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Abstract signature for another key without disclosing the secret sig
nature keys. We extend and generalize this notion as fol-
lows. Intuitively, proxy functions allow one user to cor-
rectly decrypt ciphertexts or generate valid signatures on
behalf of another user without holding any information
about the secret keys of the latter user.

In this work we revisit and formally study the notion
of proxy cryptography. Intuitively, various proxy func-
tions allow two cooperating partieg (the “FBI”) and P
(the “proxy”) to duplicate the functionality available thé
third party U (the “user”), without being able to perform
this functionality on their own (without cooperation). The We consider that the proxy functions can be divided into
concept is closely related to the notion of threshold cryp- two categoriesbidirectionalandunidirectional. Theuni-
tography, except we deal with only two partiBsand F', directional proxy functions allow one uset/{) to decrypt
and place very strict restrictions on the way the operations ciphertexts or generate signatures corresponding to the se
are performed (which is done for the sake of efficiency, us-cret key of another useit) even if the first user does
ability and scalability). For example, for decryption (ies  not hold that secret key. However, the owner of the secret
signature) P (F) sends a single message kb (P), after key (Uz) needs a completely differeanidirectionalfunc-
which the latter can decrypt (sign) the message. Our for- tion if he desires to decrypt ciphertexts or generate signa-
mal modeling of proxy cryptography significantly general- tures on behalf of the first uset’{). Unlike theunidirec-
izes, simplifies and simultaneously clarifies the model of tional proxy functions, thevidirectionalones can be used
“atomic proxy” suggested by Blaze and Strauss [4]. In by both users to decrypt ciphertexts or generate signatures
particular, we define bidirectional and unidirectional wvar by transforming the ciphertext/signature for one key into
ants of our modé| and show extremely simple generic so- ciphertext/signature for another key. In other words, both
lutions for proxy signature and encryption in these models. userd/; andU; can use the sant@directionalproxy func-

We also give more efficient solutions for several specific tion to transform ciphertexts from one key to another key.
schemes. We conclude that proxy cryptography is a rela-
tively simple concept to satisfy when looked from the cor-
rect and formal standpoint.

The original paper [4] informally defines the notion of
bidirectional proxy functions and describes two examples
of proxy functions: one for encryption, based on El Gamal
encryption, and one for signatures. However, both exam-
1 Introduction ples are proved to have low security guarantees. Our paper

formally defines both théidirectional and unidirectional
gProxy functions for encryption and signature, and their se-
curity guarantees (e.g. indistinguishability/unforgiéigb
under various attacks). In addition, this paper presents
generic schemes fandirectionalandunidirectionalproxy
functions for both public-key and private-key encryption
and signature schemes. All generic schemes can be used
to transform any standard cryptographic primitive into a
proxy function, with a factor of two slowdown. This

1we will also mention yet another off-line variant impligitstudied slowdown is eliminated by the proxy functions specifi-
by [9, 10].

The Blaze and Strauss [4] paper introduced the notion o
(atomic) proxy cryptography. The authors define “atomic
proxy functions” as functions that transform ciphertextco
responding to one key into ciphertext for another key with-
out revealing any information about the secret decryption
keys or the clear text. In the case of signatures, the proxy
functions convert a valid signature for one key into a valid




cally designed for a few cryptographic primitives (e.g. El the actual signer. Our schemes differ from theirs in that
Gamal [12], RSA [25], RSA Hash-and-Sign [2, 1]). that the new signature is identical to the one that would

) have been produced by the original delegator. In fact, this
_ The notion of proxy cryptography can be VerY_“Sef“' indistinguishability is one of the most important featufe o
in cases when one user needs to perform sensitive opery . schemes. In [3], the RSA-based unidirectional signa-
ations (e.g. ciphertext decryption, signature generation y .o scheme splits the secret key between a client and a

without holding the necessary secret keys. For example go\er 5 ch that neither is able to create a valid key without
the president of a company can delegate his signature rlght%vorking together. The security proofs rely on the fact that

by giving a proxy key to his assistent. _The proxy ke_zy the server is always trusted, thus obtaining lower levels of
transforms a,S|g.nature created by 'Fhe V|ce-pr_eS|dent 'ntosecurity then the ones we propose here. MacKenzie and
the pre5|d§nts signature, thus a”F’W'”Q the assistenoio ¢ paier [22, 21, 20] consider a similar question of two-party
S|gn.3nly if the rtljocument lwa}s fr|]rst s]:gnekd by the vice- gjonature generation to the one we consider here. However,
president. Another example is that of a key esCrow sys-,qir oojutions, especially [22] are highly complex and in-

temd_[13, ﬁ3, 18’ﬂ.17’ ;-4’ 27], where a guﬁte? partyf €an teractive as compared to the notion of unidirectional proxy
mediate t € con icts etween_ users and the law en Orce'signatures we propose here (they also have a slightly more
ment agencies. The problem is to allow the law enforce-

sophisticated scenario, where the user has a personal pass-
ment agency to read messages encrypted for a set of users,

for a limited period of time, without knowing the users’ ord in addition to the split secret key).

secrets. The solution is to locate a key escrow agent be- As mentioned, the most closely related work is that of
tween the users and the law enforcement agency, such thaBlaze and Strauss [4] who introduce the notions of bidi-
it controls which messages are read by the law enforce-rectional decryption and bidirectional signature. Howeve
ment agencies. In classic schemes, the users have to giveack of proper definitions makes them consider only the
their secret keys to the key escrow agent. Whenever the languestion of changing thexistingencryption or signature
enforcement agency wants to reads a message belonging techemes (like EIGamal encryption or Fiat-Shamir signa-
a user, the key escrow agent decrypts the message and raure [11]) into a corresponding proxy primitive, instead of
encrypts it with the key of the law enforcement agency. In looking at the abstract probleitself. As the result, they
order to prevent the key escrow agent from knowing the se-provide very limited schemes satisfying very weak (semi-
cret keys and cleartext messages, we propose that the keformally stated) security properties. We contribute te thi
escrow agent holds proxy keys that uses proxy functionswork by clarifying and precisely defining the problems at
to transform ciphertext corresponding to user keys into ci- hand (i.e., presenting formal definitions forlaidlirectional
phertext corresponding to the law enforcement agency.  andunidirectionalproxy functions and their security guar-

) antees), and describe generic as well as specific schemes
The rest of the paper is structured as follows. The next for both encryption and signature proxy functions.
chapter presents other projects that studied the notion of

proxy functions. Chapter 3 uses the key escrow scenarioto We briefly consider extensions to the multi-user set-

describe the computational model used to define the proxyting, and use recent results from identity based cryptogra-

functions. The next four chapters present the aatnali- phy [26, 5] to improve the efficiency in this setting. In addi-

rectionalandbidirectionalfunctions. The paper ends with tion, we adapt the key-insulated model presented in [9, 10]

some final thoughts about learned lessons and ideas for théo create offline bidirectional schemes that do not require

future. the proxy agenP to continuously assist the law enforce-
ment agency.

2 Related Work The unidirectional and bidirectional primitives can be
considered as special cases of general threshold cryptog-
raphy [6, 8]. However, most threshold systems assume a
onest majority and work only for > 3. Thus, many
hreshold techniques cannot be applied to a two-party set-
ting. Recently, people have considered two-party primi-
tives in a multi-round setting: GQ, Schnorr [24] and DSA
signatures [22], while [19] talks about encryption.

The idea of delegating decryption/signature rights was
previously researched and presented in several papers [1
15, 3,22, 21, 4]. The goal of the [16, 15] paper is similar to
ours. In the context of mobile computing, agents should be
able to carry signature functions such that untrustediestit
sign on behalf of a user without knowing his key. However,
the result of signing a message is a brand new signa-
ture that combines the identities of the original user and



3 Model ever the useF wants to sign a message on behalf of a
certain useltJ, it asks the proxy for help. First, the usdf

For a better understanding and consistency throughout!SesFSig to generate a partial signature of the message
the rest of the paper, we will explain and use the key escrow 1€ ProxyP transforms the partial signature into a valid
scenario as a model for our definitions. signature by applying thBSig on the partial signature.

The key escrow scenario has four classes of actors: (i)Bidirectional encryption proxy function. A bidirec-
the general userd who delegate their decryption rights, tional encryption function is defined as a tugle= (BiGen,
(ii) the law enforcement agendythat tries to decrypt ci-  BiEnc, BiDec, ). The key generation algorith®iGen
phertexts belonging to the general users, (iii) the proxy creates keys for all users in the system, including the user
agentP responsible for helping the latter user to decrypt F. For each pair of key&ky, kr ), theBiGen algorithm gen-
ciphertexts, and (iv) the legal court that is trusted by ev- erates a bidirectional key. The general userd encrypt
eryone. All users register with the key escrow system by messages usinBiEnc and decrypt them usingiDec. In
providing some kind of secret information to the prdXy  order to decrypt a ciphertext belonging to a general User
After registration, they are free to send encrypted message the userfF asks the proxy for help. The proxyP uses
to each other. Whenever the law enforcement agency wantshe bidirectional functioril and the bidirectional key to
to eavesdrop on the communication between two users, ittransform the ciphertext for usérinto ciphertext for user
asks the legal court for a warrant. The legal court createsf. After that, the usef can decrypt the new ciphertext with
a time-bounded warrant and gives it to the proxy agent. its own key and obtain the cleartext message.
Then, the proxy agent helps the law enforcement agency
to decrypt the ciphertexts belonging to the specified userspjgdirectional signature proxy function. A bidirectional
and period of time. In our model, we will disregard the last signature function is defined as a tuple= (BiGen, BiSig,
actor, because the legal court is not directly involved & th  gjyer, M). As in the bidirectional encryption case, the key
cryptographic part of the protocol. generation algorithnBiGen creates keys for all users in
the system, including the usé&t For each pair of keys
(ku, kr), theBiGen algorithm generates a bidirectional key
The general usets$ sign messages usifgjSig and veri-
s the signatures usigjVer. Whenever the usérwants

to generate a valid signature for a messagen behalf of

Unidirectional encryption proxy function. A unidirec- & uset, itfirst generates a signature with its own key and
tional encryption proxy function is defined as a tufle= then asks the proxy for help. The proxy® uses the bidi-
(UniGen, UniEnc, UniDec, PDec, FDec). The key gener- rectional fgncﬂonl‘l and the b|d|rect|onql key tq trans-
ation algorithmUniGen generates keys for every general fOrm the signature gene,rated by the usento a signature
userU. Then, for each used, it generates two more keys 9enerated with the user's key.
for the proxyP and the useF. The general users encrypt  Tapje 1 reflects the way the unidirectional and the bidi-

cleartext messages using WsiEnc algorithm and decrypt  rectional techniques work for both encryption and signa-
them using theUniDec algorithm. Whenever the usér

