
Proxy Cryptography Revisited

Anca Ivan, Yevgeniy Dodis
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012

{ivan,dodis}@cs.nyu.edu

Abstract

In this work we revisit and formally study the notion
of proxy cryptography. Intuitively, various proxy func-
tions allow two cooperating partiesF (the “FBI”) and P
(the “proxy”) to duplicate the functionality available to the
third party U (the “user”), without being able to perform
this functionality on their own (without cooperation). The
concept is closely related to the notion of threshold cryp-
tography, except we deal with only two partiesP andF ,
and place very strict restrictions on the way the operations
are performed (which is done for the sake of efficiency, us-
ability and scalability). For example, for decryption (resp.
signature)P (F) sends a single message toF (P), after
which the latter can decrypt (sign) the message. Our for-
mal modeling of proxy cryptography significantly general-
izes, simplifies and simultaneously clarifies the model of
“atomic proxy” suggested by Blaze and Strauss [4]. In
particular, we define bidirectional and unidirectional vari-
ants of our model1, and show extremely simple generic so-
lutions for proxy signature and encryption in these models.
We also give more efficient solutions for several specific
schemes. We conclude that proxy cryptography is a rela-
tively simple concept to satisfy when looked from the cor-
rect and formal standpoint.

1 Introduction

The Blaze and Strauss [4] paper introduced the notion of
(atomic) proxy cryptography. The authors define “atomic
proxy functions” as functions that transform ciphertext cor-
responding to one key into ciphertext for another key with-
out revealing any information about the secret decryption
keys or the clear text. In the case of signatures, the proxy
functions convert a valid signature for one key into a valid

1We will also mention yet another off-line variant implicitly studied
by [9, 10].

signature for another key without disclosing the secret sig-
nature keys. We extend and generalize this notion as fol-
lows. Intuitively, proxy functions allow one user to cor-
rectly decrypt ciphertexts or generate valid signatures on
behalf of another user without holding any information
about the secret keys of the latter user.

We consider that the proxy functions can be divided into
two categories:bidirectionalandunidirectional. Theuni-
directionalproxy functions allow one user (U1) to decrypt
ciphertexts or generate signatures corresponding to the se-
cret key of another user (U2) even if the first user does
not hold that secret key. However, the owner of the secret
key (U2) needs a completely differentunidirectionalfunc-
tion if he desires to decrypt ciphertexts or generate signa-
tures on behalf of the first user (U1). Unlike theunidirec-
tional proxy functions, thebidirectionalones can be used
by both users to decrypt ciphertexts or generate signatures,
by transforming the ciphertext/signature for one key into
ciphertext/signature for another key. In other words, both
usersU1 andU2 can use the samebidirectionalproxy func-
tion to transform ciphertexts from one key to another key.

The original paper [4] informally defines the notion of
bidirectionalproxy functions and describes two examples
of proxy functions: one for encryption, based on El Gamal
encryption, and one for signatures. However, both exam-
ples are proved to have low security guarantees. Our paper
formally defines both thebidirectional andunidirectional
proxy functions for encryption and signature, and their se-
curity guarantees (e.g. indistinguishability/unforgeability
under various attacks). In addition, this paper presents
generic schemes forbidirectionalandunidirectionalproxy
functions for both public-key and private-key encryption
and signature schemes. All generic schemes can be used
to transform any standard cryptographic primitive into a
proxy function, with a factor of two slowdown. This
slowdown is eliminated by the proxy functions specifi-

cally designed for a few cryptographic primitives (e.g. El
Gamal [12], RSA [25], RSA Hash-and-Sign [2, 1]).

The notion of proxy cryptography can be very useful
in cases when one user needs to perform sensitive oper-
ations (e.g. ciphertext decryption, signature generation)
without holding the necessary secret keys. For example,
the president of a company can delegate his signature rights
by giving a proxy key to his assistent. The proxy key
transforms a signature created by the vice-president into
the president’s signature, thus allowing the assistent to co-
sign only if the document was first signed by the vice-
president. Another example is that of a key escrow sys-
tem [13, 23, 18, 17, 14, 27], where a trusted party can
mediate the conflicts between users and the law enforce-
ment agencies. The problem is to allow the law enforce-
ment agency to read messages encrypted for a set of users,
for a limited period of time, without knowing the users’
secrets. The solution is to locate a key escrow agent be-
tween the users and the law enforcement agency, such that
it controls which messages are read by the law enforce-
ment agencies. In classic schemes, the users have to give
their secret keys to the key escrow agent. Whenever the law
enforcement agency wants to reads a message belonging to
a user, the key escrow agent decrypts the message and re-
encrypts it with the key of the law enforcement agency. In
order to prevent the key escrow agent from knowing the se-
cret keys and cleartext messages, we propose that the key
escrow agent holds proxy keys that uses proxy functions
to transform ciphertext corresponding to user keys into ci-
phertext corresponding to the law enforcement agency.

The rest of the paper is structured as follows. The next
chapter presents other projects that studied the notion of
proxy functions. Chapter 3 uses the key escrow scenario to
describe the computational model used to define the proxy
functions. The next four chapters present the actualunidi-
rectionalandbidirectionalfunctions. The paper ends with
some final thoughts about learned lessons and ideas for the
future.

2 Related Work

The idea of delegating decryption/signature rights was
previously researched and presented in several papers [16,
15, 3, 22, 21, 4]. The goal of the [16, 15] paper is similar to
ours. In the context of mobile computing, agents should be
able to carry signature functions such that untrusted entities
sign on behalf of a user without knowing his key. However,
the result of signing a messagem is a brand new signa-
ture that combines the identities of the original user and

the actual signer. Our schemes differ from theirs in that
that the new signature is identical to the one that would
have been produced by the original delegator. In fact, this
indistinguishability is one of the most important feature of
our schemes. In [3], the RSA-based unidirectional signa-
ture scheme splits the secret key between a client and a
server such that neither is able to create a valid key without
working together. The security proofs rely on the fact that
the server is always trusted, thus obtaining lower levels of
security then the ones we propose here. MacKenzie and
Reiter [22, 21, 20] consider a similar question of two-party
signature generation to the one we consider here. However,
their solutions, especially [22] are highly complex and in-
teractive as compared to the notion of unidirectional proxy
signatures we propose here (they also have a slightly more
sophisticated scenario, where the user has a personal pass-
word in addition to the split secret key).

As mentioned, the most closely related work is that of
Blaze and Strauss [4] who introduce the notions of bidi-
rectional decryption and bidirectional signature. However,
lack of proper definitions makes them consider only the
question of changing theexistingencryption or signature
schemes (like ElGamal encryption or Fiat-Shamir signa-
ture [11]) into a corresponding proxy primitive, instead of
looking at the abstract problemitself. As the result, they
provide very limited schemes satisfying very weak (semi-
formally stated) security properties. We contribute to this
work by clarifying and precisely defining the problems at
hand (i.e., presenting formal definitions for allbidirectional
andunidirectionalproxy functions and their security guar-
antees), and describe generic as well as specific schemes
for both encryption and signature proxy functions.

We briefly consider extensions to the multi-user set-
ting, and use recent results from identity based cryptogra-
phy [26, 5] to improve the efficiency in this setting. In addi-
tion, we adapt the key-insulated model presented in [9, 10]
to create offline bidirectional schemes that do not require
the proxy agentP to continuously assist the law enforce-
ment agencyF.

The unidirectional and bidirectional primitives can be
considered as special cases of general threshold cryptog-
raphy [6, 8]. However, most threshold systems assume a
honest majority and work only forn ≥ 3. Thus, many
threshold techniques cannot be applied to a two-party set-
ting. Recently, people have considered two-party primi-
tives in a multi-round setting: GQ, Schnorr [24] and DSA
signatures [22], while [19] talks about encryption.

3 Model

For a better understanding and consistency throughout
the rest of the paper, we will explain and use the key escrow
scenario as a model for our definitions.

The key escrow scenario has four classes of actors: (i)
the general usersU who delegate their decryption rights,
(ii) the law enforcement agencyF that tries to decrypt ci-
phertexts belonging to the general users, (iii) the proxy
agentP responsible for helping the latter user to decrypt
ciphertexts, and (iv) the legal court that is trusted by ev-
eryone. All users register with the key escrow system by
providing some kind of secret information to the proxyP.
After registration, they are free to send encrypted messages
to each other. Whenever the law enforcement agency wants
to eavesdrop on the communication between two users, it
asks the legal court for a warrant. The legal court creates
a time-bounded warrant and gives it to the proxy agent.
Then, the proxy agent helps the law enforcement agency
to decrypt the ciphertexts belonging to the specified users
and period of time. In our model, we will disregard the last
actor, because the legal court is not directly involved in the
cryptographic part of the protocol.

The next paragraphs informally define thebidirectional
andunidirectionalproxy functions for encryption and sig-
nature generation and explain how they can be easily used
to construct key escrow systems.

Unidirectional encryption proxy function. A unidirec-
tional encryption proxy function is defined as a tupleE =
(UniGen, UniEnc, UniDec, PDec, FDec). The key gener-
ation algorithmUniGen generates keys for every general
userU. Then, for each userU, it generates two more keys
for the proxyP and the userF. The general users encrypt
cleartext messages using theUniEnc algorithm and decrypt
them using theUniDec algorithm. Whenever the userF
wants to decrypt a ciphertexte, it asks the proxyP for help.
The proxyP usesPDec to transform the ciphertexte into a
different ciphertexte′ and sends it to the userF. The userF
applies theFDec function to the received ciphertexte′ and
gets the original cleartextm.

Unidirectional signature proxy function. An unidirec-
tional signature proxy function is defined as a tupleS =
(UniGen, UniSig, UniVer, PSig, FSig). As in the unidirec-
tional encryption case, the key generation algorithm gen-
erates keys for every general userU. Then, for each user
U, it generates two more keys for the proxyP and the user
F. The general users sign messages using theUniSig algo-
rithm and verify them using theUniVer algorithm. When-

ever the userF wants to sign a messagem on behalf of a
certain userU, it asks the proxyP for help. First, the userF
usesFSig to generate a partial signature of the messagem.
The proxyP transforms the partial signature into a valid
signature by applying thePSig on the partial signature.

