1. A language L is called unary if $L \subseteq 1^*$. Show that if a unary language is NP-complete, then $P=NP$.

Hint: If there is a polytime reduction from SAT to a unary language, then this reduction will map a boolean formula of size n to a string 1^i with $i \leq \text{poly}(n)$. Use this and downward self-reducibility of SAT to efficiently find a satisfying assignment. Start out with a recursive brute-force (i.e. depth-first-pruning) algorithm for finding a satisfying assignment. Modify it so that the algorithm runs in polytime.

2. For any positive integer k, show that there is a language in PH with circuit-complexity $\Omega(n^k)$. In fact you can exhibit such a language in some fixed finite level of PH, say Σ_5.

3. Let BPL be the class of languages accepted by a polytime randomized logspace machine with two sided error. Show that $\text{BPL} \subseteq P$.

Hint: Construct the configuration graph for a BPL machine, with two outgoing edges from each node, representing the action taken by the machine depending upon the random bit read. The acceptance probability is then the probability that a random walk from the start vertex ends in the accept vertex. How do you calculate this probability efficiently?

Note: A randomized logspace machine has workspace of size $O(\log(n))$ and access to $\text{poly}(n)$ random bits. The random bits are available on a read-once random tape. This means that once the algorithm reads...
a random bit, it cannot go back and read the same bit again from the random tape. A language \(L \) is accepted by such a machine if strings in \(L \) are accepted with probability at least 0.9 and strings not in \(L \) are accepted with probability at most 0.1.