The next paragraphs informally define thieirectional
andunidirectionalproxy functions for encryption and sig-
nature generation and explain how they can be easily useop'
to construct key escrow systems. 1€

wants to decrypt a ciphertextit asks the proxy for help. ures.
The proxyP usesPDec to transform the ciphertextinto a Even though both bidirectional and unidirectional proxy
different ciphertext’ and sends it to the usér The usefF functions achieve the same goal, there are a few notable
applies theFDec function to the received ciphertextand differences between them. First, the unidirectional proxy
gets the original cleartext. functions can be used only one way, from one user to an-
other user. The reverse sense requires a different unidirec
Unidirectional signature proxy function. An unidirec- tional function. The bidirectional proxy functions can be
tional signature proxy function is defined as a tugle= used in both directions. Second, the bidirectional schemes

(UniGen, UniSig, UniVer, PSig, FSig). As in the unidirec-  assume that the law enforcement agency (#3dnas its
tional encryption case, the key generation algorithm gen- own key. The unidirectional schemes do not make this as-
erates keys for every general usér Then, for each user sumption but pay an increased storage requirement price
U, it generates two more keys for the proRyand the user  because the usérneeds to store one key for each user in
F. The general users sign messages usind/ttigig algo- the system. In both cases, the prdxyhas the increased
rithm and verify them using thEniVer algorithm. When-  space problem because it needs to save one key for every



Bidirectional Unidirectional
U(DK,)
U(sk,) P(n) F(skp) POK.) FIDK,)
Encryption e=Enc (m) — e'=T[(e) — e'=Enc(m) e=Enc(m) — PDec(e) — FDec(PDec(e))=m
U(sk)
F(skp) P() U(sk,) - )
Signature §'=Sig (M) —> s=Tl(s) —> s=Sig(m) m —CKeL Fsig(m) Plke), s=Psig(FSig(m))

Table 1. Unidirectional vs. Bidirectional techniques

user. This problem can be very important in systems where4  Unidirectional Encryption Primitives
the number of general users is extremely large. A solu-
tion is offered by the identity-based primitives [5], where pefinition 1 A unidirectional encryption scheme consists

the proxy needs to save only a share of the master secregy five algorithmsg = (UniGen, UniEnc, UniDec, PDec,
key. Third, in both cases, revocation is easily achieved by FDec)

having the third party refuse to help.

The unidirectional and bidirectional schemes described  The generation algorithidniGen(1%) outputs a tuple of
in this paper require the proxy agdnto continuously as-  keys EK,DK) for each general usér. EK is the encryption
sist the law enforcement agenéwhen decrypting cipher-  key andDK is the decryption key. For each secret k&,
text or generating valid signatures on behalf of a user. Thethe key generation algorithm creates two secret k¥s
key-insulated model presented in [9, 10] can be easily ex-andDKF for the proxyP, and respectively the usér For
tended such that the proxy agdhhelps the law enforce-  simplicity, the definitions given in table 2 show that the key
ment agency only once, at the beginning of its warrant. The generation algorithm outputs only user keys, even though
key-insulated model has two actors, the proxy adreeand it also builts the keys for the proXy and the useF.
the userU. The userU updates its secret key using the
index of the current time period and some information pro-
vided by a third party®). Our model adds another player,
the law enforcement agen€ythat receives from the proxy
P the user’s key for an unused period of tifig  Similar
to the original key-insulated model, the proRyhelps the
user to update its key. In addition, the proRyhelps the
law enforcement agendy to compute the user’s key for
time periodT; if presented with an warrant for the tinie.
All primitives presented in [9, 10] can be easily extended
for our offline model.

UniEncgk is the encryption algorithm and encrypts a
messagen from the corresponding message spatée.g.,
{0,1}*) ase = UniEncgk(m). The decryption algo-
rithm UniDecpk is a deterministic decryption algorithm
that takes the ciphertext, the secret keyDK, and out-
putsm € M (or invalid in casee was an improper ci-
phertext). Thecorrectnessgproperty of encryption states
that UniDec(UniEnc(m)) = m, for any message: and
pair of keys(EK, DK). The functionPDec uses the se-
cret key of the proxyP, DKp, to transform a ciphertext
e into ciphertexte’. The FDec function takes this cipher-

With this model in mind, we introduce in the next sec- texte’ and the secret keRKr of the userr and produces
tions theunidirectional andbidirectional encryption and  the original message: € M or invalid if the ciphertext
signature schemes. For each scheme, we give formal defe’ was not correct. Theorrectnesgroperty specifies that
initions, present one generic scheme and several specifidDec(PDec(UniEnc(m))) = m, for anym and(EK, DK).
schemes, and prove their security guarantees. For simplic-
ity, all general definitions will be given in the context of
public-key cryptography.

Informally, a unidirectional encryption scheme is con-
sidered to be secure if none of the participating entities
(userF, proxy P, userU) can break it even if they hold
extra secrets. For simplicity, the definitions presentdd-in
ble 2 will be specific to th&€ CA2 security for public key
encryptior?. In our definitions, the proxy ageRtgets only

2CPA andONE-WAY security definitions are given when necessary.



Definition 2 Let& = (UniGen, UniEnc, UniDec, PDec, FDec) be an unidirectional encryption scheme.

1. £is CCA2 secure against the proxy P if | Succp ¢(1¥) —1/2 | is negligible Succp ¢ is defined as belov?Dec
is a deterministic algorithm, and the proRynever submit®Dec(UniEncgk (my)) to theFDec oracle.

def | (EK,DK) « UniGen(1*), (mg,m;) « PFPe<(EK, DKp),
Succes & Pr|b=b ‘ b {0,1},b — PFO(EK, DKp, UniEncex (ms)) ]
2. £is CCA2 secure against the user F if | Succe ¢(1%) — 1/2 | is negligible,Succe ¢ is defined as below, and the

userF cannot submit the challendéiEncex (m;,) to thePDec oracle.

def _ 7| (EK,DK) « UniGen(1%), (mq, m) « FPPe(EK, DKE),

Succr.e  Pr|b=D ‘ b {0,1},b — FPP=(EK, DK, UniEncex (my))
3. £is CCA2 secure against any user U if | SUCCU,g(lk) — 1/2 | is negligible,Succy ¢ is defined as below, anf
the userU cannot submit the challendéiEncek (my,) to the decryption oracl&niDec.

(EK, DK) « UniGen(1*), (mg, my) — UYniDec(EK),

def
Succue = b {0,1},b — UYnDec(EK, UniEncex (my))

Pr[sz}

Table 2. Online encryption definitions.

oracle access to tHéec. In fact,P does not need access to
UniDec because it can simulate it by itself. The only condi-
tions necessary are th@Dec is a deterministic algorithm,
and the proxyP never submitDec(UniEncgk (mp)) to
theFFDec oracle.

to transform the ciphertextinto ciphertext’ by decrypt-
ing once with its keyDKp = DKj: e’ = Dec;(e). The
userF usesFDec to transform the ciphertext into the ini-
tial messagen (or invalid) by decrypting once with its key
DKg = DKy: m = Decz(e’).

For each of the unidirectional schemes described next, The double encryption can be also defined using two dif-
we will prove that they are secure according to all three ferent encryption scheme&s = (Enc-Geny, Ency, Dec;),
definitions. &> = (Enc-GensEncy, Decy). In this case, the unidirec-

tional encryption schem& = (UniGen, UniEnc, UniDec,

e ) . PDec, FDec) is defined as:
4.1 Unidirectional Generic Encryption Scheme

e UniGen(1%) = (Enc-Geng, (1¥), Enc-Geng, (1¥))
We first present a unidirectional generic technique
that transforms a general encryption schefie =
(Enc-Gen, Enc, Dec) into an unidirectional encryption
schemeg’ = (UniGen, UniEnc, UniDec, PDec, FDec).
The key generation algorithtiniGen generates two pairs
of keys (EKy, DKy, EKg, DK3) by running theEnc-Gen
algorithm twice. The uset) keeps both keys, while
proxy P and the userF get (EKy,EKy,DK;), respec-
tively (EK;, EKy,DK3). We defineDKp = DK; and
DK = DKs. The encryption algorithnniEnc is equiva-
lent to encrypting the message with the two k&ys and
EK3: UniEnc(m) = Enci(Ence(m)) = e. The unidirec-

(
e UniEnc(m) = Encg, (Encg,(m))
e UniDec(e) = Decg, (Decg, (€))
e PDec(e) = Decg, (e)
e FDec(e’) = Decg, (¢')
For simplicity, we assume that both encryption schemes
are identical. Next, we prove that the generic unidireclon

encryption scheme is secure according to our definitions.
We make the assumption that the initial encryption scheme

tional decryption algorithmniDec decrypts the ciphertext
e by applying the original decryption algorithBec twice:
m = Decy(Decq (e)). The proxyP uses the functioR Dec

we started from iCCA2 and show that the new unidirec-
tional encryption scheme is al€SCA2 . The proofs are in
the Appendix A.1.