Bidirectional encryption proxy function. A bidirec-
tional encryption function is defined as a tupleE = (BiGen,
BiEnc, BiDec, Π). The key generation algorithmBiGen

creates keys for all users in the system, including the user
F. For each pair of keys(kU, kF), theBiGen algorithm gen-
erates a bidirectional keyπ. The general usersU encrypt
messages usingBiEnc and decrypt them usingBiDec. In
order to decrypt a ciphertext belonging to a general userU,
the userF asks the proxyP for help. The proxyP uses
the bidirectional functionΠ and the bidirectional keyπ to
transform the ciphertext for userU into ciphertext for user
F. After that, the userF can decrypt the new ciphertext with
its own key and obtain the cleartext message.

Bidirectional signature proxy function. A bidirectional
signature function is defined as a tupleS = (BiGen, BiSig,
BiVer, Π). As in the bidirectional encryption case, the key
generation algorithmBiGen creates keys for all users in
the system, including the userF. For each pair of keys
(kU, kF), theBiGen algorithm generates a bidirectional key
π. The general usersU sign messages usingBiSig and veri-
fies the signatures usingBiVer. Whenever the userF wants
to generate a valid signature for a messagem on behalf of
a userU, it first generates a signature with its own key and
then asks the proxyP for help. The proxyP uses the bidi-
rectional functionΠ and the bidirectional keyπ to trans-
form the signature generated by the userF into a signature
generated with the user’s key.

Table 1 reflects the way the unidirectional and the bidi-
rectional techniques work for both encryption and signa-
tures.

Even though both bidirectional and unidirectional proxy
functions achieve the same goal, there are a few notable
differences between them. First, the unidirectional proxy
functions can be used only one way, from one user to an-
other user. The reverse sense requires a different unidirec-
tional function. The bidirectional proxy functions can be
used in both directions. Second, the bidirectional schemes
assume that the law enforcement agency (userF) has its
own key. The unidirectional schemes do not make this as-
sumption but pay an increased storage requirement price
because the userF needs to store one key for each user in
the system. In both cases, the proxyP has the increased
space problem because it needs to save one key for every

Bidirectional Unidirectional

Encryption

U
(sk
U
)
 P(
)

e=Enc
U
(m)
 e'=Enc
F
(m)
e'= (e)

F(sk
F
)

U
(DK
U
)

P(DK
P
)

e=Enc
U
(m)
 FDec(PDec(e))=m
PDec(e)

F(DK
F
)

Signature

U
(sk
U
)
P(
)

s=Sig
U
(m)
s'=Sig
F
(m)
 s'= (s)

F(sk
F
)

U
(sk)

F(sk
F
)
m
 s=Psig(FSig(m))
FSig(m)

P(sk
P
)

Table 1. Unidirectional vs. Bidirectional techniques

user. This problem can be very important in systems where
the number of general users is extremely large. A solu-
tion is offered by the identity-based primitives [5], where
the proxy needs to save only a share of the master secret
key. Third, in both cases, revocation is easily achieved by
having the third partyP refuse to help.

The unidirectional and bidirectional schemes described
in this paper require the proxy agentP to continuously as-
sist the law enforcement agencyF when decrypting cipher-
text or generating valid signatures on behalf of a user. The
key-insulated model presented in [9, 10] can be easily ex-
tended such that the proxy agentP helps the law enforce-
ment agency only once, at the beginning of its warrant. The
key-insulated model has two actors, the proxy agentP and
the userU. The userU updates its secret key using the
index of the current time period and some information pro-
vided by a third party (P). Our model adds another player,
the law enforcement agencyF, that receives from the proxy
P the user’s key for an unused period of timeT0. Similar
to the original key-insulated model, the proxyP helps the
user to update its key. In addition, the proxyP helps the
law enforcement agencyF to compute the user’s key for
time periodTi if presented with an warrant for the timeTi.
All primitives presented in [9, 10] can be easily extended
for our offline model.

With this model in mind, we introduce in the next sec-
tions theunidirectional andbidirectional encryption and
signature schemes. For each scheme, we give formal def-
initions, present one generic scheme and several specific
schemes, and prove their security guarantees. For simplic-
ity, all general definitions will be given in the context of
public-key cryptography.

4 Unidirectional Encryption Primitives

Definition 1 A unidirectional encryption scheme consists
of five algorithms,E = (UniGen, UniEnc, UniDec, PDec,
FDec).

The generation algorithmUniGen(1k) outputs a tuple of
keys (EK,DK) for each general userU. EK is the encryption
key andDK is the decryption key. For each secret keyDK,
the key generation algorithm creates two secret keysDKP

andDKF for the proxyP, and respectively the userF. For
simplicity, the definitions given in table 2 show that the key
generation algorithm outputs only user keys, even though
it also builts the keys for the proxyP and the userF.

UniEncEK is the encryption algorithm and encrypts a
messagem from the corresponding message spaceM (e.g.,
{0, 1}k) as e = UniEncEK(m). The decryption algo-
rithm UniDecDK is a deterministic decryption algorithm
that takes the ciphertexte, the secret keyDK, and out-
puts m ∈ M (or invalid in casee was an improper ci-
phertext). Thecorrectnessproperty of encryption states
that UniDec(UniEnc(m)) = m, for any messagem and
pair of keys(EK, DK). The functionPDec uses the se-
cret key of the proxyP, DKP, to transform a ciphertext
e into ciphertexte′. TheFDec function takes this cipher-
text e′ and the secret keyDKF of the userF and produces
the original messagem ∈ M or invalid if the ciphertext
e′ was not correct. Thecorrectnessproperty specifies that
FDec(PDec(UniEnc(m))) = m, for anym and(EK, DK).

Informally, a unidirectional encryption scheme is con-
sidered to be secure if none of the participating entities
(userF, proxy P, userU) can break it even if they hold
extra secrets. For simplicity, the definitions presented inta-
ble 2 will be specific to theCCA2 security for public key
encryption2. In our definitions, the proxy agentP gets only

2CPA andONE-WAY security definitions are given when necessary.

Definition 2 LetE = (UniGen, UniEnc, UniDec, PDec, FDec) be an unidirectional encryption scheme.

1. E is CCA2 secure against the proxy P if | SuccP,E(1k)− 1/2 | is negligible,SuccP,E is defined as below,PDec

is a deterministic algorithm, and the proxyP never submitsPDec(UniEncEK(mb)) to theFDec oracle.

SuccP,E
def
= Pr

[

b = b̃
∣

∣

∣

(EK, DK)← UniGen(1k), (m0, m1)← PFDec(EK, DKP),

b← {0, 1}, b̃← PFDec(EK, DKP, UniEncEK(mb))

]

2. E is CCA2 secure against the user F if | SuccF,E(1k)− 1/2 | is negligible,SuccF,E is defined as below, and the
userF cannot submit the challengeUniEncEK(mb) to thePDec oracle.

SuccF,E
def
= Pr

[

b = b̃
∣

∣

∣

(EK, DK)← UniGen(1k), (m0, m1)← FPDec(EK, DKF),

b← {0, 1}, b̃← FPDec(EK, DKF, UniEncEK(mb))

]

3. E is CCA2 secure against any user U if | SuccU,E(1k) − 1/2 | is negligible,SuccU,E is defined as below, and
the userU cannot submit the challengeUniEncEK(mb) to the decryption oracleUniDec.

SuccU,E
def
= Pr

[

b = b̃
∣

∣

∣

(EK, DK)← UniGen(1k), (m0, m1)← UUniDec(EK),

b← {0, 1}, b̃← UUniDec(EK, UniEncEK(mb))

]

Table 2. Online encryption definitions.

oracle access to theFDec. In fact,P does not need access to
UniDec because it can simulate it by itself. The only condi-
tions necessary are thatPDec is a deterministic algorithm,
and the proxyP never submitsPDec(UniEncEK(mb)) to
theFDec oracle.

For each of the unidirectional schemes described next,
we will prove that they are secure according to all three
definitions.

4.1 Unidirectional Generic Encryption Scheme

We first present a unidirectional generic technique
that transforms a general encryption schemeE =
(Enc-Gen, Enc, Dec) into an unidirectional encryption
schemeE ′ = (UniGen, UniEnc, UniDec, PDec, FDec).
The key generation algorithmUniGen generates two pairs
of keys (EK1, DK1, EK2, DK2) by running theEnc-Gen

algorithm twice. The userU keeps both keys, while
proxy P and the userF get (EK1, EK2, DK1), respec-
tively (EK1, EK2, DK2). We defineDKP = DK1 and
DKF = DK2. The encryption algorithmUniEnc is equiva-
lent to encrypting the message with the two keysEK1 and
EK2: UniEnc(m) = Enc1(Enc2(m)) = e. The unidirec-
tional decryption algorithmUniDec decrypts the ciphertext
e by applying the original decryption algorithmDec twice:
m = Dec2(Dec1(e)). The proxyP uses the functionPDec

to transform the ciphertexte into ciphertexte′ by decrypt-
ing once with its keyDKP = DK1: e′ = Dec1(e). The
userF usesFDec to transform the ciphertexte′ into the ini-
tial messagem (or invalid) by decrypting once with its key
DKF = DK2: m = Dec2(e

′).

The double encryption can be also defined using two dif-
ferent encryption schemesE1 = (Enc-Gen1, Enc1, Dec1),
E2 = (Enc-Gen2Enc2, Dec2). In this case, the unidirec-
tional encryption schemeE ′ = (UniGen, UniEnc, UniDec,
PDec, FDec) is defined as:

• UniGen(1k) = (Enc-GenE1
(1k), Enc-GenE2

(1k))

• UniEnc(m) = EncE1
(EncE2

(m))

• UniDec(e) = DecE2
(DecE1

(e))

• PDec(e) = DecE1
(e)

• FDec(e′) = DecE2
(e′)

For simplicity, we assume that both encryption schemes
are identical. Next, we prove that the generic unidirectional
encryption scheme is secure according to our definitions.
We make the assumption that the initial encryption scheme
we started from isCCA2 and show that the new unidirec-
tional encryption scheme is alsoCCA2 . The proofs are in
the Appendix A.1.

Theorem 1 Let’s consider a standard encryption scheme
E = (Enc-Gen, Enc, Dec). Based onE , we build an uni-
directional encryption schemeE ′ = (UniGen, UniEnc,
UniDec, PDec, FDec). If E is CCA2 secure, thanE ′ is
alsoCCA2 secure against (1) the proxyP, (2) the userF,
and (3) any userU.

The generic scheme is twice slower than the original
scheme it started from. In order to eliminate this slow-
down, we developed a few specific unidirectional encryp-
tion functions based on El Gamal, RSA, and IBE.

