Collaboration is allowed, but you must write your own solutions.

Problem 1

Note: In (a), SEARCH need not run in logarithmic time. In (b), define an appropriate potential function so that insertion runs in amortized $O(1)$ time. In (c), one does not expect the implementation to be very efficient.

Problem 2

Note: Assume that α is strictly larger than $\frac{1}{2}$ (and strictly less than 1). Ignore deletions (as everything would be similar to insertions).

Problem 3

Problem 4
Solve: [Kleinberg Tardos] Chapter 3, problem 12, page 112.

Hint: Create a directed graph with two nodes for each person, one representing his birth-date and the other representing his death-date.

Problem 5
Consider a flow network on four nodes $\{s, t, a, b\}$ and five edges with capacities

$$c(s,a) = c(s,b) = c(a,t) = c(b,t) = 1000 \quad \text{and} \quad c(a,b) = 1.$$

Show that starting with the zero flow, the Ford-Fulkerson max-flow algorithm could take upto 2000 augmentation steps.
Reading assignment: If edge capacities are irrational numbers, Ford-Fulkerson algorithm may never terminate and the flow could converge to a value other than the value of a max-flow. Study the example on page 2 of: http://www.cs.uiuc.edu/class/sp07/cs473g/lectures/14-maxflowalgs.pdf

Problem 6

As suggested by Dinitz as well as Edmonds and Karp, during the execution of the Ford-Fulkerson max-flow algorithm, suppose we always select an augmenting path in the residual graph that contains a minimum number of edges. Prove that the Ford-Fulkerson algorithm terminates in \(O(mn) \) iterations where \(n \) and \(m \) are the number of vertices and edges in the network respectively.

Hint: Consider the BFS starting at the source \(s \) and the corresponding layers in the residual graph \(R \). As we know, every edge in \(R \) either stays in the same layer, goes to a previous layer or goes to a layer that is immediately next. Let \(R' \) be the residual graph after an augmentation step using a shortest \(s \)-\(t \) path. How does \(R' \) look compared to \(R \)? Let \(\text{dist}(s,t) \) denote the length of a shortest \(s \)-\(t \) path. Show that \(\text{dist}(s,t) \) in \(R' \) is at least equal to \(\text{dist}(s,t) \) in \(R \). Show that this distance must increase by at least one after at most \(m \) iterations.

Problem 7

In an undirected graph \(G(V,E) \), a vertex cover is a set \(S \subseteq V \) such that every edge \(e \in E \) has at least one endpoint in \(S \). A matching is a set \(M \subseteq E \) such that no two edges in \(M \) share an endpoint.

1. Show that if \(S \) is a vertex cover and \(M \) is a matching, then \(|M| \leq |S| \).

2. Give an example of a graph where the maximum size of any matching is strictly less than the minimum size of any vertex cover (Hint: Look at graphs with three vertices).

3. Now assume that the graph is bipartite, i.e. the vertex set is partitioned as \(V = U \cup W \) and every edge \(e \in E \) has one endpoint in \(U \) and the other in \(W \). The goal is to prove that the maximum size of a matching is equal to the minimum size of a vertex cover. Prove this by designing a polynomial time algorithm to simultaneously find a maximum matching as well as a minimum vertex cover.

Hint: Construct a flow network as described in class by adding a source \(s \) and a sink \(t \). Compute the max-flow and the corresponding min-cut. Let the min-cut be \(\{s\} \cup A \cup B \) and \(\{t\} \cup (U \setminus A) \cup (W \setminus B) \). Let \(C \subseteq (W \setminus B) \) be the set of neighbors of \(A \) in \(W \setminus B \). Show that \((U \setminus A) \cup B \cup C \) is a vertex cover. Why is its size equal to the value of the max-flow (which in turn equals the size of maximum matching)?
Problem 8 (Randomized Algorithms)
Solve: [Kleinberg Tardos] Chapter 13, problem 1, page 782.

Problem 9 (Randomized Algorithms)

Hint: Consider an agent such that there are k agents with a higher bid than her. What is the probability that her bid results in an update of b^*?

Problem 10 (Randomized Algorithms)

Problem 11
Given a directed graph $G(V, E)$, call two vertices u and v equivalent if there is a path from u to v and vice versa. Give a polynomial time algorithm (there are $O(|V| + |E|)$ time implementations but don’t worry in this problem) to partition the vertex set V into non-empty sets P_1, P_2, \ldots, P_k such that:

- For every $1 \leq i \leq k$, all vertices in P_i are equivalent to each other.
- For every $1 \leq i < j \leq k$, no vertex in P_i is equivalent to any vertex in P_j.

Such a partition is called decomposition into strongly connected components. Now construct a directed graph G' on vertex set $\{1, 2, \ldots, k\}$ and add an edge (i, j) if there is an edge from some vertex in P_i to some vertex in P_j. Show that G' is acyclic.

Problem 12 (Do not submit)
Solve all problems in this assignment from Fall’06 (highly recommended as a preparation for the final exam):
http://www.cs.nyu.edu/courses/fall06/G22.3520-001/ps5.pdf