Some Algorithms, running times & "data structures"
(ways to store & access data).

Arrays
- Sequence of locations, one value stored at each location.
- \(a[1], a[2], \ldots, a[n] \).
- For any \(i, 1 \leq i \leq n \), \(a[i] \) can be accessed in one step.
- Read, write.

Problem: Given \(n \) numbers stored in an array, find their maximum.

Algo: Let \(M = a[1] \).

```
for i = 2, 3, ..., n {
    if \( a[i] > M \) then \( M = a[i] \).
}
```

Output \(M \).

Running time: Clearly \(O(n) \).
We'll scan the array $a[1], \ldots, a[n]$, one by one and keep updating the "current maximum" M. Initialize $M = a[1]$, and scan $a[2], \ldots, a[i], \ldots, a[n]$. At i^{th} step, if the number currently scanned, $a[i]$ is larger than M, then update $M \leftarrow a[i]$. After all array entries are scanned, clearly M equals the maximum over all array entries.

Array Search

Problem Given array of size n and number b, does b appear in the array?

Algo. Scan array left to right, one entry at a time, and compare each entry to b.

Running time $O(n)$.

Binary Search

Problem Given a sorted array i.e. $a[1] < a[2] < \ldots < a[n]$.
and number \(b \), does \(b \) appear in array?

Algorithm

1. \(n \)
2. \(\frac{n}{2} \)

- \(a[\frac{n}{2}] = b \) ?
 - Search here if \(a[\frac{n}{2}] > b \)
 - Search here if \(a[\frac{n}{2}] < b \)

Main Idea

We compare \(b \) with \(a[\frac{n}{2}] \). (Assume \(n \) is even).

- If \(b = a[\frac{n}{2}] \), we found \(b \) in the array. Done.
- If \(b < a[\frac{n}{2}] \), then if \(b \) appears in the array at all, it must be among

 \(a[1], \ldots, a[\frac{n}{2}] \) (remaining "right half" entries are larger than \(b \)).

- If \(b > a[\frac{n}{2}] \), then \(b \) can only be among

 \(a[\frac{n}{2}], \ldots, a[n] \) similarly.

In either case, the "length of interval or search space" is reduced by half.

We search now in this reduced "search interval."
The process can be continued, reducing the "search interval" by half at each step. In $O(\log n)$ steps, the process terminates.

: Running time $= O(\log n)$.

Recurrence relation

\[T(n) = \text{Number of searches (running time)} \]

by the algo.

\[T(n) \leq T\left(\frac{n}{2}\right) + C \]

Solution

\[T(n) \leq C \cdot \log n. \]

proof

- unrolling recursion
- guess & verify,

Linked List

(Array: inserting item in the middle takes $O(n)$ time)

\[\text{Start} \rightarrow \begin{array}{c} 7 \rightarrow 1 \rightarrow 5 \rightarrow \cdots \rightarrow 18 \end{array} \]

- sequence of nodes
- given: pointer to first node
- i^{th} node contains pointer to $(i+1)^{th}$ node
- each node contains value/data-item.

Note - Accessing i^{th} node takes i steps.
- can create, add, delete nodes

Problem Given two linked lists L_1, L_2,
- each of size n,
- each a sorted list of integers
merge then into a single linked list
of size $2n$ that is sorted.

$L_1: \[2 \rightarrow 3 \rightarrow 10 \rightarrow 22 \rightarrow 37\]$
$L_2: \[5 \rightarrow 8 \rightarrow 9 \rightarrow 21 \rightarrow 40\]$

output
\[2 \rightarrow 3 \rightarrow 5 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 21 \rightarrow 22 \rightarrow 37 \rightarrow 40\]

Obvious algorithm
- Remove one node from the front of L_2 in each step and insert
into \(L_1 \) at the "correct place."

\[
\begin{align*}
5 & \rightarrow 8 \rightarrow 9 \rightarrow 21 \rightarrow 40 \\
2 & \rightarrow 3 \\
10 & \rightarrow 22 \rightarrow 37
\end{align*}
\]

This could take

\[n + (n+1) + \ldots + 2n = \frac{3}{2} n^2 \] time.

