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Abstract

Based on a conjecture regarding the power of unique 2-prover-1-round games presented in
[Khot02], we show that vertex cover is hard to approximate within any constant factor better
than 2. We actually show a stronger result, namely, based on the same conjecture, vertex cover
on k-uniform hypergraphs is hard to approximate within any constant factor better than k.

1 Introduction

Minimum vertex cover is the problem of finding the smallest set of vertices that touches all the
edges in a given graph. This is one of the most fundamental NP-complete problems. A simple 2-
approximation algorithm exists for this problem: construct a maximal matching by greedily adding
edges and then let the vertex cover contain both endpoints of each edge in the matching. It can
be seen that the resulting set of vertices indeed touches all the edges and that its size is at most
twice the size of the minimum vertex cover. However, despite considerable efforts, state of the art
techniques can only achieve an approximation ratio of 2 − o(1) [16, 21].

Given this state of affairs, one might strongly suspect that vertex cover is NP-hard to approxi-
mate within 2−ε for any ε > 0. This is one of the major open questions in the field of approximation
algorithms. In [18], H̊astad showed that approximating vertex cover within constant factors less
than 7

6 is NP-hard. This factor was recently improved by Dinur and Safra [10] to 1.36. In a related
result, Arora et al. [1] considered algorithms based on linear programming. They showed an inte-
grality gap of 2 − ε for a large family of linear programs for vertex cover. This implies that many
linear programming based algorithms cannot obtain an approximation ratio better than 2.

We also consider the more general problem of vertex cover on k-uniform hypergraphs. A k-
uniform hypergraph H = (V,E) consists of a set of vertices V and a collection E of k-element
subsets of V called hyperedges (or simply edges). A vertex cover of H is a subset of vertices S ⊆ V
such that every hyperedge in E intersects S, i.e., e ∩ S 6= ∅ for each e ∈ E. An independent set
in H is a subset whose complement is a vertex cover, or in other words, a subset of vertices that
contains no hyperedge entirely within it. The Ek-Vertex-Cover problem is the problem of finding
a minimum size vertex cover in a k-uniform hypergraph. Notice that for k = 2, this problem is the
same as the vertex cover problem on graphs. The simple algorithm presented before can be easily
extended to k-uniform hypergraphs, achieving a factor k approximation. However, as before, the
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best approximation algorithms yield only a tiny improvement, achieving a k − o(1) approximation
ratio [16].

The first explicit hardness result shown for Ek-Vertex-Cover was due to Trevisan [29] who
showed (among other results) an inapproximability factor of k1/19. Holmerin [20] showed that
E4-Vertex-Cover is NP-hard to approximate within (2 − ε). Independently, Goldreich [13] showed
a direct ‘FGLSS’-type [11] reduction (involving no use of the long-code, a crucial component in
most recent PCP constructions) attaining a hardness factor of (2−ε) for Ek-Vertex-Cover for some
constant k. More recently, Holmerin [19] showed that Ek-Vertex-Cover is NP-hard to approximate
within k1−ε, and also that it is NP-hard to approximate E3-Vertex-Cover within factor (3/2 − ε).
Dinur, Guruswami and Khot [7] gave a fairly simple proof of an Ω(k) hardness result for Ek-Vertex-
Cover and a more complicated proof that shows a factor (k− 3− ε) hardness for Ek-Vertex-Cover.
Finally, a recent paper by Dinur et al. [8] improves upon all previous results by showing a (k−1−ε)
hardness result.

With this recent progress on the Ek-Vertex-Cover problem, there is a strong reason to believe
that it is NP-hard to approximate Ek-Vertex-Cover within k − ε for every k ≥ 2. The current
techniques, however, seem very inadequate to prove such a result. In [22], Khot presented the unique
games conjecture as an approach to attack many fundamental open problems. The conjecture deals
with 2-prover-1-round games where two (all-powerful) provers try to convince a probabilistic verifier
that a certain NP-statement is true. The proof system is 1-round, meaning the verifier asks both
the provers one question each and accepts or rejects depending on the provers’ answers. The game
is called unique if the answer of one prover completely determines the answer of the second prover
and vice versa. The conjecture essentially states that it is NP-hard to distinguish whether the
success probability of the provers’ optimal strategy in a unique 2-prover-1-round game is very close
to 1 or very close to 0. Assuming this conjecture, Khot was able to show several new hardness
results including the hardness of the Min-2SAT-Deletion problem. He also observed that a variant
of his conjecture would imply a

√
2 − ε hardness result for vertex cover.

In this paper, we continue this line of research and, assuming the unique games conjecture, we
prove a tight k − ε hardness result for Ek-Vertex-Cover. We obtain this by showing that given a
k-uniform hypergraph that has an independent set of size 1− 1

k −ε, it is hard to find an independent
set of size ε. We remark that for the case k = 2 we obtain a 2− ε hardness result for vertex cover,
giving further evidence that the factor 2 may be the right answer for this problem.

Main techniques: Many of the recent hardness results are shown via constructions of new Proba-
bilistically Checkable Proof systems (PCPs) (see, e.g., [4, 18, 17, 15]). These constructions typically
involve two modules, the so-called Outer PCP and the so-called Inner PCP. The Outer PCP is es-
sentially a 2-prover-1-round game and the Inner PCP is based on long codes and often, the Fourier
analysis of long codes. In almost all of the constructions, the Outer PCP is obtained from the PCP
theorem [3, 2] together with Raz’s parallel repetition theorem [27].

However, this standard recipe hasn’t been very successful in attacking the vertex cover problem.
H̊astad’s 7

6 hardness remained the best known result for a long time. Dinur and Safra [10] were
able to break this barrier by relying on techniques from extremal combinatorics. However, their
approach still doesn’t succeed in getting a hardness factor better than 1.36. Khot [22] observed
that the bottleneck in getting hardness results for vertex cover and a number of other problems
might be in the Outer PCP, a component which has remained untouched so far. His conjecture
basically states that a strong enough Outer PCP exists. On top of such strong Outer PCPs, one
can build Inner PCPs that yield the desired hardness of approximation results.

Khot’s conjecture looks quite promising, at least in light of the lack of any other techniques. We
think that it is worthwhile to investigate which problems could be solved via this conjecture and
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we show that vertex cover is one such problem. We combine this conjecture with the techniques
from Dinur and Safra’s paper [10], which include the biased long code, Friedgut’s Theorem, and
theorems in extremal set theory.