Theorem 1 Let's consider a standard encryption scheme 4.3 Unidirectional RSA Encryption Scheme
&€ = (Enc-Gen, Enc, Dec). Based or€, we build an uni-
directional encryption schemé&’ = (UniGen, UniEnc, Let’s assume we have the RSA encryption schéme
UniDec, PDec, FDec). If £ is CCA2 secure, thart’ is (Enc-Gen, Enc, Dec). The RSA key generation algorithm
alsoCCA2 secure against (1) the prox, (2) the useff, outputs the public kefK = (e, N) and the secret key
and (3) any uset. SK = (d, N, p(N)), whereed = 1 modp(N), N = pq, p,
g are two large primes and is the Euler totient function.
The encryption is defined &ncek (m) = m® modN = c.
The generic scheme is twice slower than the original The decryption algorithm iBecgk (¢) = ¢ mod N = m.
scheme it started from. In order to eliminate this slow-
down, we developed a few specific unidirectional encryp-
tion functions based on El Gamal, RSA, and IBE.

The unidirectional key generation algorithgi =
(UniGen, UniEnc, UniDec, PDec, FDec). For each user
U, the key generation algorithtdniGen(1*) generates a
public-key pair(EK, DK) and splits the secret key into two
4.2 Unidirectional El Gamal Encryption Scheme  Partsdi andds such thatd = did> modp(N). The proxy

P getsDKp = d; and the useF getsDKg = d,. The
encryptionUniEnc and theUniDec algorithms are iden-

Let's assume that we have an El Gamal encryption tical to the original algorithm&nc and Dec. The trans-
scheme&® = (Enc-Gen, Enc, Dec). The key generation al-  formation functions®?Dec and FDec execute theéDec de-
gorithm outputs the public kegK = (g,p, ¢,y) and the cryption algorithm with keysl; and respectivelyls. The
secret keyDK = (z), wherep is a prime numbery is a correctness of unidirectional RSA is given by the equality
generator for thé&?, = is randomly chosen frorZ,, and FDecq, (PDecy, (Enc.(m))) = m.

y = ¢g* modp. The encryption algorithm is defined as
e = Encex(m) = (¢" modp, mg*” modp), wherer is
chosen at random frotf,. The decryption algorithm com-
putes the message from e by dividing mg®" to (¢")*
modp.

The original RSA scheme i®W-CPA secure. Thus,
we will prove in the next theorem that unidirectional RSA
is alsoOW-CPA secure. The proofs are in Appendix A.3.

Theorem 3 Let &’ = (UniGen, UniEnc, UniDec, PDec,
The unidirectional El Gamal encryption scheme is de- FDec) be an unidirectional RSA encryption scherse.is

fined as€’ = (UniGen, UniEnc, UniDec, PDec, FDec). ONE-WAY secure against (1) the prox, (2) the userF,

For each usel, the key generation algorithisniGen(1%) and (3) any uset.

generates a public-key paiEK, DK) and splits the secret

key DK = = into two partsz; and= z; such thatv = 4.4 ynidirectional Identity-Based Encryption

1+ x2. The proxyP receivedDKp = z; and the useF re- Scheme

ceivesDKr = x5. The encryptiorUniEnc and the decryp-

tion UniDec algorithms are identical to the standard algo-

rithms: Enc andDec. The transformation algorithnmDec

andFDec are equivalent t®ec underx;, respectivelyr,. scheme uses a bilinear magefined ag : G, xG; — Gs

The unidirectional encryption scheme |smcorrre(§6t1 becausewhereGl andG., are two groups of orderandyg is a large
FDecy, (PDec, (Enc, (m))) = FDeca, (mg™/(9")™) = prime number. This means thetw P, bQ) = é(aQ, bP) —
mg"/(g")"* = m. é(P,Q)™, whereP,Q € G, anda,b € Z,. The origi-
According to our definitions, the next theorem proves nal scheme bases its security on the computational Bilinear
that the unidirectional El Gamal is as secure as the original Diffie-Hellman problem. In order to obtain a homomor-

El Gamal scheme. The proofs are presented in AppendixPhic scheme, we make a stronger assumption (decisional
A2 Bilinear Diffie-Hellman problem), eliminate the use of a

hash function, require that the messagesmare G-, and
replace the XOR operation by multiplication.

Our specific IBE scheme is a slightly modification of the
original IBE scheme introduced by [5]. The original IBE

Theorem 2 Let &' = (UniGen, UniEnc, UniDec, PDec, Our scheme is defined as the tup]é =
FDec) be an unidirectional EI Gamal encryption scheme. (Enc-Gen, Extract, Enc, Dec). The key generation al-
& is CPA secure against (1) the prox, (2) the userF, gorithm creates the master secret keynd the master

and (3) any usel. public key P,,, = sP. For every usel, the Extract



algorithm takes as input the usef'® and returns a secret
key DK = sID and a public key equal to theD. The
user’'sID is actually defined to be the hash value of the
“real” ID. The encryption algorithnknc takes the message
m and the public keyl D as the input and creates the
ciphertext(U, V) = (rP,mé(rID, sP))). The decryption
algorithm Dec computesV/é(sID,U)) = m. The IBE
scheme isCPA secure if the Bilinear Diffie-Hellman
(BDH) problem is hard.

Decisional Bilinear Diffie-Hellam Problem (dBDH).
LetG; andGs be two groups of prime order Leté : Gy x
G1 — Go be a bilinear map and |g® be a generator for
G1. The decisional BDH probleniG,, Go, é) is defined
as follows: Given(P, aP,bP, cP) for somea,b,c € Z,
it is hard to differentiaté(P, P)**¢ € G, from a random
g € GQ.

Based on our specific IBE schendg we will build
an unidirectional IBE schemé&’ = (UniGen, UniEnc,
UniDec, PDec, FDec). The key generation algo-
rithm UniGen uses the original key generation algorithm
Enc-Gen to create the master secret keyand the master
public key P,,, = sP. The master secret key is split in
two partss; andss, and each part is given to the proRy
and the useF. The encryption and decryption algorithms
are identical with the original onesPDec is defined as
PDec(U,V) = (U,V/é(rP,s1ID)) = (U,V’). The user
F uses the ciphertext generated PRec and the function
FDec to compute the cleartext messageby computing
V'/é(rP, s21D).

Theorem 4 Let &’ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional IBE encryption schem&’. is
CPA secure against (1) the prox; (2) the usefF, and (3)
any useru.

In all the other unidirectional schemes, the praky

has the increased space problem because it needs to save_

one key for every user. Our modified homomorphic IBE
scheme solves this problem by allowing the proxy adent
to save only a single share of the master key for the entire
system.

5 Unidirectional Signature Primitives

Definition 3 A unidirectional signature scheme consists
of five algorithms:S = (UniGen, UniSig, UniVer, PSig,
FSig).

The generation algorithyniGen(1%) outputs a tuple

of keys 6K,VK) for each uset). VK is the verification
key andSK is the signing key. SK is used to generate
the keysSKp andSKr given to the proxyP, respectively
the userF. The signature algorithriyniSig signs a mes-
sagem € M (e.g. {1,0}%), s = UniSigsk(m) using
the secret keysK. The signature is formed by the tuple
(m, s). The verification algorithnUniVer uses the pub-
lic key to verify that a signaturém, s) is valid. The ver-
ification algorithm outpusucceedf the signature is cor-
rect andfail otherwise. Thecorrectnesgproperty requires
thatUniVer(UniSig(m)) = succeed. The proxyP uses the
functionPSig to generate a partial signature of a message
m € M based orbKp. The userF usesFSig to generate

a partial signature of a message € M based orSK.
PSig(FSig(m)) form a complete signature of the message
m.

We define the unidirectional signature scheme to be safe
if neither entity (proxyP, userf, userU) can generate alone
valid signatures under k&K, even if they knowSKp or
SKg and any of the available public information. The for-
mal definitions are given in table 3.

5.1 Unidirectional Generic Signature Scheme

This generic scheme transforms any given signature
primitive into a unidirectional generic signature scheme.
Let's assume thaf = (Sig-Gen,Sig, Ver) is a standard
signature scheme. The new unidirectional generic sig-
nature scheme i§’ = (UniGen, UniSig, UniVer, PSig,
FSig). The generation algorithrdniGen generates two
pairs of keys(SK1, VK1, SK2, VK3) for each uset). The
secret key for the unidirectional signature schenfgds=
(SK1,SKs). The proxyP gets(VKi, VKa, SKp = SKj)
and the useF gets(VK;, VKy, SKg = SKj). The sig-
nature algorithmUniSig generates a valid signature for a
messagen € M by applying the signatur8ig twice:
(s1,82) = Sigy(m)Sig,(m). Similarly, the verifica-
tion algorithmUniVer verifies whether the signatures gen-
erated byUniSig are valid by applying the original verifi-
cation algorithmVer algorithm twice: Ver; (s1)Vera(s2).
The proxy P uses PSig to generate part of the total
unidirectional signature:Sig, (m), while the useF uses
FSig = Sig,(m) to generate the entire signature together
with PSig.

