Homework 3
Computational Complexity

April 4, 2014

Due on Monday, April 28. Collaboration is allowed; please mention your collaborators.

1. The class MA is analogous to NP where the verifier can be a randomized algorithm. There is an all powerful prover (called Merlin) who gives a proof to the probabilistic polynomial time verifier (called Arthur). Arthur uses a (private) random string r.

Define the class of languages MA\(_{2/3,1/3}\) with two sided error as follows.

\[
x \in L \implies \exists y, \Pr_r[V(x, y, r) = 1] \geq \frac{2}{3}
\]

\[
x \notin L \implies \forall y, \Pr_r[V(x, y, r) = 1] \leq \frac{1}{3}
\]

Here $V(,)$ is a deterministic polynomial time verification procedure and lengths of y are r are polynomially bounded in the length of x. Similarly we define the class MA\(_{1,1/3}\) with one-sided error as follows.

\[
x \in L \implies \exists y, \Pr_r[V(x, y, r) = 1] = 1
\]

\[
x \notin L \implies \forall y, \Pr_r[V(x, y, r) = 1] \leq \frac{1}{3}
\]

Show that MA\(_{2/3,1/3}\) = MA\(_{1,1/3}\). That is, if a language has a MA-protocol with two-sided error, then it also has a MA-protocol with one-sided error. \textit{Hint: Use ideas from the proof of BPP \(\subseteq \Sigma_2\).}

2. Show that

\[
PSPACE \subseteq P/poly \implies PSPACE = \Sigma_2
\]

\textit{Hint: Modify the proof of Karp-Lipton Theorem for a self reducible PSPACE complete problem.}
3. In this question all circuit classes are non-uniform. Show that for any non-negative integer i,

$$\text{NC}^i = \text{NC}^{i+1} \Rightarrow \text{NC} = \text{NC}^i$$

4. Assume that the problem of counting the number of matchings (not just perfect matchings) in a graph is $\mathbb{#P}$-complete. Show that the problem of counting the number of satisfying assignments to an instance of 2-SAT is $\mathbb{#P}$-complete.

5. **Pairwise Independent Hash Functions**

Consider the following family of functions F that map $\{0,1\}^n \rightarrow \{0,1\}^k$. Pick a $k \times n$ matrix A with 0,1 entries at random. Pick $b \in \{0,1\}^k$ at random. Let

$$f(x) = Ax + b$$

where all arithmetic operations are over \mathbb{Z}_2. Assume that $f \in F$ is picked uniformly at random (by choosing A and b randomly).

- Show that for any $x \in \{0,1\}^n$ and $y \in \{0,1\}^k$,

$$\Pr_{A,b}[f(x) = y] = \frac{1}{2^k}$$

Hint: first consider the case when $k = 1

- Show that for any $x_1, x_2 \in \{0,1\}^n$ and $x_1 \neq x_2$, and any $y_1, y_2 \in \{0,1\}^k$,

$$\Pr_{A,b}[f(x_1) = y_1 \land f(x_2) = y_2] = \frac{1}{2^{2k}}$$

- Show that for any $x_1, x_2 \in \{0,1\}^n$ and $x_1 \neq x_2$,

$$\Pr_{A,b}[f(x_1) = f(x_2)] = \frac{1}{2^k}$$

6. We will use pairwise independent hash functions to design an AM protocol for MANY-SAT. The problem is that we are given a SAT instance ϕ with S as the set of its satisfying assignments. We are told that either $|S| \geq 2^k$ (YES case) or $|S| \leq 2^{k-10}$ (NO case). We have to distinguish the YES and NO cases.

Consider the following AM protocol for MANY-SAT. Arthur picks a
random hash function $f_{A,b} : \{0,1\}^n \to \{0,1\}^k$, and a random target value $y \in \{0,1\}^k$. Merlin sends $x \in \{0,1\}^n$ as answer. Arthur accepts iff $f_{A,b}(x) = y$ and x is a satisfying assignment to ϕ.

Show that this is a valid AM protocol i.e the probability of acceptance in the YES case is significantly larger than the NO case.

Hint: In the YES case, show that there are not too many collisions, the size of the image of S, i.e. $|f_{A,b}(S)|$ is likely to be large, and a random $y \in \{0,1\}^k$ is likely to have a pre-image.