4.2 Unidirectional El Gamal Encryption Scheme

Let’s assume that we have an El Gamal encryption
schemeE = (Enc-Gen, Enc, Dec). The key generation al-
gorithm outputs the public keyEK = (g, p, q, y) and the
secret keyDK = (x), wherep is a prime number,g is a
generator for theZ∗

p, x is randomly chosen fromZq, and
y = gx mod p. The encryption algorithm is defined as
e = EncEK(m) = (gr mod p, mgxr mod p), wherer is
chosen at random fromZq. The decryption algorithm com-
putes the messagem from e by dividing mgxr to (gr)x

modp.

The unidirectional El Gamal encryption scheme is de-
fined asE ′ = (UniGen, UniEnc, UniDec, PDec, FDec).
For each userU, the key generation algorithmUniGen(1k)
generates a public-key pair (EK, DK) and splits the secret
key DK = x into two partsx1 and= x2 such thatx =
x1+x2. The proxyP receivesDKP = x1 and the userF re-
ceivesDKF = x2. The encryptionUniEnc and the decryp-
tion UniDec algorithms are identical to the standard algo-
rithms:Enc andDec. The transformation algorithmsPDec

andFDec are equivalent toDec underx1, respectivelyx2.
The unidirectional encryption scheme is correct because
FDecx2

(PDecx1
(Ency(m))) = FDecx2

(mgxr/(gr)x1) =
mgx2r/(gr)x2 = m.

According to our definitions, the next theorem proves
that the unidirectional El Gamal is as secure as the original
El Gamal scheme. The proofs are presented in Appendix
A.2.

Theorem 2 Let E ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional El Gamal encryption scheme.
E ′ is CPA secure against (1) the proxyP, (2) the userF,
and (3) any userU.

4.3 Unidirectional RSA Encryption Scheme

Let’s assume we have the RSA encryption schemeE =
(Enc-Gen, Enc, Dec). The RSA key generation algorithm
outputs the public keyEK = (e, N) and the secret key
SK = (d, N, ϕ(N)), whereed = 1 modϕ(N), N = pq, p,
q are two large primes andϕ is the Euler totient function.
The encryption is defined asEncEK(m) = me modN = c.
The decryption algorithm isDecEK(c) = cd modN = m.

The unidirectional key generation algorithmE ′ =
(UniGen, UniEnc, UniDec, PDec, FDec). For each user
U, the key generation algorithmUniGen(1k) generates a
public-key pair(EK, DK) and splits the secret key into two
partsd1 andd2 such thatd = d1d2 modϕ(N). The proxy
P getsDKP = d1 and the userF getsDKF = d2. The
encryptionUniEnc and theUniDec algorithms are iden-
tical to the original algorithmsEnc andDec. The trans-
formation functionsPDec andFDec execute theDec de-
cryption algorithm with keysd1 and respectivelyd2. The
correctness of unidirectional RSA is given by the equality
FDecd2

(PDecd1
(Ence(m))) = m.

The original RSA scheme isOW-CPA secure. Thus,
we will prove in the next theorem that unidirectional RSA
is alsoOW-CPA secure. The proofs are in Appendix A.3.

Theorem 3 Let E ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional RSA encryption scheme.E ′ is
ONE-WAY secure against (1) the proxyP, (2) the userF,
and (3) any userU.

4.4 Unidirectional Identity-Based Encryption
Scheme

Our specific IBE scheme is a slightly modification of the
original IBE scheme introduced by [5]. The original IBE
scheme uses a bilinear mapê defined aŝe : G1×G1 → G2,
whereG1 andG2 are two groups of orderq andq is a large
prime number. This means thatê(aP, bQ) = ê(aQ, bP) =
ê(P, Q)ab, whereP, Q ∈ G1 anda, b ∈ Zq. The origi-
nal scheme bases its security on the computational Bilinear
Diffie-Hellman problem. In order to obtain a homomor-
phic scheme, we make a stronger assumption (decisional
Bilinear Diffie-Hellman problem), eliminate the use of a
hash function, require that the messages arem ∈ G2, and
replace the XOR operation by multiplication.

Our scheme is defined as the tupleE =
(Enc-Gen, Extract, Enc, Dec). The key generation al-
gorithm creates the master secret keys and the master
public key Ppub = sP . For every userU, the Extract

algorithm takes as input the user’sID and returns a secret
key DK = sID and a public key equal to theID. The
user’sID is actually defined to be the hash value of the
“real” ID. The encryption algorithmEnc takes the message
m and the public keyID as the input and creates the
ciphertext〈U, V 〉 = 〈rP, mê(rID, sP))〉. The decryption
algorithmDec computesV/ê(sID, U)) = m. The IBE
scheme isCPA secure if the Bilinear Diffie-Hellman
(BDH) problem is hard.

Decisional Bilinear Diffie-Hellam Problem (dBDH).
LetG1 andG2 be two groups of prime orderq. Let ê : G1×
G1 → G2 be a bilinear map and letP be a generator for
G1. The decisional BDH problem〈G1, G2, ê〉 is defined
as follows: Given〈P, aP, bP, cP 〉 for somea, b, c ∈ Z∗

q ,
it is hard to differentiatêe(P, P)abc ∈ G2 from a random
g ∈ G2.

Based on our specific IBE schemeE , we will build
an unidirectional IBE schemeE ′ = (UniGen, UniEnc,
UniDec, PDec, FDec). The key generation algo-
rithm UniGen uses the original key generation algorithm
Enc-Gen to create the master secret keys and the master
public keyPpub = sP . The master secret key is split in
two partss1 ands2, and each part is given to the proxyP

and the userF. The encryption and decryption algorithms
are identical with the original ones.PDec is defined as
PDec(U, V) = 〈U, V/ê(rP, s1ID)〉 = (U, V ′). The user
F uses the ciphertext generated byPDec and the function
FDec to compute the cleartext messagem by computing
V ′/ê(rP, s2ID).

Theorem 4 Let E ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional IBE encryption scheme.E ′ is
CPA secure against (1) the proxyP, (2) the userF, and (3)
any userU.

In all the other unidirectional schemes, the proxyP

has the increased space problem because it needs to save
one key for every user. Our modified homomorphic IBE
scheme solves this problem by allowing the proxy agentP

to save only a single share of the master key for the entire
system.

5 Unidirectional Signature Primitives

Definition 3 A unidirectional signature scheme consists
of five algorithms:S = (UniGen, UniSig, UniVer, PSig,
FSig).

The generation algorithmUniGen(1k) outputs a tuple

of keys (SK,VK) for each userU. VK is the verification
key andSK is the signing key. SK is used to generate
the keysSKP andSKF given to the proxyP, respectively
the userF. The signature algorithmUniSig signs a mes-
sagem ∈ M (e.g. {1, 0}k), s = UniSigSK(m) using
the secret keySK. The signature is formed by the tuple
(m, s). The verification algorithmUniVer uses the pub-
lic key to verify that a signature(m, s) is valid. The ver-
ification algorithm outputsucceedif the signature is cor-
rect andfail otherwise. Thecorrectnessproperty requires
thatUniVer(UniSig(m)) = succeed. The proxyP uses the
functionPSig to generate a partial signature of a message
m ∈ M based onSKP. The userF usesFSig to generate
a partial signature of a messagem ∈ M based onSKF.
PSig(FSig(m)) form a complete signature of the message
m.

We define the unidirectional signature scheme to be safe
if neither entity (proxyP, userF, userU) can generate alone
valid signatures under keySK, even if they knowSKP or
SKF and any of the available public information. The for-
mal definitions are given in table 3.

5.1 Unidirectional Generic Signature Scheme

This generic scheme transforms any given signature
primitive into a unidirectional generic signature scheme.
Let’s assume thatS = (Sig-Gen, Sig, Ver) is a standard
signature scheme. The new unidirectional generic sig-
nature scheme isS′ = (UniGen, UniSig, UniVer, PSig,
FSig). The generation algorithmUniGen generates two
pairs of keys(SK1, VK1, SK2, VK2) for each userU. The
secret key for the unidirectional signature scheme isSK =
(SK1, SK2). The proxyP gets(VK1, VK2, SKP = SK1)
and the userF gets(VK1, VK2, SKF = SK2). The sig-
nature algorithmUniSig generates a valid signature for a
messagem ∈ M by applying the signatureSig twice:
s = (s1, s2) = Sig1(m)Sig2(m). Similarly, the verifica-
tion algorithmUniVer verifies whether the signatures gen-
erated byUniSig are valid by applying the original verifi-
cation algorithmVer algorithm twice: Ver1(s1)Ver2(s2).
The proxy P uses PSig to generate part of the total
unidirectional signature:Sig1(m), while the userF uses
FSig = Sig2(m) to generate the entire signature together
with PSig.

According to our definitions, the generic unidirectional
signature scheme is secure if the following theorem is
proved to be true. The actual proofs are contained in Ap-
pendix B.1.

Definition 4 LetS = (UniGen, UniSig, UniVer, PSig, FSig) be an unidirectional signature scheme.

1. S is UF-CMA against the proxy P if |SuccP,S(1k)| is negligible,SuccP,S is defined as below, and the proxyP

is not allowed to ask theFSig oracle forUniSig(m).

SuccP,S
def
= Pr

[

UniVer(m, s) = succeed
∣

∣

∣
(SK, VK)← UniGen(1k), (m, s)← PFSig(SKP, VK)

]

2. S is UF-CMA against the user F if |SuccF,S(1k)| is negligible,SuccF,S is defined as below, and the userF is
not allowed to ask the signature oracle forUniSig(m).

SuccF,S
def
= Pr

[

UniVer(m, s) = succeed
∣

∣

∣
(SK, VK)← UniGen(1k), (m, s)← FUniSig(SKF, VK)

]

3. S is UF-CMA against any user U if |SuccU,S(1k)| is negligible for any PPT adversaryU, SuccU,S is defined
as below, and the userU is not allowed to ask the signature oracle forUniSig(m).

SuccU,S
def
= Pr

[

UniVer(m, s) = succeed
∣

∣

∣
(SK, VK)← UniGen(1k), (m, s)← UUniSig(VK)

]

Table 3. Online signature definitions.

Theorem 5 Let S = (Sig-Gen, Sig, Ver) be a standard
signature scheme. Let’s considerS′ = (UniGen, UniSig,
UniVer, PSig, FSig) a unidirectional signature scheme
constructed as described above, based onS. If S is UF-
CMA , thanS′ is UF-CMA against (1) the proxyP, (2) the
userF, and (3) any userU.