According to our definitions, the generic unidirectional
signature scheme is secure if the following theorem is
proved to be true. The actual proofs are contained in Ap-
pendix B.1.



Definition 4 LetS = (UniGen, UniSig, UniVer, PSig, FSig) be an unidirectional signature scheme.

1. Sis UF-CMA against the proxy P if |Succp s(1%)] is negligible,Succp s is defined as below, and the proRy
is not allowed to ask thESig oracle forUniSig(m).

€

Succp s e py [UniVer(m, s) = succeed ‘ (SK, VK) « UniGen(1%), (m, s) « PF>8(SKp, VK) ]

2. S is UF-CMA against the user F if |[Succe s(1%)| is negligible,Succe s is defined as below, and the ugers
not allowed to ask the signature oracle fdniSig(m).

Succr s R e [UniVer(m, s) = succeed ‘ (SK, VK) « UniGen(1*), (m, s) « FU"iSie(SKg, VK) ]

3. Sis UF-CMA against any user U if |Succy s(1%)| is negligible for any PPT adversaty, Succy s is defined
as below, and the uséf is not allowed to ask the signature oracle 1oniSig(m).

Succy,s e py [UniVer(m,s) = succeed ‘ (SK, VK) « UniGen(1*), (m, s) « UYniSig(VK) ]

Table 3. Online signature definitions.

Theorem 5 Let S = (Sig-Gen, Sig, Ver) be a standard  for all usersU by executingSig-Gen and then splits each

signature scheme. Let’s consid8t = (UniGen, UniSig, secret keyd in two partsd = dyi + d2 modp(n). di be-
UniVer, PSig, FSig) a unidirectional signature scheme comes the keKp of the proxyP andds becomes the
constructed as described above, basedSonf S is UF- key SKg of the userF. The signature and verification al-
CMA , thanS’ is UF-CMA against (1) the proxy, (2) the gorithmsUniSig andUniVer are identical with the original
userF, and (3) any useb. algorithmsSig andVer. The usefF uses thdSig function

to generate one part of the unidirectional RSA-Hash sig-
T
The unidirectional generic signature scheme has two nature_ by CO".‘F’”“”Q = Sigg, (m). The proxyP uses
the PSig function to generate the other part of the unidi-

main performance disadvantages. First, the size of the se-

cret key increases. Each user no longer has one, but tworectional RSA signature by computing= Sig, (m). The

H H !/
keys. Second, the number of operations performed When3|gnature is formed by ands’.

signing and verifying doubles. In order to improve these  The standard RSA-Hash signature scheme is existen-

numbers, we developed an efficient unidirectional signa- tially unforgeable against chosen message attacks. Thus,

ture scheme based on RSA-Hash. we formally prove in the next theorem that the unidirec-
tional RSA-Hash scheme holds the same level of security.

5.2 Unidirectional RSA-Hash Signature Scheme '€ ctual proofs are in Appendix 8.2.

Let's assume that we haw® = (Sig-Gen, Sig, Ver)
a standard RSA-Hash(Full Domain Hash) [1] signature.
Sig-Gen generates the public keyK = (e, N) and the
secret keysK = (d, ¢(N)). The signature function is de-
fined asSig = hash(m)? mod N = s, wherehash is a
hash function associated wiftig. The verification returns

Theorem 6 Let S = (Sig-Gen, Sig, Ver,) be a classic
RSA-Hash signature scheme. Let's consider that=
(UniGen, UniSig, UniVer, PSig, FSig) is an unidirectional
RSA-Hash signature scheme constructed as abéVes
UF-CMA against (1) the proxy, (2) the userF, and (3)

succeed if s¢ = hash(m) mod N. Otherwise, it returns all usersU.
fail.

The standard RSA-Hash signature scheshis trans- The probabilistic RSA-Hash described by [7] has better
formed into a unidirectional signature schen$é = security that the RSA-Hash function used above, and can

(UniGen, UniSig, UniVer, PSig, FSig) by the following be transformed into an unidirectional primitive if we allow
steps. The key generation algorittimiGen generates keys  the usefF to generate the necessary randomness.



6 Bidirectional Encryption Primitives

Definition 5 Abidirectionalencryption scheme consists of
four algorithms:€ = (BiGen, BiEnc, BiDec, ).

The key generation algorithBiGen outputs one pair of
keys EKy,DKy) for each usel). In addition, it generates
keys for the useF, (EKg,DKE). After that, it creates one
bidirectional keyr for each usel). The bidirectional keys
m are given to proxyP. The encryption algorithBiEncegk
takes as input a messageto be encrypted and a public key
EK and outputs the ciphertext= BiEncgk(m). BiDecpk
is the deterministic decryption algorithm that takes the ci
phertexte, the secret keypK corresponding to the pub-
lic key, and produces € M (or invalid in casee was
an improper ciphertext). Theorrectnesgroperty of en-
cryption states thaiDec(BiEnc(m)) = m, for anym and
(EK,DK). N is the bidirectional function and transforms
ciphertexts encrypted with one kelg{y) into ciphertexts
encrypted with another ke Kg).

For example, the keys of userareEKy = (EKy, EK»),
DKy = (DKj,DKy), the keys of proxyP are EKp =
(EKq, EK3), DKp = (DK3, DK3), and the keys of usdr
areEKg = (EKy, EK3), DK = (DK1, DK3). In the con-
text of bidirectional encryption, we say that both users
andF have private keys, while the pro¥/has the bidirec-
tional key 7. The encryption algorithnBiEnc performs
double encryptiore = BiEncy(m) = Ency(Enca(m)).
Similarly, the decryption algorithrfil is defined as double
decryptionm = BiDecy(e) = Deca(Decy(e)). The proxy
function N transforms the ciphertext encrypted with the
userU’s key into ciphertext encrypted with the useés key.
The first step is to decrypt the ciphertext BiEncy(m) =
Ency (Ence(m)) by executinge’ = Decy(e). Then, it en-
cryptse’ with the other half of the key” = Encs(¢’). The
resultise” = BiEncg(m).

The generic bidirectional encryption scheme described
above is secure if no adversary (proRy userF, uset))
is able to break it. Let's assume that the initial encryption
scheme i€CA2 secure. We will show that in this case, the
bidirectional encryption is als&€CA2 secure. The proofs

We define the bidirectional encryption schemes to be gre in Appendix C.1.

secure if neither the third party (proxXy) nor the users
(U, F) can attack the scheme. For simplicity, the defini-
tion presented in table 4 uses tBE€A2 level of security.

For technical reasons, we assume that there exists an effia

cient algorithm that evaluates the relatiBp (e, ¢’) to true

or false, wheree = BiEnc(m) is the original chiphertext
ande’ = TM(e) is the modified ciphertext computed by the
proxy P. The output of the algorithm is true, it must be the
case thaDecgk, () = Decegk,(€e’). Having such an algo-
rithm, we allow the proxyP has oracle access ®iDecg
because it can simulate oracle accesBifdecy by itself.

In addition, we restrict its access to tB&éDecg by not let-
ting the proxyP to submit to the oracle a ciphertextsuch
thatR, (e, e') = true.

6.1 Bidirectional Generic Encryption Scheme

In this section, we present a generic implementation of
a bidirectional encryption scheme based on standard en-
cryption schemes. Let's assume that we have an encryp-

tion schemef (Enc-Gen, Enc,Dec). We transform

£ into a bidirectional encryption schen® = (BiGen,
BiEnc, BiDec, ) by following the next steps. For every
userU, the generation algorithiBiGen executes the orig-
inal generation algorithntnc-Gen to generate three pairs
of keys (k1, k2, k3), where eactk; = (EK;,DK;). The
usersyU, P, andF receive each two pairs of keys such that
any two entities have only one pair of keys in common.

Theorem 7 Let’s consider a standard encryption scheme
&€ = (Enc-Gen, Enc, Dec). Based or€, we build an uni-
irectional encryption schemé’ (UniGen, UniEnc,
UniDec, PDec, FDec). If £ is CCA2 secure, thar€’ is
also CCAZ2 secure against (1) the prox, (2) the userf,
and (3) any usel.

6.2 Bidirectional El Gamal Encryption Scheme

Let's assume we have the El Gamal encryption scheme
&€ = (Enc-Gen, Enc, Dec). The key generation algorithm
of the original EI Gamal encryption scheme outputs the
public keyEK = (g, p, q,y) and the secret kePK = «z,
and the public key iy = ¢* modp. The encryption al-
gorithm is defined as = Encgx(m) = (¢" modp, mg®"
modp), wherer is chosen at random frof,. The decryp-
tion algorithm computes the messagdrom e by dividing
mg® to (¢")* modp.

Based ong, we will build the bidirectional EI Gamal
encryption schemé&’ = (BiGen, BiEnc, BiDec, 1) by fol-
lowing the next steps. The generation algoritBiten
generates the keys for all uses and F by executing
Enc-Gen twice. Let's assume that the generated keys
are (DKU = z1,EKy = gml), (DKF = x9,EKF =
g*2). After this, it computes one proxy key for ev-
ery userU: @ = z2 — x;. The encryption algorithm



Definition 6 Let& = (BiGen, BiEnc, BiDec, 1) be a bidirectional encryption scheme.

1. € is CCA2 secure against the proxy P if |Succp ¢(1%) — 1/2] is negligible,Succp ¢ is defined as below, and
BiEnc(m, ) is never submitted to the decryption ora8iPec.