It turns out that we need the unique games conjecture in a stronger form than what is stated
in [22]. A significant contribution of this paper is to show that the stronger form follows from the
original form. Roughly speaking, the original form states that in the good case the provers in the
2-prover-1-round game have a strategy that convinces the verifier with probability close to 1. In the
stronger form, the provers have a strategy such that the verifier accepts whenever both questions
fall inside some set that contains almost all possible questions. A more precise description will be
given later.

Discussion: Recently, many new hardness results have been proved assuming the unique games
conjecture: Khot et al. [23] prove an optimal hardness result of roughly 0.878 for MAX-CUT;
Chawla et al. [6] and independently, Khot and Vishnoi [24] prove super-constant hardness results
for the Sparsest Cut and Multi-Cut problems; Dinur, Mossel, and Regev [9] prove that a variant
of the unique games conjecture implies that it is NP-hard to color 3-colorable graphs with any
constant number of colors. Most of these results are based on our strong form of the unique games
conjecture or variants of it. The fact that the unique games conjecture implies so many hardness
results in a unifying way can be taken as an evidence towards its truth. Further evidence is given by
Khot and Vishnoi [24] who prove an (1− o(1), o(1)) integrality gap for a semidefinite programming
relaxation of the problem underlying the unique games conjecture.

One possible way to disprove the unique games conjecture would be to find a polynomial time
algorithm for the problem underlying the conjecture. Several such algorithms have been suggested
recently, see Trevisan [30], Gupta and Talwar [14], and Charikar et al. [5]. However, none of these
algorithms is strong enough to disprove the conjecture.

Finally, we mention that work on the unique games conjecture has led to unconditional results
in Fourier analysis (the Majority is Stablest Theorem [26]) and lower bounds in metric embeddings
(the disproval of a conjecture of Goemans and Linial that negative type metrics embed into `1 with
constant distortion, see [24]). These results, being independent of the conjecture, indicate that
research on the conjecture is worthwhile, even if the conjecture eventually turns out to be false.

It remains an important open problem to resolve the unique games conjecture. It would also
be interesting to see further implications of it towards hardness of approximation results.

Overview of the paper: In Section 2, we describe the unique games conjecture, introduce tools
for the analysis of set-families, and some theorems from extremal combinatorics. Section 3 explains
the reduction to the stronger form of the conjecture and it is the crux of the paper. Section 4
explains the reduction to hypergraph vertex cover and shares many ideas with previous work such
as [10] and [8].

2 Preliminaries

2.1 The label cover problem

For convenience, from now on we will adopt a more combinatorial terminology, and describe 2-
prover-1-round games as instances of the label cover problem. We represent the provers’ strategy by
a labeling to a set of variables, one variable for each possible question. The verifier is represented
by a probability distribution on pairs of variables along with a relation for each pair, specifying the
acceptance criterion. More formally, an instance of the (bipartite, weighted) label cover problem is
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specified by a tuple Φ = (X,Y,R,Ψ,W ). The sets X and Y contain variables, and we often refer
to variables in X as left variables and to variables in Y as right vertices. The set R is the set of
possible labels. For each x ∈ X, y ∈ Y , Ψ contains one relation ψxy ⊆ R × R and W contains its
weight wxy ≥ 0. A labeling is a function L mapping X ∪ Y to R. A constraint ψxy is said to be
satisfied by a labeling L if (L(x), L(y)) ∈ ψxy.

We denote by w(Φ, x) the sum
∑

y∈Y wxy and by w(Φ) the sum
∑

x∈X,y∈Y wxy. Also, for a
labeling L, the weight of satisfied constraints, denoted by wL(Φ), is the sum of wxy over all x ∈ X
and y ∈ Y such that ψxy is satisfied by L. Similarly, we define wL(Φ, x) as the sum of wxy over all
y ∈ Y such that ψxy is satisfied by L.

The PCP theorem of [3, 2], together with the parallel repetition theorem of [27], show that the
label cover problem is NP-hard in the following strong sense.

Theorem 2.1 ([3, 2, 27]) For any γ > 0 there exists a |R| such that the following is NP-hard.
Given a bipartite weighted label cover instance Φ with label set R and with w(Φ) = 1, distinguish
between the following two cases:

• (YES Case): There exists a labeling L such that wL(Φ) = 1.

• (NO Case): For any labeling L, wL(Φ) ≤ γ.

In other words, it is hard to distinguish between the case where there exists a labeling that satisfies
all constraints, and the case where no labeling satisfies more than a tiny fraction of constraints.
This theorem is at the core of many recent NP-hardness results, including [18, 10].

However, as mentioned before, for the vertex cover problem (as well as several other problems),
constructions based on Theorem 2.1 have failed to yield satisfactory results. To this end, Khot [22]
introduced the unique games conjecture. Essentially, it says that even if we require all constraints
in Ψ to have a very specific form, the problem is still NP-hard. More precisely, we say that a
constraint ψxy ∈ Ψ is unique if for each a ∈ R there exists a unique b ∈ R such that (a, b) ∈ ψxy

and vice versa; in other words, ψxy can be thought of as a matching between labels of x and labels
of y. We say that the instance Φ is unique of all its constraints are unique. The unique games
conjecture of [22] is the following.

Conjecture 2.2 (Bipartite Weighted Unique Games Conjecture) For any ζ, γ > 0 there
exists a |R| such that the following is NP-hard. Given a bipartite weighted unique label cover
instance Φ with label set R and with w(Φ) = 1, distinguish between the following two cases:

• (YES Case): There exists a labeling L such that wL(Φ) ≥ 1 − ζ.

• (NO Case): For any labeling L, wL(Φ) ≤ γ.

Note that we assume ζ > 0 for otherwise the problem can be seen to be solvable in polynomial
time.

2.2 On set families

For a set R, let P (R) denote its power set, i.e., the family of all subsets of R. For a “bias parameter”
0 < p < 1, we define the weight µR

p (F ) of a set F as

µR
p (F )

def
= p|F |(1 − p)|R\F |.
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We omit the superscript R when no confusion is possible. The weight of a family F ⊆ P (R) is
defined as

µR
p (F)

def
=
∑

F∈F

µR
p (F ).

Note that µR
p is a probability measure on P (R). In order to choose a set F from the corresponding

distribution, independently include in F each element of R with probability p. Hence a ‘typical’
set chosen from this distribution is of size roughly p|R|.