The unidirectional generic signature scheme has two
main performance disadvantages. First, the size of the se-
cret key increases. Each user no longer has one, but two
keys. Second, the number of operations performed when
signing and verifying doubles. In order to improve these
numbers, we developed an efficient unidirectional signa-
ture scheme based on RSA-Hash.

5.2 Unidirectional RSA-Hash Signature Scheme

Let’s assume that we haveS = (Sig-Gen, Sig, Ver)
a standard RSA-Hash(Full Domain Hash) [1] signature.
Sig-Gen generates the public keyVK = (e, N) and the
secret keySK = (d, ϕ(N)). The signature function is de-
fined asSig = hash(m)d modN = s, wherehash is a
hash function associated withSig. The verification returns
succeed if se = hash(m) mod N . Otherwise, it returns
fail.

The standard RSA-Hash signature schemeS is trans-
formed into a unidirectional signature schemeS′ =
(UniGen, UniSig, UniVer, PSig, FSig) by the following
steps. The key generation algorithmUniGen generates keys

for all usersU by executingSig-Gen and then splits each
secret keyd in two partsd = d1 + d2 modϕ(n). d1 be-
comes the keySKP of the proxyP and d2 becomes the
key SKF of the userF. The signature and verification al-
gorithmsUniSig andUniVer are identical with the original
algorithmsSig andVer. The userF uses theFSig function
to generate one part of the unidirectional RSA-Hash sig-
nature by computings′ = Sigd2

(m). The proxyP uses
the PSig function to generate the other part of the unidi-
rectional RSA signature by computings = Sigd1

(m). The
signature is formed bys ands′.

The standard RSA-Hash signature scheme is existen-
tially unforgeable against chosen message attacks. Thus,
we formally prove in the next theorem that the unidirec-
tional RSA-Hash scheme holds the same level of security.
The actual proofs are in Appendix B.2.

Theorem 6 Let S = (Sig-Gen, Sig, Ver,) be a classic
RSA-Hash signature scheme. Let’s consider thatS′ =
(UniGen, UniSig, UniVer, PSig, FSig) is an unidirectional
RSA-Hash signature scheme constructed as above.S′ is
UF-CMA against (1) the proxyP, (2) the userF, and (3)
all usersU.

The probabilistic RSA-Hash described by [7] has better
security that the RSA-Hash function used above, and can
be transformed into an unidirectional primitive if we allow
the userF to generate the necessary randomness.

6 Bidirectional Encryption Primitives

Definition 5 A bidirectionalencryption scheme consists of
four algorithms:E = (BiGen, BiEnc, BiDec, Π).

The key generation algorithmBiGen outputs one pair of
keys (EKU,DKU) for each userU. In addition, it generates
keys for the userF, (EKF,DKF). After that, it creates one
bidirectional keyπ for each userU. The bidirectional keys
π are given to proxyP. The encryption algorithmBiEncEK

takes as input a messagem to be encrypted and a public key
EK and outputs the ciphertexte = BiEncEK(m). BiDecDK

is the deterministic decryption algorithm that takes the ci-
phertexte, the secret keyDK corresponding to the pub-
lic key, and producesm ∈ M (or invalid in casee was
an improper ciphertext). Thecorrectnessproperty of en-
cryption states thatBiDec(BiEnc(m)) = m, for anym and
(EK, DK). Π is the bidirectional function and transforms
ciphertexts encrypted with one key (EKU) into ciphertexts
encrypted with another key (EKF).

We define the bidirectional encryption schemes to be
secure if neither the third party (proxyP) nor the users
(U, F) can attack the scheme. For simplicity, the defini-
tion presented in table 4 uses theCCA2 level of security.
For technical reasons, we assume that there exists an effi-
cient algorithm that evaluates the relationRπ(e, e′) to true
or false, wheree = BiEnc(m) is the original chiphertext
ande′ = Π(e) is the modified ciphertext computed by the
proxyP. The output of the algorithm is true, it must be the
case thatDecEKU

(e) = DecEKF
(e′). Having such an algo-

rithm, we allow the proxyP has oracle access toBiDecF

because it can simulate oracle access toBiDecU by itself.
In addition, we restrict its access to theBiDecF by not let-
ting the proxyP to submit to the oracle a ciphertexte′ such
thatRπ(e, e′) = true.

6.1 Bidirectional Generic Encryption Scheme

In this section, we present a generic implementation of
a bidirectional encryption scheme based on standard en-
cryption schemes. Let’s assume that we have an encryp-
tion schemeE = (Enc-Gen, Enc, Dec). We transform
E into a bidirectional encryption schemeE ′ = (BiGen,
BiEnc, BiDec, Π) by following the next steps. For every
userU, the generation algorithmBiGen executes the orig-
inal generation algorithmEnc-Gen to generate three pairs
of keys (k1, k2, k3), where eachki = (EKi, DKi). The
usersU, P, andF receive each two pairs of keys such that
any two entities have only one pair of keys in common.

For example, the keys of userU areEKU = (EK1, EK2),
DKU = (DK1, DK2), the keys of proxyP are EKP =
(EK2, EK3), DKP = (DK2, DK3), and the keys of userF
areEKF = (EK1, EK3), DKF = (DK1, DK3). In the con-
text of bidirectional encryption, we say that both usersU

andF have private keys, while the proxyP has the bidirec-
tional key π. The encryption algorithmBiEnc performs
double encryptione = BiEncU(m) = Enc1(Enc2(m)).
Similarly, the decryption algorithmΠ is defined as double
decryptionm = BiDecU(e) = Dec2(Dec1(e)). The proxy
function Π transforms the ciphertext encrypted with the
userU’s key into ciphertext encrypted with the userF’s key.
The first step is to decrypt the ciphertexte = BiEncU(m) =
Enc1(Enc2(m)) by executinge′ = Dec1(e). Then, it en-
cryptse′ with the other half of the keye′′ = Enc3(e

′). The
result ise′′ = BiEncF(m).

The generic bidirectional encryption scheme described
above is secure if no adversary (proxyP, userF, userU)
is able to break it. Let’s assume that the initial encryption
scheme isCCA2 secure. We will show that in this case, the
bidirectional encryption is alsoCCA2 secure. The proofs
are in Appendix C.1.

Theorem 7 Let’s consider a standard encryption scheme
E = (Enc-Gen, Enc, Dec). Based onE , we build an uni-
directional encryption schemeE ′ = (UniGen, UniEnc,
UniDec, PDec, FDec). If E is CCA2 secure, thanE ′ is
alsoCCA2 secure against (1) the proxyP, (2) the userF,
and (3) any userU.

6.2 Bidirectional El Gamal Encryption Scheme

Let’s assume we have the El Gamal encryption scheme
E = (Enc-Gen, Enc, Dec). The key generation algorithm
of the original El Gamal encryption scheme outputs the
public keyEK = (g, p, q, y) and the secret keyDK = x,
and the public key isy = gx mod p. The encryption al-
gorithm is defined ase = EncEK(m) = (gr modp, mgxr

modp), wherer is chosen at random fromZq. The decryp-
tion algorithm computes the messagem from e by dividing
mgxr to (gr)x modp.

Based onE , we will build the bidirectional El Gamal
encryption schemeE ′ = (BiGen, BiEnc, BiDec, Π) by fol-
lowing the next steps. The generation algorithmBiGen

generates the keys for all usersU and F by executing
Enc-Gen twice. Let’s assume that the generated keys
are (DKU = x1, EKU = gx1), (DKF = x2, EKF =
gx2). After this, it computes one proxy keyπ for ev-
ery userU: π = x2 − x1. The encryption algorithm

Definition 6 LetE = (BiGen, BiEnc, BiDec, Π) be a bidirectional encryption scheme.

1. E is CCA2 secure against the proxy P if |SuccP,E(1k) − 1/2| is negligible,SuccP,E is defined as below, and
BiEnc(mb) is never submitted to the decryption oracleBiDec.

SuccP,E
def
= Pr

[

b = b̃
∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), (m0, m1)← PBiDec(EKU, EKF, π),

b← {0, 1}, b̃← PBiDec(EKU, EKF, π, BiEnc(mb))

]

2. E is CCA2 secure against the user F if |SuccF,E(1k) − 1/2| is negligible,SuccF,E is defined as below, and
BiEnc(mb) was never submitted to theP oracle.

SuccF,E
def
= Pr

[

b = b̃
∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), (m0, m1)← FΠ(EKU, EKF, DKF),

b← {0, 1}, b̃← FΠ(EKU, EKF, DKF, BiEnc(mb))

]

3. E is CCA2 secure against any user U if |SuccU,E(1k)− 1/2| is negligible, for any PPT adversaryA, we define
SuccU,E as below, andBiEnc(mb) was never submitted to the decryption oracleBiDec.

SuccA,E
def
= Pr

[

b = b̃
∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), (m0, m1)← A
BiDec(EKU, EKF),

b← {0, 1}, b̃← ABiDec(EKU, EKF, BiEnc(mb))

]

Table 4. Bidirectional encryption definitions.

BiEnc encrypts messagesm ∈ M by executingEnc:
e = BiEnc(m) = Enc(m). The decryption algorithm
BiDec usesDec to decrypt the ciphertexte: BiDec(e) =
Dec(e). The proxy functionΠ transforms messages en-
crypted with the secret key of the userU (DKU) into mes-
sage encrypted with the secret key of the userF (DKF).
We defineΠ to beΠ(BiEncx1

(m), π) = (gr, grxm(gr)π).
The function is correct becauseΠ(BiEncx1

(m), π) =
(gr, grxmgr(x2−x1)) = (gr, grx2m) = BiEncx2

(m).

The proxy function described above is secure if neither
the proxyP nor the userF can distinguish between encryp-
tions of two messages even if provided with the proxy key.
In addition, it should retain the same level of security as the
original El Gamal scheme against all other usersU. The
proofs are described in Appendix C.2.

Theorem 8 LetE = (BiGen, BiEnc, BiDec, Π) be an bidi-
rectional El Gamal encryption scheme.E is CPA secure
against (1) the proxyP, (2) the userF, and (3) any userU.

7 Bidirectional Signature Primitives

Definition 7 A bidirectional signature scheme consists of
four algorithms:S = (BiGen, BiSig, BiVer, Π).

