Parallel Reducibility
for Information-Theoreticaly Secure Computation

Yevgeniy Dodis Silvio Micalif

Abstract

Secure Function Evaluation (SFE) protocols are very hade$ign, andeducibility has been recog-
nized as a highly desirable property of SFE protocols. imfly speaking, reducibility (a.k.a. modular
composition) is the automatic ability to break up the desi§m complex SFE protocols into several
simpler, individually secure components. Despite muchbrgffonly the most basic type of reducibili-
ty, sequential reducibilitfwhere only a single sub-protocol can be run at a time), has bensidered
and proven to hold for a specific class of SFE protocols. Unfately, sequential reducibility does not
allow one to save on the number of rounds (often the most estgeeresource in a distributed setting),
and achieving more general notions is not easy (indeedine3FE notions provably enjoy sequential
reducibility, but fail to enjoy more general ones).

In this paper, for information-theoretic SFE protocols, we
e Formalize the notion gbarallel reducibility, where sub-protocols can be run at the same time;
o Clarify that there are twdistinctforms of parallel reducibility:

* Concurrent reducibilitywhich applies when the order of the sub-protocol calls ismgor-
tant (and reduces the round complexity dramatically as @etpto sequential reducibility);
and

* Synchronous reducibilitywhich applies when the sub-protocols must be executeditsimu
neously (and allows modular design in settings where sd@leaducibility does not even
apply).

e Show that a large class of SFE protocols (i.e., those satgstpe definitions of [22]) provably
enjoy (both forms of) parallel reducibility.
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1 Introduction

The objective of this paper is to understand, define, andepttoe implementability of the notion of parallel
reducibility for information-theoretically secure mufiarty computation. Let us start by discussing the
relevant concepts.

SFE Protocols. A secure function evaluation (SFE) is a communication mot@nabling a network of
players (say, having a specified threshold of honest playemsompute a (probabilistic) function in a way
that is as correct and as private as if an uncorruptable garty had carried out the computation on the
players’ behalf. SFE protocols were introduced by Goldirgidicali and Wigderson [20] in aomputational
setting (where the parties are computationally boundet;dmobserve all communication), and by Ben-Or,
Goldwasser and Wigderson [5] and Chaum, Crepeau and Ddrffg# in aninformation-theoreticsetting
(where the security is unconditional, and is achieved bynmsedprivate channels). We focus on the latter
setting.

SFE Definitions. Together with better SFE protocols, increasingly preciséndions for information-
theoretic SFE have been proposed; in particular, those afd3¢2], Goldwasser and Levin [16], Canetti [7],
and Micali and Rogaway [22]. At a high-level, these defimti@xpress that whatever an adversary can do
in thereal model(i.e., in the running of the actual protocol, where no trdgtarty exists) equals what an
adversary can do in thdeal model(i.e., when players give their inputs to the trusted thircypavho then
computes the function for them). This more or less meanstiigamost harm the adversary can do in the
real model is to change the inputs of the faulty players (loatoased on the inputs of the honest players!),
and then run the protocol honestly.

All these prior definitions are adequate, in the sense tlest(th) reasonably capture the desired intuition
of SFE, and (2) provide for the existence of SFE protocolgérticular, the protocol of [5] satisfies all of
them). Were properties (1) and (2) all one cared about, themost “liberal” definition of SFE might be
preferable, because it would allow a greater number of redse protocols to be called secure. However,
if one cared about satisfyingdditional properties, such as reducibility (i.e., as discussed healmvability
of designing SFE protocols in a modular fashion), thesre stringentotions of SFE would be needed.

Reducibility and Sequential Reducibility. Assume that we have designed a SFE protaEofpr a func-
tion f in a so calledsemi-idealmodel, where one can use a trusted party to evaluate somefottotions
g',...,¢g*. Assume also that we have designed a SFE protagglfor each functiony’. Then, the re-
ducibility property says that, by substituting the ideallsc#o the ¢''s in F with the corresponding SFE
protocolsG;’s, we areguaranteedo obtain a SFE protocol fof in thereal model.