For a family F , an element σ ∈ R and a bias parameter p we define the influence of σ on F as

InfRp (F , σ)
def
= µR

p ({F ⊆ R | exactly one of F ∪ {σ}, F \ {σ} is in F}).

As before, the superscript will often be omitted. In words, the influence of σ on F is the probability
that for a random F chosen according to µR

p , σ ‘affects’ the containment of F in F (in the sense
that exactly one of F ∪ {σ}, F \ {σ} is in F). The average sensitivity of a family is defined as the
sum of the influences of all elements,

asp(F)
def
=
∑

σ∈R

Infp(F , σ).

2.2.1 Monotone families and the Russo-Margulis theorem

A family F ⊆ P (R) is called monotone if for any F ′ ⊆ F ⊆ R, F ′ ∈ F implies F ∈ F . Also, for any
family F ⊆ P (R) we define its monotone extension as the family {F ⊆ R | ∃F ′ ⊆ F s.t. F ′ ∈ F}.
It is easy to see that the latter is a monotone family that contains F .

For a monotone family F , one would expect µR
p (F) to be a non-decreasing function of p. Indeed,

this follows from the following theorem, which also shows that the derivative of µR
p (F) is given by

the average sensitivity.

Theorem 2.3 (Russo-Margulis Theorem [28, 25]) If F ⊆ P (R) is a monotone family, then
µp(F) is a non-decreasing and differentiable function of p and

dµp(F)

dp
= asp(F).

2.2.2 Friedgut’s theorem

Definition 2.4 A family F ⊆ P (R) is called a core-family with a core C ⊆ R if there exists a
family H ⊆ P (C) such that

∀ F ∈ P (R), F ∈ F iff F ∩C ∈ H.

In other words, F is a core family with core C if and only if the containment of a set F in F
depends only on F ∩ C. An important theorem of Friedgut states that every family with low
average sensitivity is well-approximated by a core family with small core, where by ‘small’ we mean
that its size does not depend on the size of the universe R.1

1In [12], this theorem is stated in the equivalent formulation of Boolean functions that depend on a few coordinates.
The set of these coordinates is precisely the core.
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Theorem 2.5 (Friedgut’s Theorem [12]) Let F ⊆ P (R) be a family and p be a bias parameter.
Let k = asp(F) and η > 0 be an accuracy parameter. Then there exists a core family F̂ with core

of size at most ck/η and µp(F∆F̂) ≤ η. Here c > 0 is a constant that depends only on p and ∆
denotes the symmetric difference of the two families.

It turns out that for monotone families, the requirement of low average sensitivity can be avoided
if we are willing to slightly shift the bias parameter p. The precise statement of this result appears
in the following theorem. It follows by combining the Russo-Margulis Theorem and Friedgut’s
Theorem, as was done in [10]. We include the proof for completeness.

Theorem 2.6 ([10]) Let 0 < p < 1 and ε, η > 0 be some reals. Then, for any monotone family
F ⊆ P (R) there exists p′ ∈ (p, p + ε) and a core family F̂ ⊆ P (R) with a core C ⊆ R such that

• The average sensitivity of the family F w.r.t. the bias p′ is at most 1
ε , i.e., asp′(F) ≤ 1

ε .

• The size of C depends only on p, ε, η.

• µp′(F∆F̂) < η where ∆ denotes the symmetric difference of the two families.

Proof: By Theorem 2.3 we have
dµq(F)

dq
= asq(F).

Therefore, by the Mean-Value Theorem, there exists p′ ∈ (p, p+ ε) such that

asp′(F) =
dµq(F)

dq

∣∣∣∣
q=p′

=
µp+ε(F) − µp(F)

ε
≤ 1

ε
.

Applying Friedgut’s Theorem, we conclude that F is well-approximated by a core family of small
core with respect to the bias parameter p′.

2.2.3 Two lemmas

We will need the following two lemmas. The first is similar to a lemma in [10]. The second follows
from a theorem of Frankl and can be found as Lemma A.4 in [7]. For completeness, we include
both proofs here.

Lemma 2.7 Let F ⊆ P (R) be a monotone family and let η > 0, 0 < p < 1 be some reals. Let
T ⊆ R be such that for every element σ ∈ T , Infp(F , σ) < η. Define a subfamily F ′ of the family
F as

F ′ def
= {F ∈ F | F \ T ∈ F}.

Then,
µR

p (F ′) ≥ µR
p (F) − η |T | (min(p, 1 − p))−|T |.

Proof: Consider the family

F ′′ def
= {F ⊆ R \ T | F ∪ T ∈ F , F /∈ F}.

By examining the definition of µR
p , it can be seen that

µR
p (F) − µR

p (F ′) ≤ µR\T
p (F ′′).
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By the definition of F ′′, we have that for any set F ∈ F ′′ there exists some D ⊆ T and an element
σ ∈ T such that F ∪ D ∪ {σ} ∈ F but F ∪ D /∈ F . Hence, any set F ∈ F ′′ contributes at least

µ
R\T
p (F ) ·min(p, 1−p)|T | to InfRp (F , σ) for some σ ∈ T . It remains to notice that the total influence

of elements in T is at most |T | · η.

For our second lemma, we will need the following theorem of Frankl.

Theorem 2.8 Let F ⊆ P (R) where |R| = n and every set in the family F has size m. Assume
that every k sets in the family have nonempty intersection and n > mk/(k − 1). Then

|F| ≤
(
n− 1

m− 1

)

Note that the family of all sets of size m containing one fixed element has size
(n−1
m−1

)
.

Lemma 2.9 Let ε > 0 be an arbitrarily small constant, k ≥ 2 some integer, and define p =
1 − 1

k − ε. Then, for a sufficiently large universe R, the following holds. For any F ⊆ P (R) such
that µp(F) ≥ 1 − 1

k there exist k sets in the family F whose intersection is empty.

Proof: Let n = |R| be the size of the universe. Assume on the contrary that every k sets in the
family F have nonempty intersection. Partition the family F according to different set-sizes.

Fi
def
= {F | F ∈ F , |F | = i}.

With the bias parameter p, the total weight of all sets of size at least (p + ε)n is less than ε when
the universe is large enough. Hence

µp(F) < ε+
∑

m<(p+ε)n

µp(Fm).

For m < (p + ε)n, we have n > mk/(k − 1). Since every k sets in the family Fm have a nonempty
intersection, applying Frankl’s Theorem, we get

|Fm| ≤
(
n− 1

m− 1

)
.