The key generation algorithmBiGen(1k), wherek is
the security parameter, generates keys for all users, includ-
ing the userF. For example, the userU gets the keys
(SKU, VKU) and the userF gets(SKF, VKF). The gener-
ation algorithm is also computing one bidirectional keyπ
for every user and gives it to proxyP. The signature al-
gorithm BiSig signs a messagem ∈ M (e.g. {1, 0}k),
s = BiSigSK(m) using a secret keySK. The signature
is formed by the tuple(m, s). The signature(m, s) is
verified by the verification algorithmBiVer. The verifica-
tion algorithm outputssucceed if the signature is correct
andfail otherwise. Thecorrectnessproperty requires that
BiVer(BiSig(m)) = succeed. The proxy functionΠ uses
the bidirectional keyπ to transform a signature generated
with a secret key into a signature generated with another
secret key.

A bidirectional encryption scheme defined as above is
considered to be safe if it can not be successfully attacked
by any user (U, F) or by the third party (P). The formal
definitions are presented in table 5. We assume that partial
signature contains the message.

Next, we present a few bidirectional signature schemes
that respect the above definition of security.

Definition 8 LetS = (BiGen, BiSig, BiVer, Π) be an bidirectional signature scheme.

1. S is UF against the proxy P if |SuccP,S(1k)| is negligible, whereSuccP,S | is defined as below andP is not
allowed to ask the signature oracle forBiSig(m).

SuccP,S
def
= Pr

[

BiVer(m, s) = succeed
∣

∣

∣

(SKU, VKU, SKF, VKF, π)← BiGen(1k)
(m, s)← PBiSigF(VKU, VKF, π)

]

2. S is UF against the user F if |SuccF,S(1k)| is negligible,SuccF,S | is defined as below andF is not allowed to
askP for Π(m).

SuccF,S
def
= Pr

[

BiVer(m, s) = succeed
∣

∣

∣

(SKU, VKU, SKF, VKF, π)← BiGen(1k)
(m, s)← FΠ(VKU, VKF, SKF)

]

3. S is UF against any user U for any PPT adversaryU, if |SuccU,S(1k)| is negligible, whereSuccU,S is defined
as below, andU is not allowed to ask the signature oracle forBiSig(m).

SuccA,S
def
= Pr

[

BiVer(m, s) = succeed
∣

∣

∣

(SKU, VKU, SKF, VKF, π)← BiGen(1k)
(m, s)← ABiSigU(VKU, VKF)

]

Table 5. Bidirectional signature definitions.

7.1 Bidirectional Generic Signature Scheme

First, let’s consider a standard signature schemeS =
(Sig-Gen, Sig, Ver). The next paragraph explains how
to build an bidirectional generic signature schemeS′ =
(BiGen, BiSig, BiVer, Π) from the original schemeS.
The key generation algorithmBiGen uses the original
key generation algorithmSig-Gen to generate three keys
(k1, k2, k3), whereki = (SKi, VKi), and gives them to
the usersU, F, and P, such that they have in common
only one key. For example, the userU gets VKU =
(VK1, VK2), SKU = (SK1, SK2), the userF getsVKF =
(VK1, VK3), SKF = (SK1, SK3), and the proxyP gets
VKP = (VK2, VK3), SKU = (SK2, SK3). The signature al-
gorithmBiSig computes the signature of a messagem ∈M
by applying the standard signature algorithm twice, once
for each key. For example, the userU signs a messagem as
(s1, s2) = Sig1(m)Sig2(m). BiVer verifies if a signature
generated withBiSig is correct, by executing the standard
verification algorithm twiceVer1(s1) andVer2(s2). The
proxy functionΠ transforms a valid signature generated by
BiSig for a pair of keys into a valid signature generated with
another pair of keys:Π(BiSigU(m)) = BiSigF(m).

The generic bidirectional signature scheme is secure if
the next theorem is true. The proofs are in Appendix D.1.

Theorem 9 Let’s consider a standard signature scheme
S = (Sig-Gen, Sig, Ver). Based onS, we build an bidi-
rectional signature schemeS′ = (BiGen, BiSig, BiVer, Π).
If S is UF thanS′ is UF against (1) the proxyP, (2) the
userF, and (3) all usersU.

8 Unidirectional and Bidirectional Private
Key Primitives

Unidirectional and bidirectional private key schemes
for encrypting and signing messages (MAC) can be eas-
ily build on top of pseudo-random functions (PRF).Thus,
it suffices to build unidirectional and bidirectional PRF
functions. The encryption can be defined asEnc(m) =
〈r, f(r) ⊕ m〉, wherer is chosen at random, andf is a
PRF. The signature is defined asSig(m) = f(m), which in
fact is message authetication code (MAC).

8.1 Unidirectional PRF Functions

Informally, a unidirectional PRF function allows two
usersP andF to compute its value in any given pointx,
even if none of them knows the entire description of the
function.

Definition 9 A PRF functionf is a unidirectional PRF
function if there existf1 and f2 two PRF functions such
that the valuef(x) can be computed asf1(f2(x)).

Based on the above definition, we construct the follow-
ing unidirectional PRF. Let’s considerF = fs a family of
pseudo random function with seeds. We defineUniPRF

such that the value of the unidirectional PRF in a given
pointx is defined asUniPRF(x) = gs1

(x)⊕ gs2
(x), where

g ∈ F . The proxyP and the userF are both given one
of the two seeds. For example, the proxyP receivess1 and
the userF getss2. In this way, they can cooperate and com-
puteUniPRF(x) by first computinggs1

(x) andgs2
(x) and

applying the XOR operation.

Theorem 10 The unidirectional PRF function defined as
UniPRF(x) = f1(x) ⊕ f2(x), wheref1 and f2 are two
PRF functions, is a PRF function.

8.2 Bidirectional PRF Functions

In a similar way, we can informally define a bidirec-
tional PRF function as a PRF function that can be trans-
formed into a new PRF function. This means that one can
compute the valuef2(x), given an initial valuef1(x) and a
simple transformationΠ.

Definition 10 A PRF functionf1 is a bidirectional PRF
function if for any PRF functionf2, there exists a trans-
formationΠ such that the valuef2(x) can be computed as
Π(f1(x)).

Let’s considerF = fs a family of PRF functions
with seeds. We construct a PRF functionBiPRF1(x) =
gs1

(x) ⊕ gs2
(x), where g ∈ F is a PRF function.

The functionBiPRF is bidirectional because from any
value BiPRF1(x), one can easily obtain the value of
BiPRF2(x) = gs1

(x)⊕gs3
(x) by computingBiPRF1(x)⊕

(gs2
(x) ⊕ gs3

(x)). The transformation function is defined
asΠ(x) = gs2

(x) ⊕ gs3
(x). The obvious way to split the

keys betweenF, P, anduser is to give 2 keys to each one
such that any two users have only 1 key in common. For
example, the userU gets(s1, s2), the proxyP gets(s2, s3),
and the userF receives(s1, s3).

Theorem 11 The bidirectional PRF function defined as
BiPRF(x) = f1(x)⊕ f2(x), wheref1 andf2 are two PRF
functions, is a PRF function.

9 Conclusions

At the beginning of the paper we started describing the
for unidirectionalfunctions. The unidirectional notation is
justified by the fact that the proxyP needs to help the law
enforcement agency (userF) for every message that needs
to be decrypted or signed. There is also an offline version
of theunidirectionalproxy function. Because of space con-
sideration, we shortly describe it as part of the conclusions.
The offline proxy functions are based on the key-insulated
encryption and signature primitives created by [9, 10]. In
the offline scheme, usersU protect their secrets by period-
ically updating their secret keys. The userU updates its
secret key using the index of the current time period and
some information provided by a third party (P). The same
third partyP can help the law enforcement agencyF to de-
crypt or sign messages on behalf of other usersU, by pro-
viding special pieces of information at the beginning of the
time period. There is one main difference between unidi-
rectional and offline proxy functions: in the unidirectional
case, the law enforcement agencyF is strictly controlled by
the proxyP and cannot decrypt or sign a message without
its help; in the offline case, the law enforcement agency can
misbehave3 for one time period once it has the necessary
information.

The main contribution of this paper is the formalized
definitions of thebidirectional and unidirectional proxy
functions for encryption and signatures and their security
guarantees. In addition, for each class of proxy func-
tions, the paper describes one generic technique and several
specific techniques to transform a standard cryptographic
primitive into a proxy function.

References

[1] M. Bellare and P. Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. InACM Con-
ference on Computer and Communications Security, pages
62–73, 1993.

[2] M. Bellare and P. Rogaway. The exact security of digital
signatures — how to sign with RSA and Rabin.Lecture
Notes in Computer Science, 1070, 1996.

[3] M. Bellare and R. Sandhu. The Security of Practical Two-
party RSA Signature Schemes.Cryptology ePrint Archive,
Report 2001/060, 2001.

[4] M. Blaze and M. Strauss. Atomic Proxy Cryptography.Eu-
rocrypt, 1998.

[5] D. Boneh and M. Franklin. Identity-Based Encryption from
the Weil Pairing. Proceedings of Crypto ’2001, Lecture
Notes in Computer Science, 2139:213–229, 2001.

3Misbehave i.e. decrypt or sign messages it is not supposed to

[6] C. Boyd. Digital Multisignatures, volume Cryptography
and Coding, pages 241–246. Claredon Press, 1986.

[7] J.-S. Coron. On the Exact Security of Full Domain Hash.
Advances in Cryptology - CRYPTO 2000, 20th Annual In-
ternational Cryptology Conference, pages 229–235, 2000.

[8] Y. Desmedt and Y. Frankel. Threshold Cryptosystems.Ad-
vances in Cryptology – Crypto ’89, pages 307–315, 1989.

[9] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-Insulated Public
Key Cryptosystems.Eurocrypt, 2002.

[10] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated
Signature Schemes.PKC, 2002.

[11] A. Fiat and A. Shamir. How to Prove Yourself: Practical So-
lution to Identification and Signature Problems.CRYPTO,
263:186–194, 1987.

[12] T. E. Gamal. A Public Key Cryptosystem and a Signature
Scheme Based on the Discrete Logarithm.IEEE Transac-
tions of Information Theory, pages 31(4): 469–472, 1985.

[13] B. Horne, B. Pinkas, and T. Sander. Escrow Services and
Incentives in Peer-to-Peer Networks.3rd ACM Conference
on Electronic Commerce, 2001.

[14] J. Kilian and F. T. Leighton. Fair Cryptosystems, Revisited.
Advances of Cryptology - CRYPTO ’95 Proceedings, Berlin:
Springer-Verlag, 1995.

[15] H. Kim, J. Baek, B. Lee, and K. Kim. Computing with
Secrets for Mobile Agent Using One-time Proxy Signature.
SCIS2001, vol 2/2, pages 845–850, 2001.

