

Endterm Computational Complexity

Solve all 6 questions. The solutions are due on Monday, May 3. Some hints are given on the last page. All the best!

Problems

1. A DNF formula in (boolean) variables x_1, x_2, \dots, x_n is of the form

$$\phi = D_1 \vee D_2 \dots \vee D_m$$

$$\text{where for } 1 \leq i \leq m, \quad D_i = y_{i_1} \wedge y_{i_2} \dots \wedge y_{i_k}$$

and each y_j is a variable or its negation. Show that deciding if a DNF formula is satisfiable is in P but counting the number of satisfying solutions is $\#\text{P}$ -complete.

2. Let L be the language accepted by a family of circuits $\{C_n\}$ which consist of AND, NOT and PARITY gates such that

- Circuit C_n has n inputs, size $2^{n^{O(1)}}$ and depth $O(1)$.
- AND gates have fan-in bounded by $\text{poly}(n)$.
- PARITY gates have unbounded fanin.
- The circuits C_n are uniformly generated by a polynomial time DTM M .

Show that $L \in \oplus\text{P}$. In other words show that there is a polynomial time NTM N which has an odd number of accepting computations on input x iff $x \in L$.

3. Let $\mathbb{Z}_3 = \{0, 1, -1\}$ be the field of integers modulo 3. We say that a polynomial $P(X_1, \dots, X_n)$ in n variables is multilinear if the degree of each X_i in P is at most 1. For instance $P(X_1, X_2, X_3) = X_1 X_2 + X_2 X_3$ is multilinear but $X_1^2 + X_2^2$ is not.

- Show that every function $f : \{0, 1\}^n \rightarrow \mathbb{Z}_3$ is computed by a unique multilinear polynomial in $\mathbb{Z}_3[X_1, \dots, X_n]$.
- Consider all Boolean functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$. Let the degree of function f be the degree of the unique polynomial computing f . Show that AND and OR functions have degree n .
- The MOD- k function is 1 if $\sum_{i=1}^n x_i$ is divisible by k , and 0 otherwise. Show that MOD-2 (PARITY) has degree n but MOD-3 has degree 2.

4. Let $\omega(G)$ denote the size of the largest clique in graph G . Assume that there is a polynomial time reduction A that takes as input a SAT instance ϕ and outputs a graph G on n vertices such that

- If ϕ is satisfiable, $\omega(G) \geq \alpha n$.
- If ϕ is unsatisfiable, $\omega(G) \leq \beta n$.

Here α, β are constants such that $0 < \beta < \alpha < 1$. Use this to show that, for any constant C , there is no polynomial time algorithm that approximates $\omega(G)$ within a factor C unless $\mathsf{P} = \mathsf{NP}$.

5. Assume that there is an unknown Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ which is 1 at exactly K inputs. Give an algorithm to find (some) input x with $f(x) = 1$ which asks $O(\sqrt{N/K})$ queries in the Quantum Query Model ($N = 2^n$). A single query Q is defined as the unitary operator:

$$Q |x\rangle = (-1)^{f(x)} |x\rangle \quad \forall x \in \{0, 1\}^n.$$

6. The set-disjointness function $f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$ is defined as

$$f(x, y) = 1 \iff x_i \wedge y_i = 0 \quad \forall i = 1, \dots, n$$

In other words, think of x and y as incidence vectors of sets $S(x)$ and $S(y)$ respectively. Then $f(x, y) = 1$ iff the sets $S(x)$ and $S(y)$ are disjoint. Let M_f denote the matrix of values of f .

- Show that any 1-monochromatic rectangle in M_f has size at most 2^n .
- Show that the deterministic communication complexity of f is $\Omega(n)$.

Hints

1. A CNF formula in variables x_1, x_2, \dots, x_n is of the form

$$\phi = C_1 \wedge C_2 \wedge \dots \wedge C_m$$

$$C_i = y_{i_1} \vee y_{i_2} \vee \dots \vee y_{i_k}$$

First show that counting the number of solution to CNF formula is $\#P$ -complete.

2. Define the non-deterministic machine N as follows

- At an AND gate, evaluate all the inputs (recursively). Accept only if all the computations accept.
- At a PARITY gates, non-deterministically select an input and evaluate it. Accept if that computation accepts.
- At a NOT gate, non-deterministically do one of the following (i) Accept (ii) Evaluate the input to the NOT gate and accept if that computation accepts.

3. To write PARITY as a polynomial over \mathbb{Z}_3 , note that it is easy to write in $\{+1, -1\}$ -notation. Then convert it into $\{0, 1\}$ -notation.

4. Consider the following graph product. Given a graph $G(V, E)$ the graph G^2 has vertex set $V^2 = V \times V$. The edges are defined as

$$(v_1, v_2) \sim (w_1, w_2) \text{ if } \begin{cases} v_1 \sim w_1 \text{ and } v_2 \sim w_2 \\ v_1 = w_1 \text{ and } v_2 \sim w_2 \\ v_1 \sim w_1 \text{ and } v_2 = w_2 \end{cases}$$

Use this product to boost the gap between $\omega(G)$ in the given reduction.

5. Show that a modification to Grover's Algorithm works. Choose an appropriate pair of mutually orthogonal vectors in the plane.