Noting that every set in Fm has weight pm(1 − p)n−m we have

µp(F) < ε+
∑

m<(p+ε)n

(
n− 1

m− 1

)
pm(1 − p)n−m

≤ ε+ p

(
∑

m

(
n− 1

m− 1

)
pm−1(1 − p)(n−1)−(m−1)

)

= ε+ p = 1 − 1

k

which gives a contradiction.

7



3 Strong Unique Games Conjecture

Our goal in this section is to describe the strong form of the unique games conjecture, and prove
that it follows from the original conjecture. But first, we describe two variants of the label cover
problem. The first variant we consider is that of unweighted label cover instances. Such an instance
is given by a tuple Φ = (X,Y,R,Ψ, E). The multiset E includes pairs (x, y) ∈ X × Y and we
can think of (X,Y,E) as a bipartite graph (possibly with parallel edges). For each (x, y) ∈ E, Ψ
includes a constraint ψxy.

In our second variant, the instances are (possibly) not bipartite. Such instances are given by a
tuple Φ = (X,R,Ψ, E) where X is a set of vertices, E is a multiset of pairs (x1, x2) ∈ X ×X, and
Ψ includes a constraint ψx1x2 for each (x1, x2) ∈ E. Here, a labeling is a function from X to R.

Finally, we define a t-labeling (in the non-bipartite case) as a function L that labels each variable
x ∈ X with a set of values L(x) ⊆ R such that |L(x)| ≤ t for all x ∈ X. A t-labeling L is said to
satisfy a constraint ψx1x2 if and only if there exists a ∈ L(x1), b ∈ L(x2) such that (a, b) ∈ ψx1x2 .

Conjecture 3.1 (Strong Unique Games Conjecture) For any ζ, γ > 0 and t ∈ N there exists
some |R| such that the following is NP-hard. Given a non-bipartite unweighted unique label cover
instance Φ = (X,R,Ψ, E) distinguish between the following two cases:

• (YES Case): There exists a labeling L and a set X0 ⊆ X, |X0| ≥ (1 − ζ)|X|, such that L
satisfies all constraints between variables of X0.

• (NO Case): For any t-labeling L and any set X0 ⊆ X, |X0| ≥ γ|X|, not all constraints
between variables of X0 are satisfied by L.

Our aim in this section is to prove the following theorem.

Theorem 3.2 Conjecture 2.2 implies Conjecture 3.1.

The proof follows by combining Lemmas 3.3, 3.4, 3.6, and 3.8. Each lemma presents an elemen-
tary transformation between variants of the label cover problem. The first transformation creates
a (weighted, bipartite, unique) label cover instance in which all the X variables have the same
weight.

Lemma 3.3 There exists an efficient procedure that given a weighted bipartite unique label cover
instance Φ = (X,Y,R,Ψ,W ) with w(Φ) = 1 and a constant `, outputs a weighted bipartite unique
label cover instance Φ′ = (X ′, Y,R,Ψ′,W ′) with the following properties:

• For all x′ ∈ X ′, w(Φ′, x′) = 1.

• For any ζ ≥ 0, if there exists a labeling L to Φ such that wL(Φ) ≥ 1 − ζ then there exists a

labeling L′ to Φ′ in which 1−
√

(1 + 1
`−1)ζ of the variables x′ in X ′ satisfy that wL′(Φ′, x′) ≥

1 −
√

(1 + 1
`−1)ζ.

• For any β, γ > 0, if there exists a labeling L′ to Φ′ in which β of the variables x′ in X ′ satisfy
wL′(Φ′, x′) ≥ γ, then there exists a labeling L to Φ such that wL(Φ) ≥ (1 − 1

` )βγ.

Proof: Given Φ as above, we define Φ′ = (X ′, Y,R,Ψ′,W ′) as follows. The set X ′ includes k(x)
copies of each x ∈ X, x(1), . . . , x(k(x)) where k(x) is defined as b` · |X| · w(Φ, x)c. For every x ∈ X,
y ∈ Y and i ∈ {1, . . . , k(x)} we define ψ′

x(i)y
as ψxy and the weight w′

x(i)y
as wxy/w(Φ, x). Notice
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that w(Φ′, x′) = 1 for all x′ ∈ X ′ and that (`− 1)|X| ≤ |X ′| ≤ `|X| since w(Φ) = 1. Moreover, for
any x ∈ X, y ∈ Y , the total weight of constraints created from ψxy is k(x)wxy/w(Φ, x) ≤ `|X|wxy.

We now prove the second property. Given a labeling L to Φ that satisfies constraints of weight
at least 1−ζ, consider the labeling L′ defined by L′(x(i)) = L(x) and L′(y) = L(y). By the property
mentioned above, the total weight of unsatisfied constraints in Φ′ is at most `|X|ζ. Since the total
weight in Φ′ is at least (`− 1)|X|, we obtain that the fraction of unsatisfied constraints is at most

(1 + 1
`−1)ζ. Hence, by a Markov argument, we obtain that for at least 1 −

√
(1 + 1

`−1)ζ of the X ′

variables wL′(Φ′, x) ≥ 1 −
√

(1 + 1
`−1)ζ.

We now prove the third property. Assume we are given a labeling L′ to Φ′ for which β of
the variables satisfy wL′(Φ′, x′) ≥ γ. We claim that this implies that there exists a labeling
L′′ to Φ′ for which β of the variables satisfy wL′′(Φ′, x′) ≥ γ and moreover, for every x ∈ X,
L′′(x(1)), . . . , L′′(x(k(x))) are all the same. Indeed, this holds since the constraints between x(i) and
the Y variables are the same for all i ∈ {1, . . . , k(x)} so we can define L′′(x(i)) as the ‘best’ labeling
among L′(x(1)), . . . , L′(x(k(x))). We now define the labeling L as L(x) = L′′(x(1)). The weight of
constraints satisfied by L is

∑

x∈X

wL(Φ, x) ≥ 1

`|X|
∑

x∈X

k(x) · wL(Φ, x)/w(Φ, x)

=
1

`|X|
∑

x′∈X′

wL′′(Φ′, x′)

≥ 1

`|X|β|X
′|γ ≥

(
1 − 1

`

)
βγ

where the first inequality follows from the definition of k(x).