[16] B. Lee, H. Kim, and K. Kim. Strong Proxy Signature and
its Applications.SCIS2001, vol 2/2, pages 603–608, 2001.

[17] F. T. Leighton. Failsafe Key Escrow Systems.Technical
Memo 483, MIT Lab. for Computer Science, 1994.

[18] A. K. Lenstra, P. Winkler, and Y. Yacobi. A Key Escrow
System with Warrant Bounds.Advances in Cryptology -
CRYPTO, pages 197–207, 1995.

[19] P. MacKenzie. An Efficient Two-Party Public Key Cryp-
tosystem Secure Against Adaptive Chosen Ciphertext At-
tack. PKC, 2003.

[20] P. MacKenzie and M. Reiter. Delegation of cryptographic
servers for capture-resilient devices.CCS, 2001.

[21] P. MacKenzie and M. K. Reiter. Networked Cryptographic
Devices Resilient to Capture.Eighth ACM Conference on
Computer and Communications Security (CCS-8), 2001.

[22] P. MacKenzie and M. K. Reiter. Two-Party Generation of
DSA Signatures.Advances in Cryptology - CRYPTO 2001
(Lecture Notes in Computer Science 2139), 2001.

[23] S. Micali. Fair Public-Key Cryptosystems.Advances in
Cryptology - CRYPTO ’92 Proceedings, Berlin: Springer-
Verlag, 1993.

[24] A. Nicolosi, M. Krohn, Y. Dodis, and D. Mazieres. Proac-
tive Signatures for User Authentication.NDSS, 2003.

[25] R. L. Rivest, A. Shamir, and L. M. Adelman. A Method
for Obtaining Digital Signatures and Public-Key Cryptosys-
tems. Technical Report MIT/LCS/TM-82, 1977.

[26] A. Shamir. Identity-Based Cryptosystems and Signa-
ture Schemes. Advances in Cryptology: Proceedings of
CRYPTO 84, Lecture Notes in Computer Science, 7:47–53,
1984.

[27] Y.Frankel and M.Yung. Escrow Encryption Systems Vis-
ited: Attacks, Analysis and Designs.Advances in Cryp-
tology - CRYPTO ’95 Proceedings, Berlin:Springer-Verlag,
1995.

A Unidirectional Encryption Scheme

A.1 Unidirectional Generic Encryption Scheme

Theorem 1 Let’s consider a standard encryption
schemeE = (Enc-Gen, Enc, Dec). Based onE , we build an
unidirectional encryption schemeE ′ = (UniGen, UniEnc,
UniDec, PDec, FDec). If E is CCA2 secure, thanE ′ is
alsoCCA2 secure against (1) the proxyP, (2) the userF,
and (3) all usersU, where the success of the adversary is
defined in table 6.

Proof

1. Let’s assume thatE ′ is notCCA2 secure against the
proxy P. This means that the proxyP can breakE ′

with probability of success greater than 1/2. We as-
sume thatPDec is a deterministic algorithm and the
proxy P never submitsPDec(UniEncEK(mb)) to the
FDec oracle. Based onP, we build an adversaryB
capable of breaking the original encryption scheme
E . The adversaryB receives as input the public key
EK2 of the original encryption schemeE . B simulates
the conditions necessary for the proxyP to break the
unidirectional encryptionE ′ by randomly choosing a
public/private key pair(EK1, DK1) and forwarding it
to the proxyP together withEK2. The adversaryB
starts running the proxyP. Whenever the proxyP
needs to make a query to theFDec oracle,B simu-
lates theFDec oracle by taking theP’s queryq, and
forwards it to its ownDec oracle access.B sends
to the proxyP the output of theDec oracle. At one
moment,P challenges the unidirectional encryption
schemeE ′ by choosing two messages(m0, m1) and
sending them toB. B chooses the same two mes-
sages to challenge the original encryption schemeE .
WhenB is presented with the challengeEnc2(mb),
wheremb is chosen at random from the two messages
(m0, m1), B appliesEnc1(Enc2(m)) and sends the
challenge asUniEnc(mb) to the proxyP. We assumed
that the proxyP can break the unidirectional encryp-
tion scheme with probability greater than 1/2. Thus,B
can break the standard encryption scheme with prob-
ability greater than 1/2.

2. Let’s assume thatE ′ is notCCA2 secure against the
userF. This means that the userF can breakE ′ with
probability of success greater than 1/2. Based on the
userF, we build an adversaryB capable of breaking
the orginal encryption schemeE . The adversaryB
receives as input the public keyEK1 of the original

Generic
SuccP,E′

def
= Pr

»

b = b̃

˛

˛

˛

˛

(EK1, DK1, EK2, DK2)← UniGen(1k), (m0, m1)← P
FDec(EK1, EK2, DK1),

b← {0, 1}, b̃← P
FDec(EK1, EK2, DK1, UniEnc(mb))

–

SuccF,E′

def
= Pr

»

b = b̃

˛

˛

˛

˛

(EK1, DK1, EK2, DK2)← UniGen(1k), (m0, m1)← F
PDec(EK1, EK2, DK2),

b← {0, 1}, b̃← F
PDec(EK1, EK2, DK2, UniEnc(mb))

–

El-Gamal
SuccP,E′

def
= Pr

»

b = b̃

˛

˛

˛

˛

(EK, DK)← UniGen(1k), (m0, m1)← P(EK, DKP),

b← {0, 1}, b̃← P(EK, DKP, UniEncEK(mb))

–

SuccF,E′

def
= Pr

»

b = b̃

˛

˛

˛

˛

(EK, DK)← UniGen(1k), (m0, m1)← F
PDec∗(EK, DKF),

b← {0, 1}, b̃← F
PDec∗(EK, DKF, UniEncEK(mb))

–

RSA SuccP,E
def
= Pr

»

m
′ = m

˛

˛

˛

˛

(EK, DK)← UniGen(1k), m←M, m′ ← P(EK, DKP, UniEncEK(m))

–

IBE
SuccP,E′

def
= Pr

»

b = b̃

˛

˛

˛

˛

(s = (s1, s2), sP)← UniGen(1k), (m0, m1)← P(s1, sP),

b← {0, 1}, b̃← P(s1, sP, UniEncID(mb))

–

SuccF,E′

def
= Pr

»

b = b̃

˛

˛

˛

˛

(s = (s1, s2), sP)← UniGen(1k), (m0, m1)← F
PDec∗(EK, DKF),

b← {0, 1}, b̃← F
PDec∗(EK, DKF, UniEncEK(mb))

–

Table 6. Online generic encryption definitions for adversary’s success.

encryption schemeE . First, B simulates the condi-
tions necessary for the userF to break the unidirec-
tional encryptionE ′ by choosing at random a pub-
lic/private key pair(EK2, DK2) and forwarding it to
F together with theEK1. The adversaryB starts run-
ning the userF. When the userF makes a query
q = Enc1(Enc2(m)) to thePDec oracle,B takes the
querye, forwards it to its ownDec oracle, and sends
the answerEnc2(m) directly to F. When the userF
challenges the adversaryB, it chooses two messages
(m0, m1) and sends them toB. B encrypts those two
messages using the keyEK2 and sends them to chal-
lenge the standard encryption. WhenB is presented
with the challengeEnc1(mb), wheremb is chosen at
random from two messages(Enc2(m0), Enc2(m1)),
B sends the challenge toF. We assumed that the user
F can break the unidirectional encryption scheme with
probability greater than 1/2. Thus,B can break the
standard encryption scheme with probability greater
than 1/2.

3. This part is implied by the two previous parts.

A.2 Unidirectional El Gamal Encryption Scheme

Theorem 2LetE ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional El Gamal encryption scheme.
E ′ isCPA secure against (1) the proxyP, (2) the userF, and
(3) all usersU, where the adversary’s success is defined in
table 6.

Proof

1. Let’s assume thatP is capable of breaking the unidi-
rectional El-Gamal encryption scheme. This means
that | SuccP,E′(1k) − 1/2 | is not negligible. Based
on P, we will build an adversaryB that breaks the
original El-Gamal scheme with non-negligible prob-
ability. Initially, B is given the public keyEK of the
original EL-Gamal scheme. Based onEK, B simu-
lates the conditions necessary forP to break the uni-
directional ElGamal. For this,B chooses a random
number asx1 and gives it toP. As part of the unidirec-
tional challenge,P chooses two messages(m0, m1)
and forwards them toB. B uses the same two mes-
sages to challenge the standard El-Gamal. WhenB is
given the encryption ofmb, whereb ← {0, 1}, it for-
wardsEnc(mb) to P. We assumed thatP is capable
of breaking the unidirectional El-Gamal and by defi-
nition, UniEnc(mb) = Enc(mb). Thus, ifP decrypts

UniEnc(mb) with probability greater than 1/2, thenB
decryptsEnc(mb) with probability greater than 1/2.

2. Let’s assume thatF is capable of breaking the unidi-
rectional El-Gamal encryption scheme. This means
that | SuccF,E′(1k) − 1/2 | is not negligible. We
use the notationFP∗ to indicate that the userF can
have honest access to thePDec function. Based on
F, we will build an adversaryB that breaks the origi-
nal El-Gamal scheme with non-negligible probability.
Initially, B is given the public keyEK of the origi-
nal EL-Gamal scheme. Based onEK, B simulates the
conditions necessary forF to break the unidirectional
ElGamal. For this,B chooses a random number as
x2 and gives it toF. The adversaryB simulates the
honest access ofF to PDec and the encryption ora-
cle UniEnc by taking the query messagem and re-
turningmgex2 andEnc(m). As part of the unidirec-
tional challenge,F chooses two messages(m0, m1)
and forwards them toB. B uses the same two mes-
sages to challenge the standard El-Gamal. WhenB is
given the encryption ofmb, whereb ← {0, 1}, it for-
wardsEnc(mb) to F. We assumed thatF is capable
of breaking the unidirectional El-Gamal and by defi-
nition, UniEnc(mb) = Enc(mb). Thus, ifF decrypts
UniEnc(mb) with probability greater than 1/2, thenB
decryptsEnc(mb) with probability greater than 1/2.

3. This part is implied by the two previous parts.

A.3 Unidirectional RSA Encryption Scheme

Definition 11 A functionf : {0, 1}∗ → {0, 1}∗ is ONE-
WAY if it satisfies two conditions:

1. There exists apoly-time algorithm that correctly com-
putesf(x) for anyx ∈ {0, 1}∗.

2. For any PPT adversaryA, Pr(f(z) = y | x ←
{0, 1}k; y = f(x); z ← A(y, 1k)) ≤ negl(k).

Theorem 3 Let E ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional RSA encryption scheme.E ′ is
ONE-WAY secure against (1) the proxyP, (2) the userF,
and (3) all usersU, where the success of the adversary is
defined in table 6.

