies.

Our model is not usable for p > 0.5 due to the self-loop at state
b∗ in Figure 8. While this may appear restrictive, it actually identi-
fies a potential instability in TCP. Our model uses the assumption of
infinite backoffs with TCP’s retransmission timer; without a limit
on the backoffs, TCP becomes unstable for p > 0.5, with expected
timeout idle periods of inf. It is possible to replace the infinite
timeout assumption with a finite timeout to extend the model for
p ≥ 0.5. While this may be of theoretical interest, experience indi-
cates that a loss rate of 50% is not actually sustainable even in the
context of pathological-sharing.

6. DISCUSSION: APPLICATIONS OF THE

MODEL
Our model can be applied in a variety of ways at a middlebox to

both predict the status and behavior of a flow as well as to poten-
tially design non-intrusive middle-box solutions to enhance perfor-
mance in sub-packet regimes. We outline some potential applica-
tions of the model in this section.

6.1 Predicting network and flow state
The most straightforward application of the model is to predict

the state of the flows across a bottleneck link using a middlebox.
Given the aggregate loss rate at the bottleneck, the model currently
gives us the probability of finding a flow in one of several states.
Similarly, the distribution can also be used to estimate the fraction
of flows that are currently in timeout states on a pathologically-

9



 0

 0.2

 0.4

 0.6

 0.8

 1

S
ta

tio
na

ry
 P

ro
ba

bi
lit

y 
D

is
tr

ib
ut

io
n

0 sent

1 sent 2 sent

Model results
Simulation results

 0

 0.2

 0.4

 0.3 0.25 0.2 0.15 0.1 0.05

3 sent

 0.3 0.25 0.2 0.15 0.1 0.05

Loss Probability, p

4 sent

 0.3 0.25 0.2 0.15 0.1 0.05

5 sent

Figure 11: Validating the model with mixed-RTT flows

shared link. While these aggregate measures are useful for monitor-
ing purposes, a key value of the model is in its ability to predict the
possibility of a timeout or a repeated timeout. For a single flow, the
model can be used as a mechanism for estimating the probability of
hitting a timeout state. Specifically, given (i) the aggregate loss rate
at the bottleneck, (ii) the current state of a flow, and (iii) the size of
an epoch (flow RTT), the middlebox can track the number of pack-
ets within each epoch and predict the probability that a flow could
potentially hit a timeout state in the following epoch. All of this in-
formation is available to a middlebox at the pathologically-shared
bottleneck link. Passive RTT estimation techniques can be used to
estimate epoch size for a flow, and aggregate loss probability can
be observed. For a middlebox managing the pathologically-shared
link, this information is particularly useful in advance to implement
a range of different flow-state aware queue management policies.
We outline some of the possible queue management policies next.

6.2 Middlebox Queue Management
A middlebox could leverage the model to control the behavior

of a flow by altering its packet drop policies on a per-flow basis.
For example, a middlebox can use the probability of a packet drop
triggering a flow timeout to dictate the priority of a packet drop (or
transmission) in several ways; we discuss two ways below.

A simple scheduling policy at a middlebox can use different ser-
vice classes for flows based on the probability of a flow hitting a
timeout or a repetitive timeout. More vulnerable flows are placed
in higher service classes and less vulnerable flows are placed in
lower service classes; the scheduling queue management policy at
the middlebox can be careful to drop packets from lower service
class flows before going up to higher service classes.

Our model uses number of losses in an epoch for a flow to pre-
dict its next state; a middlebox could similarly control the state
changes of a flow by controlling losses. In this case, the middlebox
performs per-flow state monitoring and keeps track of how many
packet drops a flow can sustain without a timeout, and uses this
information to make a decision about an impending packet drop at
the bottleneck queue.

While we can thus achieve finer control over packet and drop
priorities using our model at a middlebox, we now show, to a first
degree of approximation, how such control can be effective by out-
lining a simple optimization that prioritizes retransmissions.

Repetitive timeouts are a more serious problem in sub-packet
regimes and they are triggered due to the loss of retransmitted pack-
ets. While packet losses trigger a reduction in window sizes, loss of
retransmitted packets incur the high cost of increasing timeout peri-
ods, resulting in some flows appearing to be “shut-off” for a while,
until the retransmission(s) followed by at least one new transmis-
sion all get through. It is difficult for an endpoint in the flow to
control whether a retransmission gets dropped in the network, but
it is possible for an intelligent router/middlebox at the congested
link to distinguish and prioritize scheduling of retransmissions. In
sub-packet regimes, the ISP providing a pathologically-shared ac-
cess link could implement and deploy such a router/middlebox.