The second transformation creates an unweighted label cover instance. Moreover, the instances
created by this transformation are left-regular, in the sense that the number of constraints (x, y) ∈ E
incident to each x ∈ X is the same.

Lemma 3.4 There exists an efficient procedure that given a constant ` and a weighted bipartite
unique label cover instance Φ = (X,Y,R,Ψ,W ) with w(Φ, x) = 1 for all x ∈ X, outputs an
unweighted bipartite unique label cover instance Φ′ = (X,Y,R,Ψ′, E′) with the following properties:

• All left degrees are equal to α = `|Y |.

• For any β, ζ > 0, if there exists a labeling L to Φ such that wL(Φ, x) ≥ 1− ζ for at least 1−β
of the variables in X, then there exists a labeling L′ to Φ′ in which for at least 1 − β of the
variables in X, at least 1 − ζ − 1/` of their incident constraints are satisfied.

• For any β, γ > 0, if there exists a labeling L′ to Φ′ in which β of the variables in X have at
least γ of their incident constraints satisfied, then there exists a labeling L to Φ such that for
β of the variables in X, wL(Φ, x) > γ − 1/`.

Proof: We define the instance Φ′ = (X,Y,R,Ψ′, E′) as follows. For each x ∈ X, choose some
y0(x) ∈ Y such that wxy0(x) > 0. For every x ∈ X, y 6= y0(x), E

′ contains bαwxyc edges from x to y
associated with the constraint ψxy. Moreover, for every x ∈ X, E′ contains α−∑y∈Y \{y0(x)}bαwxyc
edges from x to y0(x) associated with the constraint ψxy0(x). Notice that all left degrees are equal
to α. Moreover, for any x, y 6= y0(x), we have that the number of edges between x and y is at most
αwxy and the number of edges from x to y0(x) is at most αwxy0(x) + |Y | = α(wxy0(x) + 1/`).
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Consider a labeling L to Φ and let x ∈ X be such that wL(Φ, x) ≥ 1 − ζ. Then, in Φ′, the
same labeling satisfies that the number of incident constraints to x that are satisfied is at least
(1− ζ − 1/`)α. Finally, consider a labeling L′ to Φ′ and let x ∈ X have γ of its incident constraints
satisfied. Then, wL′(Φ, x) > γ − 1

` .

In the third lemma we modify a left-regular unweighted label cover instance so that it has
the following property: if there exists a labeling to the original instance that for many variables
satisfies many of their incident constraints, then the resulting instance has a labeling that for many
variables satisfies all their incident constraints. But first, we prove a combinatorial claim.

Claim 3.5 For any integer `, finite set R, and real 0 < γ < 1
`2

, let F ⊆ R be a multiset with
the property that no element i ∈ R appears more than γ|F | times in F . Then, the probability that
a sequence of elements i1, i2, . . . , i` chosen uniformly from F (with repetitions) contains no two
identical elements is at least 1 − `2γ.

Proof: By the union bound, it suffices to prove that Pr[i1 = i2] ≤ γ. This follows by fixing i1 and
using the assumption on F .

Lemma 3.6 There exists an efficient procedure that given an unweighted bipartite unique label
cover instance Φ = (X,Y,R,Ψ, E) with all left-degrees equal to some α, and a constant `, outputs an
unweighted bipartite unique label cover instance Φ′ = (X ′, Y,R,Ψ′, E′) with the following properties:

• All left degrees are equal to `.

• For any β, ζ ≥ 0, if there exists a labeling L to Φ such that for at least 1− β of the variables
in X 1 − ζ of their incident constraints are satisfied, then there exists a labeling L′ to Φ′ in
which (1 − ζ)`(1 − β) of the X ′ variables have all their ` constraints satisfied.

• For any β > 0, 0 < γ < 1
`2

, if in any labeling L to Φ at most β of the variables have γ of their
incident constraints satisfied, then in any labeling L′ to Φ′, the fraction of satisfied constraints
is at most β + 1

` + (1 − β)`2γ.

Proof: We define Φ′ = (X ′, Y,R,Ψ′, E′) as follows. For each x ∈ X, consider its neighbors
(y1, . . . , yα) listed with multiplicities. For each sequence (yi1, . . . , yi`) where i1, . . . , i` ∈ {1, . . . , α}
we create a variable in X ′. This variable is connected to yi1, . . . , yi` with the same constraints as
x, namely ψxyi1

, . . . , ψxyi`
. Notice that the total number of variables created from each x ∈ X is

α`. Hence, |X ′| = α`|X|.
We now prove the second property. Assume that L is a labeling to Φ such that for at least

1 − β of the variables in X, 1 − ζ of their incident constraints are satisfied. Let L′ be the labeling
to Φ′ assigning to each of the variables created from x ∈ X the value L(x) and for each y ∈ Y the
value L(y). Consider a variable x ∈ X that has 1− ζ of its incident constraints satisfied and let Yx

denote the set of variables y ∈ Y such that ψxy is satisfied. Then among the variables in X ′ created
from x, the number of variables that are connected only to variables in Yx is at least α`(1 − ζ)`.
Therefore, the total number of variables all of whose constraints are satisfied by L′ is at least

α`(1 − ζ)`(1 − β)|X| = (1 − ζ)`(1 − β)|X ′|.

We now prove the third property. Assume that in any labeling L to Φ at most β of the X
variables have γ of their incident constraints satisfied. Let L′ be an arbitrary labeling to Φ′. For
each x ∈ X define Fx ⊆ R as the multiset that contains for each constraint incident to x the
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(unique) label to x that, together with the labeling to the Y variables given by L′, satisfies this
constraint. So Fx contains α elements. Moreover, our assumption above implies that for at least
1 − β of the variables x ∈ X, no element i ∈ R appears more than γ|Fx| times in Fx. By Claim
3.5, for such x, at least 1 − `2γ fraction of the variables in X ′ created from x have the property
that it is impossible to satisfy more than one of their incident constraints simultaneously. Hence,
the number of constraints in Φ′ satisfied by L′ is at most

α` · β · |X| · `+ α`(1 − β)|X|
(
(1 − `2γ) + (`2γ) · `

)

= |X ′|
(
β`+ (1 − β)(1 − `2γ) + (1 − β)(`2γ)`

)

≤ |E′|
(
β +

1

`
+ (1 − β)`2γ

)
.

The last lemma transforms a bipartite label cover into a non-bipartite label cover. We first
prove a simple combinatorial claim.