Clearly, reducibility is quite a fundamental and desirgiiaperty to have, because it allows one to break
the task of designing a secure protocol for a complex fundgtito the task of designing secure protocols for
simpler functions. Reducibility, however, is not trivial $atisfy. After considerable effort, only the the most
basic notion of reducibilitysequential reducibilityhas been proved to hold for some SFE notions: those of
[7] and [22]. Informally, sequential reducibility guaraes that substituting the ideal calls to gl in F
with the correspondingr;’s yields a SFE protocol fof in the real modebnly if a singleG; is executed (in
its entirety!) at a timé. Therefore, sequential reducibility is not general enoughandle protocols like the
expected)(1)-round Byzantine agreement protocol of [15] (which reliestee concurrent execution of
specific SFE protocols) whose security, up to now, must begoréfrom scratch”.

1This means that every pair of players has a dedicated chésmedmmunication, which the adversary can listen to only by
corrupting one of the players. _
2This is true even if, withinF", one could “ideally evaluate” all or many of tlé's “in parallel.”



1.1 Our Results

In this paper, we put forward the notion pérallel reducibility and prove which SFE protocols satisfy it.
We actually distinguish two forms of parallel reducibility

e Concurrent reducibility.

This type of reducibility applies when, in the semi-idealdab theg', . .., ¢* can be executed in any
order. The goal of concurrent reducibility improving the round-complexityf modularly designed
SFE protocols.

e Synchronous reducibility.

This type of reducibility applies when, in the semi-idealdab theg!, ..., ¢* must be executed
“simultaneously.” The goal of synchronous reducibiliterdarging the class of modularly designable
SFE protocolgwhile being round-efficient as well).

1.1.1 Concurrent Reducibility

There are many ways to execute several progr@ms. . , G, at a time. Each such way is called imter-
leaving Thek! sequential executions 6fy, .. . , Gy, are examples of interleavings. But they are very special
and “very few,” because interleavings may occur at a roewell For instance, we could execute thgs
one round at a time in a round-robin manner, or we could erdowtingle round- ther-th round (if any) of
all the G;’s. Saying that program&, . .., G are concurrently executable means that some specified goal
is achievedor all of their interleavings

Assume now that a functiori is securely evaluated by a semi-ideal protogbWwhich, in a set of
contiguous instructions, only makes ideal calls to fun®ig', . . ., ¢*, and letG; be a SFE protocol fog’
(in the real model). Then, a fundamental question arise:

Will substituting eacty’ with G; yield a (real-model) SFE
protocol for f in which theG;’s are concurrently executable?

Of course, ifF callsg? on inputs that include an output f, we cannot hope that th&;’s are concurrently
executable. Thus, to make sense of the question, all thesiripy®’s should be determined before any of
them is ideally evaluated. Moreover, even ifglb are evaluated on completely unrelated and “independent
inputs, F may be secure only for some orders of #ié&, but not for others, which is illustrated by the
following example.

Example 1: Let f be the coin-flipping function (takes no inputs and outputsiiat jrandom bit),g* be a
coin-flipping function as well, ang? be the majority function om bits. LetF be the following semi-ideal
protocol. Each playep; locally flips a random bib;. Then the players “concurrently” use ideal callgjto
andg?(by,...,by,), getting answers andc respectively. The common output 6fis r @ c. We claim that
F is secure if we first caly? (the majority) and thep' (the coin-flip), but insecure if we do it the other way
around. Indeed, irrespective of whieclwe get in the first ordering, sinceeis random (and independent of
c), then so is- & c¢. On the other hand, assume we first learn the randomabiti assume faulty players want
the bias the resulting coin-flip t@ Then faulty players pretend that their (supposedly rar)doputsb; for
the majority are all equal to. This is very likely to bias the outcomeof majority tor as well (provided
there are enough faulty players), making the coin-flip etmal® » = 0 with high probability.

Clearly, in the case of the above example, we cannot hopestmugx the7;’s concurrently: one of the
possible interleavings is the one that sequentially exsctliteGG;’s in the order that is insecure even in the
semi-ideal model. Thus, the example illustrates that theviing condition isnecessaryor the concurrent
execution of the7;’s.