Clever Algorithm

- Let \(L \) be a new list, initially empty.
- Maintain a pointer to the head of list \(L_1 \), as well as \(L_2 \).
- Call the values at the heads \(v_1 \) and \(v_2 \).
- Compare \(v_1, v_2 \).

 - If \(v_1 < v_2 \) then remove \(v_1 \) from \(L_1 \) and append it to the end of \(L \).
 - If \(v_1 > v_2 \) then remove \(v_2 \) from \(L_2 \) and append it to the end of \(L \).
- Takes $O(n)$ time because each step takes $O(1)$ time and size $|L_1| + |L_2|$ is reduced by 1.

- Space can be reused if one wants.

Merge-Sort $O(n \log n)$ time (later)

Problem Sort given list of n integers.

Algo. Let L be given list.

- Divide L into two lists \(\{ \) \(\) \(\} O(n) \)
 - \(L_1 \) and \(L_2 \).

- Sort (recursively) \(L_1 \) \(\implies T(\frac{n}{2}) \)
 - \(L_2 \) \(\implies T(\frac{n}{2}) \)

- Merge \(L_1, L_2 \) into single sorted list \(L \) \(\implies O(n) \)

Recurrence relation \(T(n) \leq 2 T(\frac{n}{2}) + O(n) \).

Solution to RR \(T(n) = O(n \log n) \).
Does binary search on array be used to design $O(n \log n)$-sorting algorithm?

No: Cannot insert elements in the middle of an array.

Linked list: can insert but no binary search.

$O(n \log n)$-Sorting using Heaps (also called Priority Queues)

- Data structure that stores n values.
- These operations can be done in $O(\log n)$ time.
 - Insert a value
 - Extract/delete the minimum value.

This implies $O(n \log n)$ sorting algo. by n insertions and then n delete-min operations.
(Rooted) Tree
\[
\begin{array}{c}
\text{root} \\
\text{parent} \\
\text{child} \\
\text{leaf} \\
\text{siblings}
\end{array}
\]

Binary Tree
\[
\begin{array}{c}
\text{height} = 3
\end{array}
\]

Every node has \(\leq 2 \) children.

Complete binary tree

- height = \(h \)
- \# leafs = \(2^h \)
- \# nodes = \(1 + 2 + 2^2 + \ldots + 2^h \)
 = \(2^{h+1} - 1 \).

Almost Complete Binary Tree

- same as complete binary tree except at last level, some \(l \) leftmost nodes are present.
Deaf A Heap is:
- Almost complete binary tree.
- A value at each node.
- (Heap order/property):
 If u has a child v then \(\text{value}(u) < \text{value}(v) \).

Fact Root has the minimum value among all nodes.

Example.

Extract (find) Min Return value at root.
Add a value

- Add it at next available node/location in A.C.B.T.
- Push the value up to preserve the heap order.

Delete - Min

- Erase the value at the root.
- Delete the last node in A.C.B.T. and move its value to the root.
- Push down the value at the root to preserve heap order.

Note: Any value/node in the heap can be deleted similarly, not just the root.

Running time Add, delete - min both take \(O(h) \) time, \(h = \) height of A.C.B.T.

\[
\begin{align*}
 n &= \# \text{ nodes} \geq \left(1 + 2 + \ldots + 2^{h-1} \right) + 1 \\
 &= 2^h - 1 \quad \Rightarrow \quad h \leq \log n.
\end{align*}
\]
Array implementation of heap

- Number nodes left to right, top to bottom.
- For node i, its children are precisely $2i$ and $2i+1$. (Exercise: Prove!)

Thus all nodes can be maintained in an array and all operations can be carried out on the array! Very fast!