Prioritizing retransmissions can help in enhancing fairness across
flows. We illustrate this using a simple example simulation sce-
nario where several long term flows compete over the 1 Mbps bot-
tleneck link with a buffer of 25 packets and an RTT of 200ms. We
consider two well known queuing methodologies for this test: (a)
Drop-tail; (b) Stochastic Fair Queuing (SFQ). We compare these
queuing mechanisms with and without retransmission prioritiza-
tion. Figure 12 shows the results for the fairness across flows for
various configurations over 20 second timeslices. In all configura-
tions the link is 1Mbps, 200ms RTT, with a total queue size of 25
packets (bandwidth * delay * 1000byte packets). The SFQ imple-
mentation is composed of five separate buffers of each of length 5
packets. The gateway + SFQ consists of five separate buffers each
of length 4 packets along with another buffer of size 5 packets for
our retransmitted packet queue. The gateway + droptail is iden-
tical to gateway + SFQ except the 20 packets of buffer space are
allocated to a single droptail queue.

The main result in this experiment is that our retransmission pri-
oritization (RP) improves upon both SFQ and droptail. A middle-
box that uses our model can thus further improve fairness in the
system through similar packet and drop prioritization.
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7. RELATED WORK
The past three decades have seen a tremendous amount of work

on analysis of TCP congestion control. We outline only work closely
related to ours.

The earliest work on pathological-sharing among TCP flows by
Morris appears about a decade ago [25]. Morris recognizes the lim-
itations of TCP operating in regimes where the fair share is under
a single packet per roundtrip time and provides some insight into
observed flow behavior and aggregate behavior at the bottleneck.
Our paper is an extension of this previous line of analysis. As dis-
cussed in Section 2.4 we find Morris’ solution to be impractical;
our solution is more practical and deployable.

TCP’s loss of fairness under pathological sharing is not a sur-
prise, and has been noted in [16, 20, 29]. We build on these previ-
ous observations, and contribute a more systematic understanding
of the dynamics that dominate in these regimes. Even in simply ob-
serving fairness results from simulations, we find that the emergent
admission control behavior in the short- to medium- term, and long-
term fairness are novel observations that inform our understanding
of the problem.

Prior work in stochastic models for TCP, such as [1, 4, 7, 18,
19,22,24,27,33], derive analytical expressions for the steady-state
throughput of a TCP flow based on its roundtrip time and loss prob-
ability. Of these models, ours is closer to [7, 27], which consider
a discrete-time model and a discrete evolution of the window size.
The Padhye model is a much better fit when the packet loss rates,
p, are relatively small; at high values of p, however, we observe
extended and repetitive timeouts, the dynamics of which are not
captured in detail in the Padhye model. While the Padhye model
provides the expected average throughput, our stationary distribu-
tion is a more complete characterization of the state of a TCP con-
nection. Finally, one subtle difference is that, the value of p in
Padhye model represents the probability of loss indication (or loss
episodes) while we explicitly model the (in)ability of TCP to re-
cover in the face of a bursty loss of several packets.

Our TCP model supplements Markov models for TCP that have
been proposed in [10, 11]. These models focus on TCP behavior
when the packet loss rates are relatively small. Specifically, Fortin-
Parisi-Sericola (F-PS) [10] build an extensive model that is built
to yield expected goodput. Our model yields a detailed character-
ization of the states of a TCP connection, which is fundamentally
harder than finding the expected goodput. Yet, and inspite of the
complexity due to modeling repetitive timeouts, our model is sim-
pler and more intuitive than the F-PS model because we assume the

sub-packet regime, high loss-rates, and small windows.
Work in low bandwidth access links typically assumes a low de-

gree of sharing at the link. For instance, Spring et al. [34] and An-
drews et al. [5] both propose solutions for improving performance
at low bandwidth access links, but both operate under low degrees
of sharing and assume per-flow fair share of at least 1 packet per
RTT.

8. CONCLUSION
The growth in the popularity of the Internet has contributed to

growth in demand of Internet users especially in the developing
world. However, growth in network connectivity has not kept up
with growth in network demand, resulting in pathologically-shared
connectivity becoming common in many parts of the developing
world. The problem of pathological sharing has been further ex-
acerbated by an increase in the complexity of websites, and a cor-
responding increase in the number of TCP connections created by
web browsers. All these factors are contributing to the increased
prevalence and increased importance of sub-packet regimes.

TCP breaks down in the sub-packet regime. As TCP probes for
bandwidth, it cannot send fewer than 1 packet per RTT in a con-
trolled manner. Consequently, in the sub-packet regime, TCP uses
the only coarse-grained mechanism it has available to send at a
lower rate than 1 packet per RTT—timeouts—yielding the individ-
ual and aggregate effects that we studied in this paper.

To the best of our knowledge, our work is the first to formally
characterize the sub-packet regime and highlight its importance.
We characterize TCP behavior in this regime and show that TCP
and its many variants under different queuing conditions result in
severe unfairness, high packet loss rates, and flow silences due to
repetitive timeouts. We have proposed a detailed model to charac-
terize the TCP dynamics that dominate in this regime. We briefly
discussed how this model could be used in practice.

Much work to be done in examining the solution spaces for ad-
dressing transport performance in sub-packet regimes. While we
briefly discuss a potential part of a solution with middleboxes, purely
end-to-end mechanisms, including graceful TCP degradation into
the sub-packet regime, and other full systems solutions, all form
a problem-rich and immediately-relevant area that is yet to be ex-
plored.
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