Condition 1: F is secure in the semi-ideal model for any order of4Hs.

Is the above necessary condition also sufficient? Of cotineeanswer also depends on the type of SFE
notion we are using. But, if the answer were YES, then we wgdtthe “strongest possible form of
concurrent reducibility.” Let us then be optimistic and farwvard the following informal definition.

Definition 1: We say that a SFE notion satisfiesncurrent reducibilityif, whenever the protocols
F,G,...,Gy satisfy this SFE notion, Condition 1 is (both necessary antfjcient.

Our optimism is justified in view of the following
Theorem 1: The SFE notion of Micali and Rogaway [22] satisfies concurreducibility.

We note that we have been unable to prove an analogous théorathother more liberal notions of SFE,
and we conjecture that no such theorem exist. In supportrafanjecture, we shall point out in Section 4.3
which stricter properties of the definition of [22] seem todssential in establishing Theorem 1.

The importance of establishing (as in Theorem 1) the extsteri SFE notions satisfying concurrent
reducibility arises from the efficiency gains of concurresducibility, as expressed by the following imme-
diate Corollary of Definition 1.

Corollary 1: AssumeF, ¢!, ..., ¢* satisfy Condition 1(; is a protocol forg’ taking R; rounds, and
F,G,,...,Gy are SFE protocols according to a SFE notion satisfying awantireducibility. Then,
there is a (real model) SFE implementationfoéxecuting all the7;’s in max(Ry, ..., R;) rounds.

This number of rounds is the smallest one can hope for, anddle contrasted witl; + - - - + Ry, the
number of rounds required by sequential reducibility.

1.1.2 Synchronous Reducibility

The need to execute several protocols in parallel does wessarily arise from efficiency considerations or
from the fact that it is nice not to worry about the order oféixecution. A special type of parallel execution,
synchronous executiois needed for correctness itself.

Example 2: Let f be the coin-flipping function that returns a random bit to fin& two players,”; and
P,, of a possibly larger network. That is(\, \, A, ..., \) = (z,z, A, ..., ), wherez is a random bit (and
A is the empty string). Consider now the following coin-flipgiprotocol . P, randomly and secretly
selects a bit:1, P, randomly and secretly selects abit, and thenP; and P, “exchange” their selected bits
and both output = 71 ® z».

Clearly, F' is a secure function evaluation gfonly if the exchange af, andzs is “simultaneous”, that
is, P, learnsxz, only after it declares:; and vice versa. This requirement can be modeled as the gdarall
composition of two sending protocolg! (z1, A\, A, ..., A) = (1,21, A, ..., A) andg?(\, 2, A, ..., ) =
(z9,x9, A, ..., A). Thatis, we can envisage a semi-ideal protocol in whicheysyr; and P, locally flip
coins 1 and z,, then simultaneouslyevaluateg! and g%, and finally exclusive OR their outputs gof
andg?. However,no sequential ordeof the ideal calls tg;' andg? would result in a secure coin-flipping
protocol, so the need for a special type of parallel comjmwsis motivated by security rather than efficiency
considerations.

The ability to evaluate several functiosgnchronouslys very natural to define in the ideal model: the
players simultaneously give all their inputs to the trugbadty, who then gives them all the outputs (i.e.,



no output is given before all inputs are presented). We cem @turally define the corresponding semi-
ideal model, where the players can ideally and simultarigdus., within a single round) evaluate several
functions. Assume now that we have a semi-ideal protégtdbr some functionf which simultaneously
evaluates functiong!, ..., ¢, and letG; be a secure protocol faf'. Given an interleavind of the G;’s,

we let ' denote the (real-model) protocol where we substitutesiigleideal call tog!, . . ., g% with & real
executions of the protocol§; interleaved according té. As apparent from Example 2, we cannot hope
that everyinterleaving will be “good,” that is, will yield a SFE protocaF’ for f. (For instance, in the
semi-ideal coin-flipping protocal’ of Example 2, no matter how we design SFE protoc@jsand G for

g' andg?, any sequential interleaving 6}, andG, yields an insecure protocol.) Actually, the guaranteed
existence of even singlegood interleaving cannot be taken for granted, therefore:

Can we be guaranteed that there is always an interleaving
of G1,..., Gy such thatF! is a SFE protocol forf?