Suce def [b _j ‘ (EKy, DKy, EKf, DKg, 7) < BiGen(1%), (mg, m1) « PBP<(EKy, EKE, ),
A b — {0,1},b «— PBD(EKy, EK, 7, BiEnc(my))

2. £ is CCA2 secure againgt the user F if |Succe ¢ (1%) — 1/2] is negligible,Succk ¢ is defined as below, and

BiEnc(m,;) was never submitted to thieoracle.

Succr s % p [b =b ‘ (EKu, DKy, EKF, DKF, ) « BiGen(1¥), (mo, m1) « F(EKy, EKF, DKF),
Fre = Pr|b= b« {0,1},b « F(EKy, EKg, DKg, BiEnc(my))

3. £is CCA2 secure against any user U if |Succy ¢(1%) — 1/2] is negligible, for any PPT adversary, we define
Succy ¢ as below, andiEnc(m;) was never submitted to the decryption ora8lBec.

(EKy, DKy, EKE, DKg, 7) < BiGen(1*), (mg, m1) « ABP<(EKy, EK), }

de
Succae = Pr {b =b ‘ b+ {0,1},b « ABP<(EKy, EK, BiEnc(my))

Table 4. Bidirectional encryption definitions.

BiEnc encrypts messagess € M by executingEnc: The key generation algorithiBiGen(1%), wherek is

e = BiEnc(m) = Enc(m). The decryption algorithm the security parameter, generates keys for all users,dnclu
BiDec usesDec to decrypt the ciphertext: BiDec(e) = ing the userF. For example, the usdd gets the keys
Dec(e). The proxy functionfl transforms messages en- (SKy,VKy) and the useF gets(SKg, VKg). The gener-
crypted with the secret key of the udérDKy) into mes- ation algorithm is also computing one bidirectional key
sage encrypted with the secret key of the Us€DKE). for every user and gives it to proXy. The signature al-
We definell to beN(BiEnc,, (m), ) = (¢", g"*m(g")™). gorithm BiSig signs a message: € M (e.g. {1,0}%),
The function is correct becaudd(BiEnc,, (m),7) = s = BiSigsk(m) using a secret kegK. The signature
(g7, g"*mg"®2=21)) = (¢", g"*2m) = BIiEnc,, (m). is formed by the tuplgm,s). The signaturgm, s) is

h ¢ ion d ibed ab ) it neith verified by the verification algorithrBiVer. The verifica-
The proxy function described above is secure if neither i, a1gorithm outputsucceed if the signature is correct

t_he proxyP nor the useF can _disting_uish b_etween ENCryP-  andfail otherwise. Thecorrectnesgproperty requires that
tions of two messages even if provided with the proxy key. BiVer(BiSig(m)) = succeed. The proxy functiorl uses

In addition, it should retain the same level of security &s th the bidirectional keyr to transform a signature generated

original EI Gamal scheme against all other usérsThe i 4 secret key into a signature generated with another
proofs are described in Appendix C.2. secret key

A bidirectional encryption scheme defined as above is
considered to be safe if it can not be successfully attacked
by any user ((, F) or by the third party R). The formal
definitions are presented in table 5. We assume that partial
signature contains the message.

Theorem 8 Let& = (BiGen, BiEnc, BiDec, I1) be an bidi-
rectional EI Gamal encryption schemé. is CPA secure
against (1) the proxy, (2) the usefF, and (3) any useU.

7 Bidirectional Signature Primitives Next, we present a few bidirectional signature schemes
that respect the above definition of security.

Definition 7 A bidirectional signature scheme consists of
four algorithms:S = (BiGen, BiSig, BiVer, ).



Definition 8 LetS = (BiGen, BiSig, BiVer, 1) be an bidirectional signature scheme.

1. S is UF againgt the proxy P if |Succp s(1%)| is negligible, whereSuccp s| is defined as below and is not
allowed to ask the signature oracle fBiSig(m).

def . o (SKu,VKu,SKF,VKF,W) — BiGen(lk)

Succp s = Pr |BiVer(m,s) = succeed‘ (m, 5) « PBSE (VKy, VK, 7) }

2. Sis UF against the user F if |Succe s(1%)] is negligible,Succe s| is defined as below anfélis not allowed to
askP for M(m).

def

H k
Succrs = Pr | BiVer(m,s) = succeed (SKu, VKy, 5K, VK, ) — BiGen(17) }

(m, S) — Fn (VKu, VKF7 SKF)

3. Siis UF against any user U for any PPT adversary, if |Succy s(1%)] is negligible, whereSuccy s is defined
as below, andJ is not allowed to ask the signature oracle BiSig(m).

SKu, VKu, SKF, VKF, 7T) — BiGen(lk)

def .
Succys = Pr [BlVer(m, s) = succeed ( (m, 5) — ABSES (VKy, VKE)

Table 5. Bidirectional signature definitions.

7.1 Bidirectional Generic Signature Scheme Theorem 9 Let's consider a standard signature scheme
S = (Sig-Gen, Sig, Ver). Based onS, we build an bidi-
rectional signature schem® = (BiGen, BiSig, BiVer, ).

If S is UF than &’ is UF against (1) the proxyp, (2) the
userF, and (3) all userdJ.

First, let's consider a standard signature scheine
(Sig-Gen, Sig, Ver). The next paragraph explains how
to build an bidirectional generic signature schefie=
(BiGen, BiSig, BiVer, M) from the original schemses.

The key generation algorithmBiGen uses the original .. . - . .
key generation algorithrBig-Gen to generate three keys 8 Unidirectional and Bidirectional Private

(k1, ko, ks), wherek; = (SK;,VK;), and gives them to Key Primitives
the usersyU, F, and P, such that they have in common
only one key. For example, the usr gets VKy = Unidirectional and bidirectional private key schemes

(VKy, VKy), SKy = (SKy,SK3), the user getsVKr = for encrypting and signing messages (MAC) can be eas-

(VK1,VK3), SKe = (SK1,SK;3), and the proxyP gets iy puild on top of pseudo-random functions (PRF).Thus,
VKp = (VK3, VK3), SKy = (SK2,5K3). Thesignatureal- it gyffices to build unidirectional and bidirectional PRF
gorithmBiSig computes the signature of a message M functions. The encryption can be definedfag(m) =
by applying the standard signature algorithm twice, once (r, f(r) @ m), wherer is chosen at random, antlis a
for each key. For example, the udésigns a message as PRF. The signature is defined$ig(m) = f(m), which in

(s1,52) = Sig, (m)Sigy(m). BiVer verifies if a signature  f5¢t is message authetication code (MAC).
generated wittBiSig is correct, by executing the standard

verification algorithm twicéVer; (s;) andVerz(s2). The
proxy functionll transforms a valid signature generated by 8.1 Unidirectional PRF Functions
BiSig for a pair of keys into a valid signature generated with

another pair of keys1(BiSig (m)) = BiSigg(m). Informally, a unidirectional PRF function allows two

The generic bidirectional signature scheme is secure ifusersP andF to compute its value in any given point

the next theorem is true. The proofs are in Appendix D.1. even if none of them knows the entire description of the
function.



Definition 9 A PRF functionf is a unidirectional PRF
function if there existf; and f> two PRF functions such
that the valuef(x) can be computed a§ (f2(x)).

Based on the above definition, we construct the follow-
ing unidirectional PRF. Let’s considét = f, a family of
pseudo random function with seed We defineUniPRF
such that the value of the unidirectional PRF in a given
pointx is defined a®JniPRF(z) = g, (z) ® g5, (x), where
g € F. The proxyP and the useF are both given one
of the two seeds. For example, the prdXyeceivess; and
the uselF getss,. In this way, they can cooperate and com-
puteUniPRF(x) by first computingys, () andgs, (x) and
applying the XOR operation.

Theorem 10 The unidirectional PRF function defined as
UniPRF(z) = fi(z) & fa(z), where f; and f, are two
PRF functions, is a PRF function.

8.2 Bidirectional PRF Functions

In a similar way, we can informally define a bidirec-
tional PRF function as a PRF function that can be trans-
formed into a new PRF function. This means that one can
compute the valug, (), given an initial valuef; () and a
simple transformatiofl.

Definition 10 A PRF functionf; is a bidirectional PRF
function if for any PRF functioryf,, there exists a trans-
formationII such that the valug,(z) can be computed as

I( f1(x)).

Let's considerF = f, a family of PRF functions
with seeds. We construct a PRF functioBiPRF; (z)
gs,(z) @ gs,(x), whereg € F is a PRF function.
The function BiPRF is bidirectional because from any
value BiPRF;(z), one can easily obtain the value of
BiPRF3(z) = gs, (2) ® g5, (x) by computingBiPRF; (z) ®
(gs, () @ gs,(x)). The transformation function is defined
asll(z) = gs,(z) ® gs,(z). The obvious way to split the
keys betweetfr, P, anduser is to give 2 keys to each one
such that any two users have only 1 key in common. For
example, the usey gets(sy, s2), the proxyP gets(sz, s3),
and the useF receiveq sy, s3).

Theorem 11 The bidirectional PRF function defined as
BiPRF(x) = fi(z) ® f2(x), wheref; and f» are two PRF
functions, is a PRF function.

