## Homework I

G22.3350-001
Computational Complexity

February 15, 2010

You are expected to solve all the problems. Due on Monday, March 8. Collaboration is allowed; please mention your collaborators.

1. (2-SAT vs MAX-2SAT) : An instance of 2-SAT consists of $n$ boolean variables $x_{1}, x_{2}, \ldots, x_{n}$ and $m$ clauses, and each clause contains at most 2 literals. We say that the instance is satisfiable if there is a \{TRUE, FALSE $\}$-assignment to $x_{1}, x_{2}, \cdots, x_{n}$ that satisfies every clause.

- Show that deciding if an instance of 2-SAT is satisfiable is in P. Hint: Given two clauses, one involving $x_{i}$ and the other involving $\overline{x_{i}}$ try and replace them with a single clause.
- Show that deciding if there is an assignment that satisfies at least $k$ out of $m$ clauses is NP-complete (this problem is known as MAX-2SAT). Note that the parameter $k$ is now part of the input. Hint : Use a reduction from Vertex Cover.

2. The class EXP is defined as

$$
\operatorname{EXP}=\cup_{k}^{\cup} \operatorname{DTIME}\left(2^{n^{k}}\right)
$$

Show that NP $\subseteq$ EXP and co-NP $\subseteq$ EXP.
3. (Decision vs Search) : Show that if $P=N P$, there is a polynomial time algorithm to find a satisfying assignment to a 3-SAT formula if such an assignment exists.
4. Let BIPARTITE denote the language of all (undirected) graphs which are bipartite. Show that BIPARTITE $\in$ NL .
5. A directed graph is strongly connected if for every pair of vertices $(u, v)$ there is a directed path from $u$ to $v$ in $G$. Show that the problem of deciding whether a graph is strongly connected is NL-complete.
6. The $0-1$ knapsack problem is defined as follows: Let $\left\{a_{i}\right\}_{i=1}^{n}, b$ be positive integers (represented in binary). The knapsack problem asks whether there is an integer solution to

$$
\sum_{i=1}^{n} a_{i} X_{i}=b \quad X_{i} \in\{0,1\}
$$

We know that this problem is NP-complete.
Show that if we remove the constraints that $X_{i} \in\{0,1\}$ and allow $X_{i}$ 's to be arbitrary (possibly negative) integers, then the problem is in P. In other words, deciding if the following equation has an integer solution is in P .

$$
\sum_{i=1}^{n} a_{i} X_{i}=b
$$

7. A problem $A$ is NP-hard if there is a polynomial time reduction to it from some NP-complete problem ( $A$ itself need not be in NP).

- Show that the following problem is NP-hard. Given a polynomial $P\left(X_{1}, \cdots, X_{n}\right)$ with integer coefficients, the problem is to decide whether the following equation has an integer solution :

$$
P\left(X_{1}, \cdots, X_{n}\right)=0
$$

Hint : Show that in fact the problem is NP-hard for polynomials of degree 2, using a reduction from knapsack.

- Can't we simply guess a solution if it exists and verify it? Doesn't this mean that the problem is in NP?

8. (Padding) : For a language $L \subseteq\{0,1\}^{*}$, and a function $f(n)$ (assume that $f(n)$ is computable in time $O(f(n)))$, let $L_{f} \subseteq\{0,1, \#\}^{*}$ denote the following language :

$$
L_{f}:=\left\{x \#^{f(|x|)} \mid x \in L\right\}
$$

- Suppose that $L \in \operatorname{DTIME}(f(n))$. Then show that $L_{f} \in \operatorname{DTIME}(O(n))$. Show similar results for non-deterministic time classes and deterministic space classes.
- Show that if $f(n)$ is a polynomial function, then $L \in \mathrm{P}$ iff $L_{f} \in \mathrm{P}$.
- Show that $\mathrm{P} \neq \mathrm{DSPACE}(O(n))$. Hint : Assume an equality and arrive at a contradiction via suitable padding and the Deterministic Space Hierarchy Theorem.
- Define the class NEXP as

$$
\operatorname{NEXP}:=\cup_{k} \operatorname{NTIME}\left(2^{n^{k}}\right)
$$

Prove that if $\mathrm{P}=\mathrm{NP}$ then EXP $=$ NEXP.

