

PCPs and Hardness of Approximation: Assignment

NYU Computer Science, Spring 2008

Due on Monday, May 5th, 3:30pm; Absolutely no extension

Solve all problems (or as much as you can). Collaboration is allowed, but you must write your own solutions and mention names of your collaborators.

Problem 1

Let $\omega(G)$ denote the size of the largest clique in a graph G . For any positive integer k , let G^k denote the product graph whose vertices are k -tuples of vertices in G and tuples (u_1, u_2, \dots, u_k) and (v_1, v_2, \dots, v_k) are connected iff for every $1 \leq i \leq k$, either $u_i = v_i$ or (u_i, v_i) is an edge in G . Prove that $\omega(G^k) = \omega(G)^k$.

We know from the PCP Theorem that for some constants $\alpha < \beta$ there exists a polynomial time reduction that maps a SAT instance ϕ of size n to an N -vertex graph G such that

$$\begin{aligned}\phi \text{ is satisfiable} &\implies \omega(G) \geq \beta N \\ \phi \text{ is unsatisfiable} &\implies \omega(G) \leq \alpha N.\end{aligned}$$

This shows that MAX-CLIQUE (i.e. the problem of finding the largest clique in a graph) cannot be approximated in polynomial time within factor β/α unless $P = NP$. Using the product graph construction above, show that MAX-CLIQUE cannot be approximated in polynomial time within *any* constant factor unless $P = NP$. *Hint: take the graph G^k for a large enough constant k .*

Now take $k = (\log N)^C$ where C is a large enough constant and express the hardness factor (i.e. $(\beta/\alpha)^k$) as a function of the size of the final (product) graph. Using this, prove that for arbitrarily small constant $\varepsilon > 0$, MAX-CLIQUE on m vertex graphs cannot be approximated in polynomial time within factor $2^{(\log m)^{1-\varepsilon}}$ unless SAT instances of size n can be solved in time $2^{(\log n)^{C'}}$ for some constant C' (C' could depend on ε).

Finally, take $k = O(\log N)$ so that the size of the product graph is $|G|^k = N^{O(\log N)}$ and the hardness gap is $(\beta/\alpha)^k = N^{\Omega(1)}$. Let G' be a random induced subgraph of G^k of size $N' = N^2/\alpha^{2k}$. Using this, show that MAX-CLIQUE on m vertex graphs cannot be approximated in polynomial time within factor m^γ for some constant $\gamma > 0$ unless SAT can be solved in randomized polynomial time. *Hint: Using Chernoff bound, show that with high probability, taking random induced subgraph of G^k essentially preserves the fractional size of the maximum clique. In the “NO case”, you would need to take a union bound over all cliques in G^k . A straightforward upper bound on the number of cliques in G^k is $2^{|G|^k}$ and this union bound would not work. Observe however that it suffices to take a union bound only over the maximal cliques in G^k ; these are product of maximal cliques in G , and there are at most 2^{Nk} many of them.*

Problem 2

Fix $\varepsilon > 0$ to be a small constant. Given a function $f : \{-1, 1\}^n \mapsto \{-1, 1\}$, consider the following test: Pick three inputs x, y, z uniformly and independently at random from $\{-1, 1\}^n$ and an input $\mu \in \{-1, 1\}^n$ as follows: independently for every $1 \leq i \leq n$, the bit μ_i is chosen to be 1 with probability $1 - \varepsilon$ and -1 with probability ε . Let $w = -xyz\mu$, i.e. for every $1 \leq i \leq n$, $w_i = -x_i y_i z_i \mu_i$. Finally

$$\text{Test: } \text{Accept iff } f(x)f(y)f(z)f(w) = -1.$$

Show that if this test accepts with probability $\frac{1}{2} + \delta$, then there must exist $S \subseteq [n]$ such that

$$|S| \neq \emptyset, \quad |S| \leq O\left(\frac{1}{\varepsilon} \log\left(\frac{1}{\delta}\right)\right), \quad |\widehat{f}(S)| \geq \delta.$$

Note that $\widehat{f}(S)$ denotes the Fourier coefficient of f at S . If f is a dictatorship function, what is the probability that the test accepts?

Remark: This test can be used to extend Håstad's 3-bit PCP to a 4-bit PCP where the verifier reads 4 bits and accepts iff the XOR of the bits equals 1 and no “folding” is needed. In Håstad's 3-bit PCP on the other hand, since the proof is “folded”, the acceptance predicate of the verifier is $a \oplus b \oplus c = 0$ half the times and $a \oplus b \oplus c = 1$ half the times.

Problem 3

The “tribes” function $f : \{-1, 1\}^{k2^k} \mapsto \{-1, 1\}$ is defined as follows. The variables are indexed as $\{x_{ij} \mid 1 \leq i \leq 2^k, 1 \leq j \leq k\}$, and

$$\forall x \in \{-1, 1\}^{k2^k}, \quad f(x) := \vee_{i=1}^{2^k} \left(\wedge_{j=1}^k x_{ij} \right).$$

Note that -1 is logical TRUE, 1 is logical FALSE, \vee is logical OR, \wedge is logical AND.

What is (approximately) $\Pr_x [f(x) = 1]$? What is the influence of each variable (correct upto a constant factor)? Recall that

$$\text{Influence}_i(f) := \Pr_x [f(x) \neq f(xe_i)]$$

where e_i denotes the input that is -1 in the i^{th} coordinate and 1 otherwise.

Remark: A celebrated result of Kahn, Kalai and Linial states that every balanced boolean function on n variables must contain a variable with influence at least $\Omega(\log n/n)$. The tribes function shows that this lower bound is optimal upto a constant factor.