Homework 3
 Computational Complexity

April 11, 2010

Due on Monday, May 3. Collaboration is allowed; please mention your collaborators.

1. The class MA is analogous to NP where the verifier can be a randomized algorithm. There is an all powerful prover (called Merlin) who gives a proof to the probabilistic polynomial time verifier (called Arthur). Arthur uses a (private) random string r.
Define the class of languages $\mathrm{MA}_{2 / 3,1 / 3}$ with two sided error as follows.

$$
\begin{aligned}
x \in L & \Rightarrow \exists y, \operatorname{Pr}_{r}[V(x, y, r)=1] \geq \frac{2}{3} \\
x \notin L & \Rightarrow \quad \forall y, \operatorname{Pr}_{r}[V(x, y, r)=1] \leq \frac{1}{3}
\end{aligned}
$$

Here $V($,$) is a deterministic polynomial time verification procedure$ and lengths of y are r are polynomially bounded in the length of x. Similarly we define the class $\mathrm{MA}_{1,1 / 3}$ with one-sided error as follows

$$
\begin{aligned}
& x \in L \quad \Rightarrow \quad \exists y, \operatorname{Pr}_{r}[V(x, y, r)=1]=1 \\
& x \notin L \Rightarrow \forall y, \operatorname{Pr}_{r}[V(x, y, r)=1] \leq \frac{1}{3}
\end{aligned}
$$

Show that $\mathrm{MA}_{2 / 3,1 / 3}=\mathrm{MA}_{1,1 / 3}$. That is, if a language has a MAprotocol with two-sided error, then it also has a MA-protocol with one-sided error. Hint: Use ideas from the proof of $\mathrm{BPP} \subseteq \Sigma_{2}$.
2. Show that

$$
\text { PSPACE } \subseteq \text { P/poly } \quad \Rightarrow \quad \text { PSPACE }=\Sigma_{2}
$$

Hint: Modify the proof of Karp-Lipton Theorem for a self reducible PSPACE complete problem.
3. In this question all circuit classes are non-uniform. Show that for any non-negative integer i,

$$
N C^{i}=N C^{i+1} \Rightarrow N C=N C^{i}
$$

4. Assume that the problem of counting the number of matchings (not just perfect matchings) in a graph is \#P-complete. Show that the problem of counting the number of satisfying assignments to an instance of 2-SAT is \#P-complete.

5. Pairwise Independent Hash Functions

Consider the following family of functions F that map $\{0,1\}^{n} \rightarrow$ $\{0,1\}^{k}$. Pick a $k \times n$ matrix A with 0,1 entries at random. Pick $b \in\{0,1\}^{k}$ at random. Let

$$
f(x)=A x+b
$$

where all arithmetic operations are over Z_{2}. Assume that $f \in F$ is picked uniformly at random (by choosing A and b randomly).

- Show that for any $x \in\{0,1\}^{n}$ and $y \in\{0,1\}^{k}$,

$$
\operatorname{Pr}_{A, b}[f(x)=y]=\frac{1}{2^{k}}
$$

Hint: first consider the case when $k=1$

- Show that for any $x_{1}, x_{2} \in\{0,1\}^{n}$ and $x_{1} \neq x_{2}$, and any $y_{1}, y_{2} \in$ $\{0,1\}^{k}$,

$$
\operatorname{Pr}_{A, b}\left[\left(f\left(x_{1}\right)=y_{1}\right) \wedge\left(f\left(x_{2}\right)=y_{2}\right)\right]=\frac{1}{2^{2 k}}
$$

- Show that for any $x_{1}, x_{2} \in\{0,1\}^{n}$ and $x_{1} \neq x_{2}$,

$$
\operatorname{Pr}_{A, b}\left[f\left(x_{1}\right)=f\left(x_{2}\right)\right]=\frac{1}{2^{k}}
$$

6. We will use pairwise independent hash functions to design an AM protocol for MANY-SAT. The problem is that we are given a SAT instance ϕ with S as the set of its satisfying assignments. We are told that either $|S| \geq 2^{k}$ (YES case) or $|S| \leq 2^{k-10}$ (NO case). We have to distinguish the YES and NO cases.
Consider the following AM protocol for MANY-SAT. Arthur picks a
random hash function $f_{A, b}:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$, and a random target value $y \in\{0,1\}^{k}$. Merlin sends $x \in\{0,1\}^{n}$ as answer. Arthur accepts iff $f_{A, b}(x)=y$ and x is a satisfying assignment to ϕ.
Show that this is a valid AM protocol i.e the probability of acceptance in the YES case is significantly larger than the NO case.
Hint: In the YES case, show that there are not too many collisions, the size of the image of S, i.e. $\left|f_{A, b}(S)\right|$ is likely to be large, and a random $y \in\{0,1\}^{k}$ is likely to have a pre-image.