9 Conclusions

At the beginning of the paper we started describing the
for unidirectionalfunctions. The unidirectional notation is
justified by the fact that the proxy needs to help the law
enforcement agency (usgy for every message that needs
to be decrypted or signed. There is also an offline version
of theunidirectionalproxy function. Because of space con-
sideration, we shortly describe it as part of the conclusion
The offline proxy functions are based on the key-insulated
encryption and signature primitives created by [9, 10]. In
the offline scheme, usetsprotect their secrets by period-
ically updating their secret keys. The udérupdates its
secret key using the index of the current time period and
some information provided by a third party)( The same
third partyP can help the law enforcement agericio de-
crypt or sign messages on behalf of other uskrby pro-
viding special pieces of information at the beginning of the
time period. There is one main difference between unidi-
rectional and offline proxy functions: in the unidirectibna
case, the law enforcement ageficg strictly controlled by
the proxyP and cannot decrypt or sign a message without
its help; in the offline case, the law enforcement agency can
misbehavé for one time period once it has the necessary
information.

The main contribution of this paper is the formalized
definitions of thebidirectional and unidirectional proxy
functions for encryption and signatures and their security
guarantees. In addition, for each class of proxy func-
tions, the paper describes one generic technique and kevera
specific techniques to transform a standard cryptographic
primitive into a proxy function.
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A Unidirectional Encryption Scheme
A.1 Unidirectional Generic Encryption Scheme

Theorem 1 Let's consider a standard encryption
scheme& = (Enc-Gen, Enc, Dec). Based or€, we build an
unidirectional encryption schen® = (UniGen, UniEnc,
UniDec, PDec, FDec). If £ is CCA2 secure, thar€’ is
also CCAZ2 secure against (1) the prox, (2) the userf,
and (3) all userdJ, where the success of the adversary is
defined in table 6.

Proof

B. Horne, B. Pinkas, and T. Sander. Escrow Services and 1. | et's assume thaf’ is not CCA2 secure against the

proxy P. This means that the proxy can breakf’
with probability of success greater than 1/2. We as-
sume thatPDec is a deterministic algorithm and the
proxy P never submit$Dec(UniEncex(my)) to the
FDec oracle. Based o, we build an adversarig
capable of breaking the original encryption scheme
£. The adversang receives as input the public key
EK, of the original encryption schenge B simulates
the conditions necessary for the prakyto break the
unidirectional encryptiod’ by randomly choosing a
public/private key pai{EK;, DK;) and forwarding it

to the proxyP together withEK,. The adversary
starts running the prox$. Whenever the proxy
needs to make a query to tf®ec oracle, 5 simu-
lates theFDec oracle by taking thé’s queryq, and
forwards it to its ownDec oracle access.3 sends

to the proxyP the output of theDec oracle. At one
moment,P challenges the unidirectional encryption
schemef’ by choosing two messagés.y, m1) and
sending them td3. B chooses the same two mes-
sages to challenge the original encryption schéine
When 5 is presented with the challendgeca(my),
wherem;, is chosen at random from the two messages
(mo,m1), B appliesEnc;(Ence(m)) and sends the
challenge as/niEnc(m;,) to the proxyP. We assumed
that the proxyP can break the unidirectional encryp-
tion scheme with probability greater than 1/2. Th8s,
can break the standard encryption scheme with prob-
ability greater than 1/2.

. Let's assume that’ is not CCA2 secure against the
userF. This means that the usErcan breakf’ with
probability of success greater than 1/2. Based on the
userF, we build an adversarf capable of breaking
the orginal encryption schem& The adversary3
receives as input the public kdyK; of the original



def - | (EKy, DKy, EKg, DKs) « UniGen(1%), (mo, m1) « PFP*(EK;, EK2, DK;),
Succper = Pr |b=0b = FDec .
. ’ b {0,1},b « P"™"*(EKy, EK2, DKy, UniEnc(my))
Generic
det - | (EKy, DKy, EKz, DKs) « UniGen(1%), (mo, m1) «— FFP*(EKy, EK2, DKy),
SUCCF &’ = Pr b = b 4 PDec .
’ b« {0,1},b «— F "*°(EK1, EK2, DKz, UniEnc(ms))
def _ 7| (EK,DK) « UniGen(1*), (mo, m1) « P(EK, DKp),
Succeer = Pr {b’b' b {0,1},b — P(EK, DKp, UniEncex (ms))
El-Gamal
def _+| (EK,DK) « UniGen(1*), (mo, m1) < F"°**(EK, DK¢),
Sucerer = Pr {b =b ’ b— {0,1},b — FPP*(EK, DK, UniEncex (ms))
RSA Succp, e < pr {m' =m ‘ (EK, DK) « UniGen(1%),m < M, m’ « P(EK, DKp, UniEncgx(m)) }
def | (s=(s1,82),sP) «— UniGen(lk)7 (mo, m1) «— P(s1,sP),
Succeer = Pr {b =t ’ b {0,1},b — P(s1, sP, UniEncsp (ms))
IBE
def 2| (s =(s1,82),8P) « UniGen(1*), (mo, m1) « FF°** (EK, DK),
Succeer = Pr {b =0 ‘ b {0,1},b — FPP*(EK, DK, UniEncex (ms))

Table 6. Online generic encryption definitions for advey'sasuccess.

encryption schemé. First, B simulates the condi-
tions necessary for the usErto break the unidirec-
tional encryption€’ by choosing at random a pub-
lic/private key pair(EK2, DK3) and forwarding it to
F together with theEK;. The adversarys starts run-
ning the userf. When the useF makes a query
g = Ency(Ence(m)) to thePDec oracle,B takes the
querye, forwards it to its owrDec oracle, and sends
the answeiEncy(m) directly to F. When the useF
challenges the adversaB; it chooses two messages
(mo, m1) and sends them tB. B encrypts those two

A.2 Unidirectional El Gamal Encryption Scheme

Theorem 2Let&’ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional EI Gamal encryption scheme.
&' is CPA secure against (1) the pro®; (2) the usef, and
(3) all usersU, where the adversary’s success is defined in
table 6.

Proof

1. Let's assume tha is capable of breaking the unidi-

messages using the k&K, and sends them to chal-
lenge the standard encryption. WhBnis presented
with the challengénc, (m;), wherem,, is chosen at
random from two messagé&&nca(mg), Enca(my)),

B sends the challenge to6 We assumed that the user
F can break the unidirectional encryption scheme with
probability greater than 1/2. Thu#, can break the
standard encryption scheme with probability greater
than 1/2.

3. This part is implied by the two previous parts.

rectional El-Gamal encryption scheme. This means
that| Succp ¢/(1%) — 1/2 | is not negligible. Based
on P, we will build an adversany that breaks the
original El-Gamal scheme with non-negligible prob-
ability. Initially, 55 is given the public ke¥eK of the
original EL-Gamal scheme. Based &, B simu-
lates the conditions necessary o break the uni-
directional EIGamal. For this3 chooses a random
number ag;; and gives ittd®. As part of the unidirec-
tional challengeP chooses two messagésiy, m1)
and forwards them t&. 5 uses the same two mes-
sages to challenge the standard EI-Gamal. Whién
given the encryption ofn;,, whereb — {0, 1}, it for-
wardsEnc(m;) to P. We assumed tha is capable
of breaking the unidirectional EI-Gamal and by defi-
nition, UniEnc(my) = Enc(my). Thus, if P decrypts



UniEnc(my,) with probability greater than 1/2, théh
decryptsEnc(m;) with probability greater than 1/2.

. Let's assume thdi is capable of breaking the unidi-
rectional EI-Gamal encryption scheme. This means
that| Succge/(1%) — 1/2 | is not negligible. We
use the notatiorr™* to indicate that the usef can
have honest access to tR®ec function. Based on
F, we will build an adversary that breaks the origi-
nal EI-Gamal scheme with non-negligible probability.
Initially, B is given the public keyeK of the origi-
nal EL-Gamal scheme. Based BK, 55 simulates the
conditions necessary férto break the unidirectional
ElGamal. For this3 chooses a random number as
o and gives it toF. The adversary simulates the
honest access df to PDec and the encryption ora-
cle UniEnc by taking the query message and re-
turningmg*2 andEnc(m). As part of the unidirec-
tional challengeF chooses two messagésig, m1)
and forwards them t@. B uses the same two mes-
sages to challenge the standard EI-Gamal. Whién
given the encryption ofn,, whereb — {0, 1}, it for-
wardsEnc(my) to F. We assumed thd is capable
of breaking the unidirectional EI-Gamal and by defi-
nition, UniEnc(my) = Enc(my). Thus, ifF decrypts
UniEnc(my,) with probability greater than 1/2, thé
decryptsEnc(m;) with probability greater than 1/2.

3. This part is implied by the two previous parts.

A.3 Unidirectional RSA Encryption Scheme

Definition 11 A functionf : {0,1}* — {0,1}* is ONE-
WAY if it satisfies two conditions:

1. There exists poly-time algorithm that correctly com-
putesf(z) for anyz € {0,1}*.

2. For any PPT adversaryd, Pr(f(z) = y | = «
{0,135y = f(2); 2 — A(y, 1¥)) < negl(k).

Theorem 3Let &’ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional RSA encryption schenfé.is
ONE-WAY secure against (1) the prox, (2) the userf,
and (3) all userdJ, where the success of the adversary is
defined in table 6.

Proof

1. Let's assume tha® breaks the unidirectional RSA.
This means thaBucce ¢(1%) is not negligible. We

will show that based oR we can build an adversary
B that breaks the original RSA encryption scherfie.
is given the public kefeK and based on it creates the
conditions necessary f& to break the unidirectional
RSA. B chooses a random numbér and forwards

it to P as its part of the secret key. The goal of the
adversaryB is to find m’ such thatn’ = m when
givenEnc(m). B forwards the ciphertexnc(m) =
UniEnc(m) to P. We assumed thd is able to find
m’ = m when givenUniEnc(m) with non-negligible
probability. Thusj3 is able to findm'.