Claim 3.7 Let A1, . . . , AN be pairwise intersecting sets of size at most T . Then there exists an
element contained in at least N/T of the sets.

Proof: All sets intersect A1 in at least one element. Since |A1| ≤ T , there exists an element of A1

contained in at least N/T of the sets.

For the following lemma, recall that a t-labeling labels each variable with a set of at most t
labels. Recall also that a constraint on (x1, x2) is satisfied by a t-labeling L if there are labels
a ∈ L(x1) and b ∈ L(x2) such that (a, b) satisfies the constraint.

Lemma 3.8 There exists an efficient procedure that given an unweighted bipartite unique label
cover instance Φ = (X,Y,R,Ψ, E) with all left-degrees equal to some `, outputs an unweighted
unique label cover instance Φ′ = (X,R,Ψ′, E′) with the following properties:

• For any β ≥ 0, if there exists a labeling L to Φ in which 1 − β of the X variables have all
their ` incident constraints satisfied, then there exists a labeling to Φ′ and a set of 1 − β of
the variables of X such that all the constraints between them are satisfied.

• For any β > 0 and integer t, if there exists a t-labeling L′ to Φ′ and a set of β variables of
X such that all the constraints between them are satisfied, then there exists a labeling L to Φ
that satisfies at least β/t2 of the constraints.

Proof: For each pair of constraints (x1, y), (x2, y) ∈ E that share a Y variable we add one constraint
(x1, x2) ∈ E′. This constraint is satisfied when there exists a labeling to y that agrees with the
labeling to x1 and x2. More precisely,

ψ′
x1x2

=
{
(a1, a2) ∈ R×R

∣∣∣ ∃b ∈ R (a1, b) ∈ ψx1y ∧ (a2, b) ∈ ψx2y

}
.

Notice that since the constraints in Ψ are unique, the constraints in Ψ′ are also unique.
We now prove the first property. Let L be a labeling to Φ and let C ⊆ X be of size |C| ≥

(1−β)|X| such that all constraints incident to variables in C are satisfied by L. Consider the labeling
L′ to Φ′ given by L′(x) = L(x). Then, we claim that L′ satisfies all the constraints in Φ′ between
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variables of C. Indeed, take any constraint between two variables x1, x2 ∈ C. Assume the constraint
is created as a result of some y ∈ Y . Then, since (L(x1), L(y)) ∈ ψx1y and (L(x2), L(y)) ∈ ψx2y, we
also have (L(x1), L(x2)) ∈ ψ′

x1x2
.

It remains to prove the second property. Let L′ be a t-labeling to Φ′ and let C ⊆ X be a set of
variables of size |C| ≥ β|X| with the property that any constraint between variables of C is satisfied
by L′. We first define a t-labeling L′′ to Φ as follows. For each x ∈ X, we define L′′(x) = L(x). For
each y ∈ Y , we define L′′(y) ∈ R as the label that maximizes the number of satisfied constraints
between C and y. We claim that for each y ∈ Y , L′′ satisfies at least 1/t of the constraints between
C and y. Indeed, for each constraint between C and y consider the set of labels to y that satisfy it.
These sets are pairwise intersecting since all constraints in Φ′ between variables of C are satisfied
by L′. Moreover, since Φ is a unique label cover, these sets are of size at most t. Claim 3.7 asserts
the existence of a labeling to y that satisfies at least 1/t of the constraints between C and y. Since
at least β of the constraints in Φ are incident to C, we obtain that L′′ satisfies at least β/t of the
constraints in Φ.

To complete the proof, we define a labeling L to Φ by L(y) = L′′(y) and L(x) chosen uniformly
from L′′(x). Since |L′′(x)| ≤ t for all x, the expected number of satisfied constraints is at least
β/t2, as required.

4 Reduction to Vertex Cover in k-Uniform Hypergraphs

Throughout this section, we fix some ε, δ > 0 and k ≥ 2. The reader might wish to think of the case
k = 2 at first reading. Our aim is to show a reduction from the problem described in Conjecture 3.1
to the Ek-Vertex-Cover problem. The vertices of the hypergraph we construct are weighted. One
can obtain an unweighted hypergraph by using standard techniques (see, e.g., [10]). In the YES
case, the hypergraph produced by the reduction contains an independent set of weight 1 − 1

k − 2ε
and in the NO case, the hypergraph contains no independent set of weight δ. It is easy to see
that this implies the hardness of approximating Ek-Vertex-Cover to within any constant below k,
assuming Conjecture 3.1.

4.1 Construction of the hypergraph

We define p = 1 − 1
k − ε as a bias parameter. The input to the reduction is a non-bipartite

unweighted unique label cover instance Φ = (X,R,Ψ, E) as given by Conjecture 3.1 with parameters
ζ = ε, γ = δ/2 and t = t(k, ε, δ) which will be chosen later. Notice that |R| depends on ζ, γ and t
and hence it is crucial that t does not depend on |R|.

The set of vertices is defined to be X ×P (R). Hence, a vertex is a pair (x, F ) where x ∈ X is a
variable and F is a subset of R. We define the block of a variable x ∈ X as the set of vertices that
correspond to x, i.e.,

B[x]
def
= {(x, F ) | F ⊆ R}.

The weight of a vertex (x, F ) is defined to be

1

|X| · µ
R
p (F ).

Thus the sum of the weights of all the vertices in the hypergraph equals 1.
Now we define the edges of the hypergraph. For any constraint ψx1x2 in Ψ we define the following

edges between the block B[x1] and the block B[x2]:
{
{(x1, G), (x2, F1), (x2, F2), . . . , (x2, Fk−1)}

∣∣∣ (G× ∩k−1
i=1 Fi) ∩ ψx1x2 = ∅

}
.
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In words, we create an edge {(x1, G), (x2, F1), (x2, F2), . . . , (x2, Fk−1)} whenever there are no a ∈ G,
b ∈ ∩k−1

i=1 Fi that satisfy (a, b) ∈ ψx1x2. Notice that every edge contains exactly k vertices, one vertex
from the block B[x1] and k− 1 vertices from the block B[x2]. Also note that, as a result of parallel
edges in E, we can have edges between B[x1] andB[x2] that correspond to more than one constraint.

