Midterm Solutions

Computational Complexity

Problem: A language L is called unary if \(L \subseteq 1^* \). Show that if a unary language is \(NP \)-complete, then \(P = NP \).

Solution: Suppose a unary language \(L \) is \(NP \)-complete. That is, there exists a polynomial time reduction \(f \) that when given a \(SAT \) formula \(\phi \) as input produces \(f(x) \) as output where \(\phi \in SAT \) iff \(f(x) \in L \). We will show how we can solve \(SAT \) in polynomial time.

Suppose we want to determine if a \(SAT \) instance \(\phi \) is satisfiable. We say \(\phi' \) is restriction of \(\phi \) if \(\phi' \) can be obtained by setting some variables of \(\phi \) to \(True \) or \(False \). Note that the restrictions \(\phi' \) of \(\phi \) map to at most \(poly(|\phi|) \) strings under the mapping \(f \) (since the length of the mapped strings is bounded by a polynomial in \(|\phi| \)). The idea is to remember which of these mappings \(f(\phi') \) we have already determined are not in \(L \). For this we create a boolean array \(NotInL[] \) with polynomially many entries, one for each possible \(f(\phi') \), and initialize the array to \(False \) (changing \(NotInL[l] \) to \(True \) will indicate we have determined \(1^l \notin L \)). We then call the CheckSatisfiability(\(\phi \)).

```plaintext
FUNCTION CheckSatisfiability(\( \phi' \))
   If \( \phi' \) has no variables in it then
      Return True if \( \phi' \) is satisfiable. Otherwise set NotInL[f(\( \phi' \))] to True and return False.
   else
      Pick a variable \( x \) in \( \phi' \).
      /* Try both assignments to \( x \) and see if either leads to a satisfiable expression */
      if NotInL[f(\( \phi'_x=True \))] = False then
         Return True if CheckSatisfiability(\( \phi'_x=True \)) returns True.
      if NotInL[f(\( \phi'_x=False \))] = False then
         Return True if CheckSatisfiability(\( \phi'_x=False \)) returns True.
      /* Neither assignment worked */
      Set NotInL[f(\( \phi' \))] to True and return False.
```

Make a “recursion tree” of calls of CheckSatisfiability (The leaf is the first call CheckSatisfiability(\(\phi \)). A node has leaves corresponding to each call to CheckSatisfiability it makes.) It is easy to check that all calls to CheckSatisfiability where the argument \(\phi' \) maps to a given unary string \(1^l \) are along one path from the root to a leaf (because, when the first call to CheckSatisfiability with such a \(\phi' \) returns, we have set NotInL[l] to True). Therefore, we make only \(O(|\phi|) \) calls for each \(l \). This gives the a polynomial bound on the running time. □

Problem: For any positive integer \(k \), show that there is a language in \(PH \) with circuit-complexity \(\Omega(n^k) \). In fact you can exhibit such a language in some fixed finite level of \(PH \), say \(\Sigma_2 \).

Solution: First note that there are functions on \(m = (k + 1) \log n \) bits with circuit size \(n^{k+1}\frac{\log n}{(k+1) \log n} > n^k \) for large enough \(n \). Such a function can be described by its truth table which is of size \(n^{k+1} = poly(n) \). For each \(m \) we order the truth tables lexicographically and define \(f \) to be the first function in this order that has circuit size greater than \(n^k \). We can think of \(f \) as a function on \(n \) bits where we ignore all except the first \(m \) bits.

To show that the language accepted by this function is in \(PH \), we will do the following: On an input \(x \) of size \(n \)

- Guess the truth table for \(f \). (\(\exists f \)).
- Check it has large circuit size. This is done by
 \[\forall \text{circuits } C \text{ s.t. } |C| \leq n^k, \exists y \in \{0,1\}^m \text{ s.t. } C(y) \neq f(y) \]
- Check that every lex. smaller function \(g \) on \(\{0,1\}^m \) does have small circuits.
 \[\forall \text{functions } g < f, \exists \text{ circuit } C' \text{ s.t. } |C'| \leq n^k, \forall y \in \{0,1\}^m C(y) = g(y) \]
This puts the language in \(\Sigma_4 \) (in fact \(\Sigma_3 \) since the set \(\{0,1\}^n \) is of polynomial size). Using the Karp-Lipton theorem one can show that such a language exists in \(\Sigma_2 \). □

Problem: Let \(BPL \) be the class of languages accepted by a polynomial time randomized logspace machine with two sided error. Show that \(BPL \subseteq P \).

Solution: Define a configuration by contents of work tape, position of the input head and state of the machine. Observe that the total number of configurations is bounded by \(n^k \) for an input of size \(n \). Define a transition matrix \(P = p_{ij} \) where \(p_{ij} \) is the probability of going from config \(i \) to \(j \). (This matrix depends on the input). Let \(\pi_0 \) be a vector with 1 for the start configuration. Then \(P^t \pi_0 \) is the distribution after \(t \) steps. To check if the machine accepts in time \(t \), check that the prob of being in the accept state is at least 0.9. The matrix \(P^t \) can be computed efficiently by matrix multiplication. □