2. This proof is similar to the previous one.

3. This part is implied by the two previous parts.

A.4 Unidirectional IBE Encryption Scheme

Theorem 4Let&’ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional IBE encryption schemg'. is
CPA secure against (1) the prox;, (2) the usefF, and (3)
all usersU, where the success of the adversary is defined
in table 6.

Proof

1. Let's assume tha® is capable of breaking the uni-
directional IBE encryption scheme. This means that
| Succp ¢/ (1¥) — 1/2 | is not negligible. Based oR,
we will build an adversary that breaks the original
IBE scheme with non-negligible probability. Initially,
B is given the public keyP,, = sP of the original
IBE scheme. Based a1, 5 simulates the conditions
necessary foP to break the unidirectional IBE. For
this, B chooses a random numberssand gives it to
P. As part of the unidirectional challenge,chooses
two messagesmg, m;) and forwards them t&. B
uses the same two messages to challenge the standard
IBE. When B is given the encryption ofn;, where
b — {0,1}, it forwardsEnc(m;) to P. We assumed
that P is capable of breaking the unidirectional IBE
and by definitionUniEnc(mp) = Enc(mp). Thus, if
P decryptsUniEnc(m;) with probability greater than
1/2, thenB decryptsEnc(my) with probability greater
than 1/2.

. Let's assume thdt is capable of breaking the uni-
directional IBE encryption scheme. This means that
| Succg e/ (1%) — 1/2 | is not negligible. We use
the notationF™* to indicate that the usdf can have
honest access to tHtDec function. Based oifr, we



will build an adversarys that breaks the original IBE

scheme with non-negligible probability. Initiallys
is given the public keyP,,, = sP of the original

IBE scheme. B simulates the conditions necessary
for F to break the unidirectional IBE by choosing a

random number as, and giving it toF. The adver-
sary B simulates the honest accessFafo PDec and

the encryption oraclgniEnc by taking the query mes-

sagem and returning(rID, s; P) andEnc(m) =<
rID,m @ é(rID,sP) >. As part of the unidirec-
tional challengeF chooses two messagésig, m;)

and forwards them t#. B uses the same two mes-

sages to challenge the standard IBE. Whes given
the encryption ofn,,, whereb — {0, 1}, it forwards
Enc(m;) to F. We assumed thaf is capable of

breaking the unidirectional EI-Gamal and by defini-

tion, UniEnc(my,) = Enc(my). Thus, if F decrypts
UniEnc(my,) with probability greater than 1/2, théh
decryptsEnc(m;) with probability greater than 1/2.

3. This part is implied by the two previous parts.

B Unidirectional Signature Scheme
B.1 Unidirectional Generic Signature Scheme

Theorem 5LetS = (Sig-Gen, Sig, Ver) be a standard
signature scheme. Let's consid8t = (UniGen, UniSig,

UniVer, PSig, FSig) an unidirectional signature scheme

constructed as described above, basedSonf S is UF-
CMA , thanS’ is UF-CMA against (1) the proxy, (2) the

userF, and (3) all userdJ, where the adversary’s success

is defined in table 7.

Proof

1. Let'sassume thal’ is notUF-CMA against the proxy

P. This means thatSuccp s/ (1%)| is not negligi-
ble. We assume that the pro®yis not allowed to
ask theFSig oracle forFSig(m). Based onS’ we

build a forgerB capable to break the original signa-
ture schemeS. The forger5 receives as input the
public key VK, and tries to generate a valid signa-

ture of a message: under the secret keyKs. The

forger B chooses at random a public/private key pair

(VK1,SKy) and forwards it toP together withVKas.
The forgerB starts running the proxy. WhenP
makes a query on the hash oracle for a message

the forgerBB forwards the request to its own hash or-

acle and sends the answer to the pré&xyWhenP

asks thd-Sig oracle to produce a signature for a mes-
sagem’, B asks its own signature oracle to produce
a signature forn’ underSKy and sends the result to
the proxyP. At one moment, the proxly generates a
valid unidirectional signature for a messagewith a
non-negligible probability, where: is a completely
new message.B takes the unidirectional signature
UniSig(m) = Sig, (m)Sig,(m), removes the first part
and outputsSig, (m) as a valid signature of..

2. Let’s assume that’ is notUF-CMA againstF. This
means thatSucce s/ (1%)| is not negligible. We as-
sume that is not allowed to ask thBSig oracle about
m. Based orS’ we build a forgei3 capable to break
the original signature schense The forgei3 receives
as input the public keyK; and tries to generate a
valid signature of a message under the secret key
SK;. The forger3 chooses at random a public/private
key pair(VKs, SK3) and forwards it to the usét to-
gether withVK;. The forger starts runnindg-. When
the uselF makes a query on the hash oracle for a mes-
sagem’, the forger3 forwards the request to its own
hash oracle and sends the answer badk tévhenF
asks thePSig oracle to produce part of the signature
for a messagen’, B asks its own signature oracle to
produce a signature fon’ underSK;. After that, B
sends toF Sig,(m’). At one momentF generates a
valid unidirectional signature for a messagewith a
non-negligible probability, where: is a completely
new message.55 takes the unidirectional signature
UniSig(m) = Sig, (m)Sig,(m), removes the second
part and outputSig, (m) as a valid signature of..

3. This part is implied by the previous two parts.

B.2 Unidirectional RSA-Hash Signature Scheme

Theorem 6 Let S = (Sig-Gen, Sig, Ver) be a clas-
sic RSA-Hash signature scheme. Let's consifer=
(UniGen, UniSig, UniVer, PSig, FSig) an unidirectional
RSA-Hash signature scheme constructed as described
above.§’ is UF-CMA against (1) the proxy, (2) the user
F, and (3) all usersU, where the adversary’s success is
defined in table 7.

Proof
1. Let’s assume thdt can break the unidirectional RSA-

Hash scheme. This means th&ticcp s(1%)| is not
negligible. Based on the prox3, we build a forge3



lof : B (VK1,SKi, VK2, SK2) « UniGen(1%)
- Succp s+ = Pr { UniVer(m, s) = succeed (m, s) — PFSE(VKy, VK, SKy)
Generic
lef . B (VK1,SK1, VK2, SK2) « UniGen(1%)
Succgss = Pr { UniVer(m, s) = succeed (m, 5) < FPS8(VKy, VKa, SK)
Succp,s < pr {UniVer(m,s) = succeed | (SK,VK) « UniGen(1%), (m, s) < P 8(SKp, VK)] }
RSA-Hash
Succr,s = Pr {UniVer(m,s) = succeed | (SK,VK) « UniGen(1%), (m, s) « F">&(SKg, VK) }

Table 7. Online generic signature

capable of breaking the RSA encryption scheme. The
forger3 receives as input a public kéy, e) and tries

to invertr = f~1(y), wheref is the RSA function
defined byN ande. The adversary starts running
the proxyP for this public key and a randomly chosen
numberd; given as a secret key. When the prdky
makes the-th hash query, the adversary looks to see
if the messagen; was already asked. If not, it picks

a random;, setsh(m;) = xf with probabilityp and
h(m;) = y * x¢ with probability1 — p. If the proxy

P makes a query t¢Sig for a messagen;, the ad-
versary returns; if m; was asked before. Otherwise
it fails. Eventually,P outputs a correct unidirectional
RSA-Hash signaturém, s) for a brand new message
m. If the messagen was not hashed before, the ad-
versary computes its has valuehlin) = y*z¢, then

the adversary returng’ = s/x¢ as ther = f~!(y).
Otherwise, it fails.

. Let's assume thdt can break the unidirectional RSA-
Hash scheme. This means th@ticce s(1%)| is not
negligible. Based on the usér we build a forge3
capable of breaking the RSA encryption scheme. The
forger5 receives as input a public kéy, e) and tries
to invertz = f~1(y), wheref is the RSA function
defined byN ande. The adversary starts running
the uself for this public key and a randomly chosen
numberds given as a secret key. When the user
makes the-th hash query, the adversary looks to see
if the messagen; was already asked. If not, it picks
a random;, setsh(m;) = xf with probabilityp and
h(m;) = y * xf with probability 1 — p. If the user
F makes a query t®Sig for a messagen;, the ad-
versary returns; if m; was asked before. Otherwise
it fails. Eventually,F outputs a correct unidirectional
RSA-Hash signaturém, s) for a brand new message
m. If the messagen was not hashed before, the ad-

definitions for adversayccess.

€

versary computes its has valuehlim) = yxx$, then
the adversary returng! = s/z¢ as ther = f~1(y).
Otherwise, it fails.

3. This part is implied by the previous two parts.

C Bidirectional Encryption Scheme
C.1 Bidirectional Generic Encryption Scheme

Theorem 7 Let's consider a standard encryption
scheme = (Enc-Gen, Enc, Dec). Based or¢, we build
an bidirectional encryption schent# = (BiGen, BiEnc,
BiDec, PDec, FDec). If £ is CCA2 secure, thar€’ is also
CCAZ2 secure against (1) the prox, (2) the userF, and
(3) all usersU, where the adversary’s success is defined in
table 8.

For technical reasons, we assume that there exists an
efficient algorithm that evaluates the relatié (e, ¢’) to
true or false, where = BiEnc(m) is the original chipher-
text ande’ = TM(e) is the modified ciphertext computed by
the proxyP. The output of the algorithm is true, it must
be the case thdbecek,(e) = Decexk,(¢’). Having such
an algorithm, we allow the prox® has oracle access to
BiDec because it can never submit a cipheriéxduch that
R:(e,e') = true.