4.2 YES case

Assume that Φ has a labeling L and a set of variables X0 ⊆ X, |X0| ≥ (1− ζ)|X|, such that all the
constraints between variables in X0 are satisfied by L. We claim that

IS = {(x, F ) | x ∈ X0, L(x) ∈ F}

is an independent set. Consider any edge {(x1, G), (x2, F1), . . . , (x2, Fk−1)} and let ψx1x2 be the
constraint it corresponds to. Assume on the contrary that all its vertices are in IS. Clearly, this
implies that x1 ∈ X0 and x2 ∈ X0. Hence, ψx1x2 is satisfied by L and we have (L(x1), L(x2)) ∈
ψx1x2. But since L(x1) ∈ G and L(x2) ∈ Fi for all i = 1, . . . , k − 1, this edge cannot exist in our
hypergraph and we reach a contradiction.

To bound the weight of IS, note that for every x ∈ X0, µ
R
p (IS ∩B[x]) = p (where we think of

IS ∩B[x] as a subset of P (R)). Hence the weight of IS is

|X0|
|X| · p ≥ (1 − ζ) ·

(
1 − 1

k
− ε
)
≥ 1 − 1

k
− 2ε

where we used ζ = ε.

4.3 NO case

In this subsection we complete the proof by showing that if the hypergraph contains an independent
set of weight δ then there exists a t-labeling L to Φ and a set X∗ ⊆ X, |X∗| ≥ γ|X|, such that all
constraints between variables in X∗ are satisfied by L.

So in the following, assume that the hypergraph contains an independent set I of weight δ. For
every variable x ∈ X, let

F [x] = {F ⊆ R | (x, F ) ∈ I}.
Our first observation is that we can assume without loss of generality that for all x ∈ X, F [x] is a
monotone family. To see this, take any independent set I and for each x ∈ X replace I ∩B[x] with
its monotone extension (when considered as a subset of P (R)). Let I ′ ⊇ I denote the resulting
set. Clearly, its weight is at least that of I. Moreover, we claim that I ′ is still an independent set.
To prove this, assume on the contrary that there exists an edge {(x1, G

′), (x2, F
′
1), . . . , (x2, F

′
k−1)}

all of whose vertices are in I ′. By definition of I ′, there exist G ⊆ G′, F1 ⊆ F ′
1, . . . , Fk−1 ⊆ F ′

k−1

such that all vertices of {(x1, G), (x2, F1), . . . , (x2, Fk−1)} are in I. Moreover, this tuple forms an
edge since (G× ∩k−1

i=1 Fi) ∩ ψx1x2 ⊆ (G′ × ∩k−1
i=1 F

′
i ) ∩ ψx1x2 = ∅ and we reach a contradiction.

Let X∗ be the set of variables x ∈ X for which µR
p (F [x]) ≥ δ/2, i.e., a weight of at least δ/2 of

the total weight in the block B[x] belongs to the independent set I. By an averaging argument, we
have |X∗| ≥ δ|X|/2. The next lemma completes the proof. It shows that there exists a t-labeling L
that satisfies all the constraints between variables in X∗. Its proof is given in the next subsection.

Lemma 4.1 Given I and X∗ as above, there exists a t = t(k, ε, δ) and non-empty sets of labels
L[x] ⊆ R for every x ∈ X∗ such that

• ∀ x ∈ X∗, |L[x]| ≤ t
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• For any constraint ψx1x2 ∈ Ψ with both x1, x2 ∈ X∗, there exist a ∈ L[x1], b ∈ L[x2], such
that (a, b) ∈ ψx1x2.

4.4 Proof of Lemma 4.1

We start with an overview of the proof. For each x ∈ X∗ we define the set L[x] based on the
family F [x]. Since the family is monotone, it has low average sensitivity (after a slight shifting
of the bias parameter) and hence it is approximated by a core-family F̂ [x] with a core of “small”
size. Since the core essentially captures the family F [x], it would be natural to define L[x] to be
the core. However, for the sake of analysis, we need to also include in L[x] all elements that have
non-negligible influence on the family F [x].2 Recall that the average sensitivity is defined as the
sum of the influences, and hence the number of elements that have non-negligible influence on F [x]
is not too large. Thus the set L[x] is not too large.

Next, we show that if ψx1x2 ∈ Ψ is any constraint with both x1, x2 ∈ X∗, then there exist
a ∈ L[x1], b ∈ L[x2], such that (a, b) ∈ ψx1x2. To simplify the notation, we assume that the unique
constraint ψx1x2 is of the form {(a, a) | a ∈ R}, i.e., the identity constraint. The proof for the
general case is essentially identical and follows by applying to F [x2] a permutation of the elements
of R. With this assumption in place, our aim is to show that L[x1] ∩ L[x2] 6= ∅.

Since I is an independent set, every set in F [x1] and every k− 1 sets in F [x2] have a nonempty
intersection. This seems to suggest that the cores of F̂ [x1] and of F̂ [x2] should have a nonempty
intersection. To see why, notice that for any two nonempty core families F1,F2 with disjoint cores,
one can find a set in F1 and a set in F2 that are disjoint. However, we are able to prove this only
after including all influential elements as well, i.e., we show that L[x1]∩L[x2] 6= ∅. We now proceed
with the rather technical formal proof.

Let η = δ/(16k). Applying Theorem 2.6, we obtain

Lemma 4.2 For every variable x ∈ X∗, there exists a real number p[x] ∈ (1 − 1
k − ε, 1 − 1

k − ε
2 )

and a core-family F̂ [x] ⊆ P (R) with core C[x] such that

• The average sensitivity asp[x](F [x]) ≤ 2
ε .

• The size of C[x] is at most t0 = t0(k, ε, δ) (and crucially, t0 is independent of |R|).

• µR
p[x](F [x] ∆ F̂ [x]) < η, and in particular µR

p[x](F̂ [x]) ≥ δ/2 − η ≥ δ/4.

Let η′ = η/(t0 · (2k)t0) be a threshold parameter. For every x ∈ X∗, we define Infl[x] ⊆ R \C[x]
as the set of elements whose influence on the family F [x] is at least η′, i.e.,

Infl[x] = {σ ∈ R \ C[x] | Infp[x](F [x], σ) ≥ η′}.

Since F [x] has average sensitivity at most 2
ε and the average sensitivity is simply the sum of

influences of all the elements, it follows that the size of Infl[x] is at most 2
η′ε . Finally, we define the

set L[x] as

L[x]
def
= C[x] ∪ Infl[x].

Clearly, L[x] has size at most t
def
= t0 + 2

η′ε . Notice that, as promised, t depends only on k, ε, δ and
is independent of |R|.