Proof

1. Let’s assume thatP breaks the unidirectional RSA.
This means thatSuccP,E (1k) is not negligible. We

will show that based onP we can build an adversary
B that breaks the original RSA encryption scheme.B
is given the public keyEK and based on it creates the
conditions necessary forP to break the unidirectional
RSA. B chooses a random numberd1 and forwards
it to P as its part of the secret key. The goal of the
adversaryB is to find m′ such thatm′ = m when
givenEnc(m). B forwards the ciphertextEnc(m) =
UniEnc(m) to P. We assumed thatP is able to find
m′ = m when givenUniEnc(m) with non-negligible
probability. Thus,B is able to findm′.

2. This proof is similar to the previous one.

3. This part is implied by the two previous parts.

A.4 Unidirectional IBE Encryption Scheme

Theorem 4LetE ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional IBE encryption scheme.E ′ is
CPA secure against (1) the proxyP, (2) the userF, and (3)
all usersU, where the success of the adversary is defined
in table 6.

Proof

1. Let’s assume thatP is capable of breaking the uni-
directional IBE encryption scheme. This means that
| SuccP,E′(1k)− 1/2 | is not negligible. Based onP,
we will build an adversaryB that breaks the original
IBE scheme with non-negligible probability. Initially,
B is given the public keyPpub = sP of the original
IBE scheme. Based onsP ,B simulates the conditions
necessary forP to break the unidirectional IBE. For
this,B chooses a random number ass1 and gives it to
P. As part of the unidirectional challenge,P chooses
two messages(m0, m1) and forwards them toB. B
uses the same two messages to challenge the standard
IBE. WhenB is given the encryption ofmb, where
b ← {0, 1}, it forwardsEnc(mb) to P. We assumed
that P is capable of breaking the unidirectional IBE
and by definition,UniEnc(mb) = Enc(mb). Thus, if
P decryptsUniEnc(mb) with probability greater than
1/2, thenB decryptsEnc(mb) with probability greater
than 1/2.

2. Let’s assume thatF is capable of breaking the uni-
directional IBE encryption scheme. This means that
| SuccF,E′(1k) − 1/2 | is not negligible. We use
the notationFP∗ to indicate that the userF can have
honest access to thePDec function. Based onF, we

will build an adversaryB that breaks the original IBE
scheme with non-negligible probability. Initially,B
is given the public keyPpub = sP of the original
IBE scheme. B simulates the conditions necessary
for F to break the unidirectional IBE by choosing a
random number ass2 and giving it toF. The adver-
saryB simulates the honest access ofF to PDec and
the encryption oracleUniEnc by taking the query mes-
sagem and returninĝe(rID, s1P) andEnc(m) =<
rID, m ⊕ ê(rID, sP) >. As part of the unidirec-
tional challenge,F chooses two messages(m0, m1)
and forwards them toB. B uses the same two mes-
sages to challenge the standard IBE. WhenB is given
the encryption ofmb, whereb ← {0, 1}, it forwards
Enc(mb) to F. We assumed thatF is capable of
breaking the unidirectional El-Gamal and by defini-
tion, UniEnc(mb) = Enc(mb). Thus, if F decrypts
UniEnc(mb) with probability greater than 1/2, thenB
decryptsEnc(mb) with probability greater than 1/2.

3. This part is implied by the two previous parts.

B Unidirectional Signature Scheme

B.1 Unidirectional Generic Signature Scheme

Theorem 5Let S = (Sig-Gen, Sig, Ver) be a standard
signature scheme. Let’s considerS′ = (UniGen, UniSig,
UniVer, PSig, FSig) an unidirectional signature scheme
constructed as described above, based onS. If S is UF-
CMA , thanS′ is UF-CMA against (1) the proxyP, (2) the
userF, and (3) all usersU, where the adversary’s success
is defined in table 7.

Proof

1. Let’s assume thatS′ is notUF-CMA against the proxy
P. This means that|SuccP,S′(1k)| is not negligi-
ble. We assume that the proxyP is not allowed to
ask theFSig oracle forFSig(m). Based onS′ we
build a forgerB capable to break the original signa-
ture schemeS. The forgerB receives as input the
public key VK2 and tries to generate a valid signa-
ture of a messagem under the secret keySK2. The
forgerB chooses at random a public/private key pair
(VK1, SK1) and forwards it toP together withVK2.
The forgerB starts running the proxyP. When P

makes a query on the hash oracle for a messagem′,
the forgerB forwards the request to its own hash or-
acle and sends the answer to the proxyP. WhenP

asks theFSig oracle to produce a signature for a mes-
sagem′, B asks its own signature oracle to produce
a signature form′ underSK2 and sends the result to
the proxyP. At one moment, the proxyP generates a
valid unidirectional signature for a messagem with a
non-negligible probability, wherem is a completely
new message.B takes the unidirectional signature
UniSig(m) = Sig1(m)Sig2(m), removes the first part
and outputsSig2(m) as a valid signature ofm.

2. Let’s assume thatS′ is notUF-CMA againstF. This
means that|SuccF,S′(1k)| is not negligible. We as-
sume thatF is not allowed to ask thePSig oracle about
m. Based onS′ we build a forgerB capable to break
the original signature schemeS. The forgerB receives
as input the public keyVK1 and tries to generate a
valid signature of a messagem under the secret key
SK1. The forgerB chooses at random a public/private
key pair(VK2, SK2) and forwards it to the userF to-
gether withVK1. The forgerB starts runningF. When
the userF makes a query on the hash oracle for a mes-
sagem′, the forgerB forwards the request to its own
hash oracle and sends the answer back toF. WhenF

asks thePSig oracle to produce part of the signature
for a messagem′, B asks its own signature oracle to
produce a signature form′ underSK1. After that,B
sends toF Sig1(m

′). At one moment,F generates a
valid unidirectional signature for a messagem with a
non-negligible probability, wherem is a completely
new message.B takes the unidirectional signature
UniSig(m) = Sig1(m)Sig2(m), removes the second
part and outputsSig1(m) as a valid signature ofm.

3. This part is implied by the previous two parts.

B.2 Unidirectional RSA-Hash Signature Scheme

Theorem 6 Let S = (Sig-Gen, Sig, Ver) be a clas-
sic RSA-Hash signature scheme. Let’s considerS′ =
(UniGen, UniSig, UniVer, PSig, FSig) an unidirectional
RSA-Hash signature scheme constructed as described
above.S′ is UF-CMA against (1) the proxyP, (2) the user
F, and (3) all usersU, where the adversary’s success is
defined in table 7.

Proof

1. Let’s assume thatP can break the unidirectional RSA-
Hash scheme. This means that|SuccP,S(1k)| is not
negligible. Based on the proxyP, we build a forgerB

Generic
SuccP,S′

def
= Pr

»

UniVer(m,s) = succeed

˛

˛

˛

˛

(VK1, SK1, VK2, SK2)← UniGen(1k)
(m, s)← P

FSig(VK1, VK2, SK1)

–

SuccF,S′

def
= Pr

»

UniVer(m, s) = succeed

˛

˛

˛

˛

(VK1, SK1, VK2, SK2)← UniGen(1k)

(m,s)← F
PSig(VK1, VK2, SK2)

–

RSA-Hash
SuccP,S

def
= Pr

»

UniVer(m, s) = succeed

˛

˛

˛

˛

(SK, VK)← UniGen(1k), (m, s)← P
FSig(SKP, VK)]

–

SuccF,S
def
= Pr

»

UniVer(m, s) = succeed

˛

˛

˛

˛

(SK, VK)← UniGen(1k), (m, s)← F
PSig(SKF, VK)

–

Table 7. Online generic signature definitions for adversary’s success.

capable of breaking the RSA encryption scheme. The
forgerB receives as input a public key(N, e) and tries
to invertx = f−1(y), wheref is the RSA function
defined byN ande. The adversaryB starts running
the proxyP for this public key and a randomly chosen
numberd1 given as a secret key. When the proxyP

makes thei-th hash query, the adversary looks to see
if the messagemi was already asked. If not, it picks
a randomxi, setsh(mi) = xe

i with probabilityp and
h(mi) = y ∗ xe

i with probability1 − p. If the proxy
P makes a query toFSig for a messagemi, the ad-
versary returnsxi if mi was asked before. Otherwise
it fails. Eventually,P outputs a correct unidirectional
RSA-Hash signature(m, s) for a brand new message
m. If the messagem was not hashed before, the ad-
versary computes its has value. Ifh(m) = y∗xe

i , then
the adversary returnsyd = s/xe

i as thex = f−1(y).
Otherwise, it fails.

2. Let’s assume thatF can break the unidirectional RSA-
Hash scheme. This means that|SuccF,S(1k)| is not
negligible. Based on the userF, we build a forgerB
capable of breaking the RSA encryption scheme. The
forgerB receives as input a public key(N, e) and tries
to invertx = f−1(y), wheref is the RSA function
defined byN ande. The adversaryB starts running
the userF for this public key and a randomly chosen
numberd2 given as a secret key. When the userF

makes thei-th hash query, the adversary looks to see
if the messagemi was already asked. If not, it picks
a randomxi, setsh(mi) = xe

i with probabilityp and
h(mi) = y ∗ xe

i with probability1 − p. If the user
F makes a query toPSig for a messagemi, the ad-
versary returnsxi if mi was asked before. Otherwise
it fails. Eventually,F outputs a correct unidirectional
RSA-Hash signature(m, s) for a brand new message
m. If the messagem was not hashed before, the ad-

versary computes its has value. Ifh(m) = y∗xe
i , then

the adversary returnsyd = s/xe
i as thex = f−1(y).

Otherwise, it fails.

3. This part is implied by the previous two parts.

C Bidirectional Encryption Scheme

C.1 Bidirectional Generic Encryption Scheme

Theorem 7 Let’s consider a standard encryption
schemeE = (Enc-Gen, Enc, Dec). Based onE , we build
an bidirectional encryption schemeE ′ = (BiGen, BiEnc,
BiDec, PDec, FDec). If E is CCA2 secure, thanE ′ is also
CCA2 secure against (1) the proxyP, (2) the userF, and
(3) all usersU, where the adversary’s success is defined in
table 8.