Proof

1. Let’s assume that’ is not CCA2 secure againg®.
This means thatSucc(P,£’) — 1/2| is not negligi-
ble. Based orP, we will build an adversary that
breaks the standard encryption schefnir the key
ko = (EK2,DK3). The adversarys tries to decrypt



Succps X Pr {b:b

(EKy, DKy, EKg, DKg, ) < BiGen(1%),b — {0, 1},
(mo, m1) — PBIP*(EKy, EKg, ), b < PBP*(EKy, EKg, 7, BiEnc(my))

Generic sucee - % pr (53 (EKu, DKy, EKF, DKg, ) — BiGen(1*),b — {0,1},
Fe (mo, m1) — FP(EKy, EKg, DKE), b < FP(EKy, EKg, DKg, BiEnc(ms))
def s (EKy, DKy, EKg, DKE, ) « BiGen(1%),b « {0,1},
SUCCA,S = Pr |:b =b ’ (mo7m1) - ABiDeC(EKU, EKF),B - ABiDec(EKU, EKF, BIEnC(mb))
def s (EKy, DKy, EKg, DKg, ) « BiGen(1%),b « {0, 1},
Suctee = Prob=bl ) — P(EKy, EKr.7).b < P(EKy, EKe, 7, BiEncex, (ms
U
El Gamal

Succre ¥ Pr {b:i)’(

def
Succa e =

Pr {b:@’ (

(EKy, DKy, EKg, DK, ) « BiGen(1%),b «— {0, 1},
mo, m1) — F(EKu, EKF7 DKF)7 b« F(EKu, EKF7 DKF7 BiEnCEKU (mb))

(EKy, DKy, EK 4, DK 4, ) «— BiGen(1%),b — {0, 1},
mo,m1) «— A(EKy, EK4,DK4),b «— A(EKy, EK 4, DK 4, BiEncek, (ms))

Table 8. Bidirectional encryption definitions for advessasuccess.

the ciphertexEncy(m). B chooses two pairs of keys
(k1, ks3), gives them td®, and then start®. B simu-
latesP’s access to the decryption ora@éec by tak-

ing each query of P, and sendinfecy, (¢) to its own
decryption oracle. The message received as the an-
swer is sent to the proXyroxy. P chooses two mes-
sagegmy, m1) to challenge the bidirectional encryp-
tion scheme&’ and sends them tB. 3 uses the same
two messages to challenge the standard encryption
schemef. When B is presented with the challenge
Encg, (ms), wheremy, € (mg,m1), B sends toP
BiEnc(my) = Encg, (Encg,(mys)). We assumed that

P is able to break the bidirectional encryption scheme
with non-negligible probability. Thus3 breaks the
standard encryption scheme with non-negligible prob-
ability.

2. Let's assume that’ is not CCA2 secure againdt.
This means thatSucc(F,&’) — 1/2| is not negligi-
ble. Based orP, we will build an algorithmB that
breaks the standard encryption schefnfer encryp-
tion key k1. B chooses two random numbers as keys
(k2, k3) and gives them td. In addition, 5 simu-
lates oracle access by taking each query of F,
forwarding it to its own decryption oracle and send-
ing back toF Encyg, (Decg, (¢)). F chooses two mes-
sagegmy, m1) to challenge the bidirectional encryp-
tion scheme£’ and sends them t8. B encrypts the
two messages and uséSncy,(mo), Enck, (m1)) to

challenge the standard encryption schefneWhen

B is presented with the challendcy, (ms), where
mp € (Encg,(mo), Encg,(m1)), B sends toF the
challengeEncy, (my,). We assumed thdt is able to
break the bidirectional encryption scheme with non-
negligible probability. Thus breaks the standard
encryption scheme with non-negligible probability.

. Let's assume that’ is not CCA2 secure. This

means that there is a PPT adversatysuch that
|Succ(A,E’) — 1/2] is not negligible. Based oml,

we will build an adversarys that breaks the standard
encryption schemé& for the key(EK3, DK2). The
adversary tries to decrypt the ciphertefncs(m).

B starts. A. B simulatesA’s access to the decryp-
tion oracleBiDec by taking each query of A, and
sendingDecy, (¢) to its own decryption oracle.. A
chooses two messag@sg, m1 ) to challenge the bidi-
rectional encryption schem® and sends them tB.

B uses the same two messages to challenge the stan-
dard encryption schem& WhenB is presented with
the challengency, (my,), wheremy, € (mg, m1), B
sends ta4 BiEnc(my,) = Ency, (Encg, (mp)). We as-
sumed thaP is able to break the bidirectional encryp-
tion scheme with non-begligible probability. Thus,
B breaks the standard encryption scheme with non-
negligible probability.



Generic

Succe,s < pr {BiVer(m7 s) = succeed

Succr,s  pr {BiVer(m, s) = succeed

(SKu, VKu, SK, VK, ) — BiGen(1*)
(m, s) — PBSE(VKy, VK, )

(SKu, VKy, SKg, VK, ) « BiGen(1%)
(m, s) — F(VKy, VK, SKg)

Table 9. Bidirectional signature definitions for adver&asyccess.

C.2 Bidirectional EI Gamal Encryption Scheme

Theorem 8Let &’ = (BiGen, BiEnc, BiDec, 1) be an
bidirectional EI Gamal encryption schemé&! is CPA se-
cure against (1) the proxy, (2) the usefF, and (3) all users
U, where the adversary’s success is defined in table 8.

Proof

1. Let's assume thaP can break the bidirectional

El Gamal encryption scheme. This means that

|Succe £(1¥) —1/2|is not negligible. Based o, we
will build an algorithmp that can break the standard
El Gamal encryption. For thid3 simulates the condi-
tions required byP. Initially, B knows the public key
of U (EKy = ¢*'). B pick a random number and
forwards it toP, together witlEKy. FromEKy = ¢™*
andm, B calculatesg®™ = ¢g*'¢g™ and forwardsy®2

to P as the secret key of. P chooses two mes-
sagegmg, m;) to challenge the security of the bidi-
rectional EI Gamal and forwards them B B con-

D Bidirectional Signature Scheme
D.1 Bidirectional Generic Signature Scheme

Theorem 9Let’s consider a standard signature scheme
S = (Sig-Gen, Sig, Ver). Based onS, we build an bidi-
rectional signature schen® = (BiGen, BiSig, BiVer, I).
If S is UF than S’ is UF against (1) the proxy, (2) the
userF, and (3) all userdJ, where the adversary’s success
is defined in table 9.

Proof

1. Let's assume tha’ is notUF againstP. This means
that|Succe s(1%)]| is not negligible. Based oR, we
build a forger3 able to break the original signature
S. B tries to generate a valid signat8#g, (m) for a
messagen. B received/K; as input.3 generates two
random number§SK,, SK3) and sends them tB as
the bidirectional keyr. The forger startsP.

siders the same two messages to challenge the stan-  Whenprozry makes a query for a messageto the

dard El Gamal and receives the challefge,, (ms),
wherem;, € (mg,my). B forwards the challenge
Enc,, (my) = BiEnc,, (m;) to P. We considered that
P can break the bidirectional El Gamal with probabil-
ity of SUCCGS§UCCP,5(1I€) greater than 1/2. Thug

is able to break the standard EI Gamal with probability
of success greater than 1/2.

2. Let's assume thdt can breakf’. This means that
|Succe ¢ (1%) — 1/2| is not negligible. The proof is
similar to the previous one. The only difference is that
B chooses at random, and computeg®2 for F.

3. Let's assume tha€ is not CPA secure. This
means that there exists an adversatysuch that
|Succ 4.¢(1%) — 1/2| is not negligible. The proof is
similar to the previous one. The only difference is
that B chooses at randomK 4 = y and computes
EK4 = gY for A.

hash oracle5 forwards the request to its own hash
oracle and returns the answkfm) to P. WhenP
makes a query to the signature oraclel3 makes a
query to theSig signature oracle for the same mes-
sagem. B receivesSig, (m), computesSig,(m) and
sends td® BiSig(m) = Sig, (m)Sigs(m). At one mo-
ment, P generates a valid signatuBiSig(m) for a
new messagen, with non-negligible probability.3
takesBiSig(m) = Sig; (m)Sigs(m), ignores the sec-
ond part and outputSig, (m). We assumed th&t can
break the bidirectional signature schesle Thus,B
can break the original signature schefe

2. Let's assume tha®’ is notUF againstr. This means
that |Succe s(1%)] is not negligible. Based oR, we
build a forgerBB able to break the original signature
S. B tries to generate a valid signatig,(m) for a
messagen. B received/Ks as input.3 generates two
pairs of random numberd/K;, SK1, VK3, SK3) and
sends toF as its keys. The forge startsF. When



fbi makes a query for a messageto the hash or- a new message:, with non-negligible probability3

acle, B forwards the request to its own hash oracle takesBiSig(m) = Sig,(m)Sigy(m), ignores the first
and returns the answéi(m) to F. WhenF makes part and outputSig,(m). We assumed thef can

a query to theP signature oracle3 makes a query break the bidirectional signature sche$fe Thus,5

to theSig signature oracle for the same message can break the original signature sche&e

B receivesSig,(m), computesSig, (m) and sends to
F BiSig(m) = Sig; (m)Sig,(m). At one momentF
generates a valid signatuBSig(m) for

3. This part is implied by the two previous parts.