2In [10], the union of the core and the set of all elements with non-negligible influence is referred to as the “extended
core”.
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R

C[x1] Infl[x1] C[x2] Infl[x2]

R′ R′

L[x1] L[x2]

Figure 1: Subsets of R

Fix some constraint ψx1x2 ∈ Ψ with both x1, x2 ∈ X∗. To finish the proof of Lemma 4.1, it
remains to show that there exist a ∈ L[x1], b ∈ L[x2], such that (a, b) ∈ ψx1x2. For simplicity, we
assume in the following that the unique constraint ψx1x2 is of the form {(a, a) | a ∈ R}, i.e., the
identity constraint. The proof for the general case is essentially identical and is left to the reader.
With this assumption in place, our aim is to show that L[x1] ∩ L[x2] 6= ∅.

Assume on the contrary that L[x1]∩L[x2] = ∅. Our goal in the rest of the proof is to exhibit an
edge {(x1, G), (x2, Fi)

k−1
i=1 } all of whose vertices are in the supposed independent set I, thus giving

a contradiction. We define R′ as R \ (C[x1]∪C[x2]). See Figure 1 for an illustration of the subsets
of R that appear in this proof. We begin with a lemma.

Lemma 4.3 There exists U0 ⊆ C[x1] such that defining H[x1] ⊆ P (R′) as

H[x1]
def
= {H ⊆ R′ | U0 ∪H ∈ F [x1] }

we have µR′

p[x1]
(H[x1]) ≥ 1 − 8η/δ.

Proof: The assumption L[x1] ∩ L[x2] = ∅ implies in particular that C[x2] ∩ L[x1] = ∅. Hence,
every element of C[x2] has influence at most η′ on the family F [x1]. Define F ′[x1] ⊆ F [x1] as

F ′[x1]
def
= {F ∈ F [x1] | F \ C[x2] ∈ F [x1]}.

Then F ′[x1] is ‘independent’ of C[x2] in the sense that the containment of any F in F ′[x1] depends
only on F \ C[x2]. Applying Lemma 2.7, we get

µR
p[x1]

(F [x1] \ F ′[x1]) ≤ η′ · |C[x2]| · (min(p[x1], 1 − p[x1]))
−|C[x2]|

≤ η′ · t0 · (min(p[x1], 1 − p[x1]))
−t0

≤ η′ · t0 · (2k)t0 = η

by our choice of η′. It follows that

µR
p[x1]

(F̂ [x1] \ F ′[x1]) ≤ µR
p[x1]

(F̂ [x1] \ F [x1]) + µR
p[x1]

(F [x1] \ F ′[x1]) < 2η.

Intuitively, this says that except for some small measure 2η, F̂ [x1] is contained in F ′[x1]. We use
this, and the fact that the measure of the core family F̂ [x1] is at least δ/4 � 2η to conclude that
there exists a set U0 ⊆ C[x1] such that for almost all D ⊆ R \ C[x1] (under the measure µp[x1]) we
have that U0 ∪D is in F ′[x1]. More precisely,

2η > µR
p[x1]

(F̂ [x1] \ F ′[x1])

=
∑

U⊆C[x1]

µR
p[x1]

({D ⊆ R | D ∩C[x1] = U and D ∈ F̂ [x1] \ F ′[x1]})

=
∑

U⊆C[x1], U∈F̂ [x1]

µ
C[x1]
p[x1]

(U) · µR\C[x1]
p[x1]

({D ⊆ R \ C[x1] | (U ∪D) /∈ F ′[x1]})
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where the last equality holds since the condition D ∈ F̂ [x1] is equivalent to D ∩C[x1] ∈ F̂ [x1] and
since µp is a product measure. Together with

∑

U⊆C[x1], U∈F̂ [x1]

µ
C[x1]
p[x1]

(U) = µR
p[x1]

(F̂ [x1]) ≥ δ/4

we obtain that there exists a U0 ⊆ C[x1], U0 ∈ F̂ [x1] for which

µ
R\C[x1]
p[x1]

({D ⊆ R \ C[x1] | U0 ∪D /∈ F ′[x1]}) < 2η/(δ/4).

Equivalently, we have

µ
R\C[x1]
p[x1]

({D ⊆ R \ C[x1] | U0 ∪D ∈ F ′[x1]}) ≥ 1 − 8η/δ.

Since F ′[x1] is independent of C[x2] (in the sense described above), this inequality is equivalent to

µR′

p[x1]
({H ⊆ R′ | U0 ∪H ∈ F ′[x1]}) ≥ 1 − 8η/δ.

It remains to recall that F ′[x1] ⊆ F [x1].

Analogous to Lemma 4.3 we have by symmetry,

Lemma 4.4 There exist V0 ⊆ C[x2] such that defining H[x2] ⊆ P (R′) as

H[x2]
def
= {H ⊆ R′ | V0 ∪H ∈ F [x2] }

we have µR′

p[x2]
(H[x2]) ≥ 1 − 8η/δ.

Let p∗
def
= 1− 1

k − ε
2 . Since F [x1] and F [x2] were assumed to be monotone, we have that H[x1]

and H[x2] are monotone subfamilies of P (R′). Therefore, according to Theorem 2.3, µR′

p∗ (H[x1]) ≥
µR′

p[x1]
(H[x1]) ≥ 1 − 8η/δ and similarly for x2. Hence, the intersection of the families H[x1] and

H[x2] satisfies

µR′

p∗ (H[x1] ∩H[x2]) ≥ 1 − 16η/δ = 1 − 1

k

by our choice of η. Hence, Lemma 2.9 implies that there exist sets H1,H2, . . . ,Hk ∈ H[x1] ∩H[x2]
such that

∩k
i=1Hi = ∅.

In particular, H1,H2, . . . ,Hk−1 ∈ H[x2] and Hk ∈ H[x1].
Now define G = U0 ∪ Hk and Fi = V0 ∪ Hi for 1 ≤ i ≤ k − 1. By definition of the families

H[x1],H[x2], we have G ∈ F [x1], Fi ∈ F [x2] for 1 ≤ i ≤ k − 1. Thus {(x1, G), (x2, Fi)
k−1
i=1 } are

vertices in the supposed independent set and they form an edge since

G ∩
(
∩k−1

i=1 Fi

)
= ∩k

i=1Hi = ∅.

This completes the proof.
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