For technical reasons, we assume that there exists an
efficient algorithm that evaluates the relationRπ(e, e′) to
true or false, wheree = BiEnc(m) is the original chipher-
text ande′ = Π(e) is the modified ciphertext computed by
the proxyP. The output of the algorithm is true, it must
be the case thatDecEKU

(e) = DecEKF
(e′). Having such

an algorithm, we allow the proxyP has oracle access to
BiDec because it can never submit a ciphertexte′ such that
Rπ(e, e′) = true.

Proof

1. Let’s assume thatE ′ is not CCA2 secure againstP.
This means that|Succ(P, E ′) − 1/2| is not negligi-
ble. Based onP, we will build an adversaryB that
breaks the standard encryption schemeE for the key
k2 = (EK2, DK2). The adversaryB tries to decrypt

Generic

SuccP,E
def
= Pr

»

b = b̃

˛

˛

˛

˛

(EKU, DKU, EKF, DKF, π)← BiGen(1k), b← {0, 1},

(m0, m1)← P
BiDec(EKU, EKF, π), b̃← P

BiDec(EKU, EKF, π, BiEnc(mb))

–

SuccF,E
def
= Pr

»

b = b̃

˛

˛

˛

˛

(EKU, DKU, EKF, DKF, π)← BiGen(1k), b← {0, 1},

(m0, m1)← F
P(EKU, EKF, DKF), b̃← F

P(EKU, EKF, DKF, BiEnc(mb))

–

SuccA,E
def
= Pr

»

b = b̃

˛

˛

˛

˛

(EKU, DKU, EKF, DKF, π)← BiGen(1k), b← {0, 1},

(m0, m1)← A
BiDec(EKU, EKF), b̃← A

BiDec(EKU, EKF, BiEnc(mb))

–

El Gamal

SuccP,E
def
= Pr

»

b = b̃

˛

˛

˛

˛

(EKU, DKU, EKF, DKF, π)← BiGen(1k), b← {0, 1},

(m0, m1)← P(EKU, EKF, π), b̃← P(EKU, EKF, π, BiEncEKU
(mb))

–

SuccF,E
def
= Pr

»

b = b̃

˛

˛

˛

˛

(EKU, DKU, EKF, DKF, π)← BiGen(1k), b← {0, 1},

(m0, m1)← F(EKU, EKF, DKF), b̃← F(EKU, EKF, DKF, BiEncEKU
(mb))

–

SuccA,E
def
= Pr

»

b = b̃

˛

˛

˛

˛

(EKU, DKU, EKA, DKA, π)← BiGen(1k), b← {0, 1},

(m0, m1)← A(EKU, EKA, DKA), b̃← A(EKU, EKA, DKA, BiEncEKU
(mb))

–

Table 8. Bidirectional encryption definitions for adversary’s success.

the ciphertextEnc2(m). B chooses two pairs of keys
(k1, k3), gives them toP, and then startsP. B simu-
latesP’s access to the decryption oracleBiDec by tak-
ing each querye of P, and sendingDeck1

(e) to its own
decryption oracle. The message received as the an-
swer is sent to the proxy]proxy. P chooses two mes-
sages(m0, m1) to challenge the bidirectional encryp-
tion schemeE ′ and sends them toB. B uses the same
two messages to challenge the standard encryption
schemeE . WhenB is presented with the challenge
Enck2

(mb), wheremb ∈ (m0, m1), B sends toP

BiEnc(mb) = Enck1
(Enck2

(mb)). We assumed that
P is able to break the bidirectional encryption scheme
with non-negligible probability. Thus,B breaks the
standard encryption scheme with non-negligible prob-
ability.

2. Let’s assume thatE ′ is not CCA2 secure againstF.
This means that|Succ(F, E ′) − 1/2| is not negligi-
ble. Based onP, we will build an algorithmB that
breaks the standard encryption schemeE for encryp-
tion keyk1. B chooses two random numbers as keys
(k2, k3) and gives them toF. In addition,B simu-
lates oracle access toP by taking each querye of F,
forwarding it to its own decryption oracle and send-
ing back toF Enck3

(Deck1
(e)). F chooses two mes-

sages(m0, m1) to challenge the bidirectional encryp-
tion schemeE ′ and sends them toB. B encrypts the
two messages and uses(Enck2

(m0), Enck2
(m1)) to

challenge the standard encryption schemeE . When
B is presented with the challengeEnck1

(mb), where
mb ∈ (Enck2

(m0), Enck2
(m1)), B sends toF the

challengeEnck1
(mb). We assumed thatF is able to

break the bidirectional encryption scheme with non-
negligible probability. Thus,B breaks the standard
encryption scheme with non-negligible probability.

3. Let’s assume thatE ′ is not CCA2 secure. This
means that there is a PPT adversaryA such that
|Succ(A, E ′) − 1/2| is not negligible. Based onA,
we will build an adversaryB that breaks the standard
encryption schemeE for the key(EK2, DK2). The
adversaryB tries to decrypt the ciphertextEnc2(m).
B startsA. B simulatesA’s access to the decryp-
tion oracleBiDec by taking each querye of A, and
sendingDeck1

(e) to its own decryption oracle.A
chooses two messages(m0, m1) to challenge the bidi-
rectional encryption schemeE ′ and sends them toB.
B uses the same two messages to challenge the stan-
dard encryption schemeE . WhenB is presented with
the challengeEnck2

(mb), wheremb ∈ (m0, m1), B
sends toA BiEnc(mb) = Enck1

(Enck2
(mb)). We as-

sumed thatP is able to break the bidirectional encryp-
tion scheme with non-begligible probability. Thus,
B breaks the standard encryption scheme with non-
negligible probability.

Generic
SuccP,S

def
= Pr

»

BiVer(m, s) = succeed

˛

˛

˛

˛

(SKU, VKU, SKF, VKF, π)← BiGen(1k)
(m,s)← P

BiSig(VKU, VKF, π)

–

SuccF,S
def
= Pr

»

BiVer(m, s) = succeed

˛

˛

˛

˛

(SKU, VKU, SKF, VKF, π)← BiGen(1k)

(m, s)← F
P(VKU, VKF, SKF)

–

Table 9. Bidirectional signature definitions for adversary’s success.

C.2 Bidirectional El Gamal Encryption Scheme

Theorem 8Let E ′ = (BiGen, BiEnc, BiDec, Π) be an
bidirectional El Gamal encryption scheme.E ′ is CPA se-
cure against (1) the proxyP, (2) the userF, and (3) all users
U, where the adversary’s success is defined in table 8.

Proof

1. Let’s assume thatP can break the bidirectional
El Gamal encryption scheme. This means that
|SuccP,E(1k)−1/2| is not negligible. Based onP, we
will build an algorithmB that can break the standard
El Gamal encryption. For this,B simulates the condi-
tions required byP. Initially, B knows the public key
of U (EKU = gx1). B pick a random numberπ and
forwards it toP, together withEKU. FromEKU = gx1

andπ, B calculatesgx2 = gx1gπ and forwardsgx2

to P as the secret key ofF. P chooses two mes-
sages(m0, m1) to challenge the security of the bidi-
rectional El Gamal and forwards them toB. B con-
siders the same two messages to challenge the stan-
dard El Gamal and receives the challengeEncx1

(mb),
wheremb ∈ (m0, m1). B forwards the challenge
Encx1

(mb) = BiEncx1
(mb) to P. We considered that

P can break the bidirectional El Gamal with probabil-
ity of successSuccP,E(1k) greater than 1/2. Thus,B
is able to break the standard El Gamal with probability
of success greater than 1/2.

2. Let’s assume thatF can breakE ′. This means that
|SuccF,E(1k) − 1/2| is not negligible. The proof is
similar to the previous one. The only difference is that
B chooses at randomx2 and computesgx2 for F.

3. Let’s assume thatE is not CPA secure. This
means that there exists an adversaryA such that
|SuccA,E(1k) − 1/2| is not negligible. The proof is
similar to the previous one. The only difference is
that B chooses at randomDKA = y and computes
EKA = gy forA.

D Bidirectional Signature Scheme

D.1 Bidirectional Generic Signature Scheme

Theorem 9Let’s consider a standard signature scheme
S = (Sig-Gen, Sig, Ver). Based onS, we build an bidi-
rectional signature schemeS′ = (BiGen, BiSig, BiVer, Π).
If S is UF thanS′ is UF against (1) the proxyP, (2) the
userF, and (3) all usersU, where the adversary’s success
is defined in table 9.

Proof

1. Let’s assume thatS′ is notUF againstP. This means
that |SuccP,S(1k)| is not negligible. Based onP, we
build a forgerB able to break the original signature
S. B tries to generate a valid signatureSig1(m) for a
messagem. B receivesVK1 as input.B generates two
random numbers(SK2, SK3) and sends them toP as
the bidirectional keyπ. The forgerB startsP.

Whenproxy makes a query for a messagem to the
hash oracle,B forwards the request to its own hash
oracle and returns the answerh(m) to P. WhenP

makes a query to theπ signature oracle,B makes a
query to theSig signature oracle for the same mes-
sagem. B receivesSig1(m), computesSig3(m) and
sends toP BiSig(m) = Sig1(m)Sig3(m). At one mo-
ment, P generates a valid signatureBiSig(m) for a
new messagem, with non-negligible probability.B
takesBiSig(m) = Sig1(m)Sig3(m), ignores the sec-
ond part and outputsSig1(m). We assumed thatP can
break the bidirectional signature schemeS′. Thus,B
can break the original signature schemeS.

2. Let’s assume thatS′ is notUF againstF. This means
that |SuccF,S(1k)| is not negligible. Based onF, we
build a forgerB able to break the original signature
S. B tries to generate a valid signatureSig2(m) for a
messagem. B receivesVK2 as input.B generates two
pairs of random numbers(VK1, SK1, VK3, SK3) and
sends toF as its keys. The forgerB startsF. When

fbi makes a query for a messagem to the hash or-
acle,B forwards the request to its own hash oracle
and returns the answerh(m) to F. WhenF makes
a query to theP signature oracle,B makes a query
to theSig signature oracle for the same messagem.
B receivesSig2(m), computesSig1(m) and sends to
F BiSig(m) = Sig1(m)Sig2(m). At one moment,F
generates a valid signatureBiSig(m) for

a new messagem, with non-negligible probability.B
takesBiSig(m) = Sig1(m)Sig2(m), ignores the first
part and outputsSig2(m). We assumed thatF can
break the bidirectional signature schemeS′. Thus,B
can break the original signature schemeS.

3. This part is implied by the two previous parts.