Of course, the answer to the above question should deperkaotion of SFE we are using. This leads us
to the following informal definition.

Definition 2: We say that a SFE notion satisfiggchronous reducibilityf, whenever the protocols
F,G4,...,G), satisfy this SFE notion, there exists an interleavinguch thatF'! is a SFE protocol
under this notion.

Example 2 not only shows that there are bad interleavingsalba that a “liberal” enough definition of SFE
will not satisfy synchronous reducibility. Indeed, acdaglto the SFE notions of [7, 2, 16], the protocol
G consisting of player”?, sendingz; to playerP; is a secure protocol fof'. Similarly, the protocolGs
consisting of playeP, sendingz, to playerP; is a secure protocol faf>. However, there iso interleaving

of G; and G that will result in a secure coin-flip. This is because the fdayer to send its bit (which
includes the case when the players exchange their bits irraamead, due to the “rushing” ability of the
adversary; see Section 2) is completely controlling theaue. Thus, this example shows that the SFE
notions of [7, 2, 16Ho not support synchronous reducibilityowever, we show

Theorem 2: The SFE notion of Micali and Rogaway [22] satisfies synchusn@ducibility.

Theorem 2 actually has a quite constructive nature. Nanttedynature of the definition in [22] not only
guarantees that “good” interleavingsalways exist, but also that there are many of them, that thegasy
to find, and that some of them produce efficient protocols. Misarize the last property in the following
corollary.

Corollary 2: With respect to the Micali-Rogaway definition of SFE, letbe an ideal protocol for
f that simultaneously calls the functiops, ..., ¢*, and letG; be anR;-round SFE protocol foy;.
Then there exists (an easy to find) interleavihof the G;'s, consisting of< 2max(Ry,..., Rx)
rounds, such thak is secure.

In other words, independent on the number of sub-protoe@s;an synchronously interleave them using at
most twice as many rounds as the longest of them thkes.us remark that, unlike Corollary 1 (that simply
follows from the definition of concurrent reducibility), @alary 2 crucially depends on the very notion of
[22], as is discussed more in Section 4.3.

3Asisillustrated in Section 4.3, the above “natural” pratises; andG'; are indeed insecure according to the definition of [22].

“We note that the factor dfis typically too pessimistic. As it will be clear from the pise statement of synchronous reducibility
in Section 3, natural protocol§; (like the ones designed using a general paradigm of [5]) easybchronously interleaved in
max(R, ..., Rx) rounds.



1.1.3 In Sum

We have clarified the notion of parallel reducibility, distdl two important flavors of it, and showed that
there exist SFE notions (e.g., the one of [22]) as well as ige¢r8FE protocols (e.g., the one of [5]) that
satisfy (both forms of) parallel reducibility.

Theorems 1 and 2 (and their corollaries) do not necessaniyi that the definition of [22] is “prefer-
able” to other others. If the protocol one is designing isparenough or is unlikely to be composed in
parallel with other protocols, other definitions are equaliequate (and may actually be simpler to use). It
is, however, crucial to understand which SFE notions yiedjel reducibility if we want to simplify the
complex task of designing secure computation protocols.

2 The Micali-Rogaway Definition of SFE

Consider a probabilistic functiofi(x,r) = (fi(x,7),..., fa(x,7)) (Wherex = (z1,...,z,)). We wish to
define a protocoF’ for computingf that issecureagainst anyadversaryA that is allowed tacorruptin a
dynamic fashion up té (out of n) players>

2.1 Protocols and Adversaries

Protocol: An n-partyprotocol F' is a tuple(ﬁ’, LR,CR,T,0, f) where

e Fis a collection ofr interactive probabilistic Turing machines that interacsynchronous rounds.
e LR —the last round of” (a fixed integer, for simplicity).

e ('R — thecommittal rounda fixed integer, for simplicity).

e 7 — theeffective-input functigna computable function from strings to strings.

e (O — theeffective-output functigra computable function from strings to strings.

f — a (probabilistic) function being allegedly computed.

Adversary: An adversaryA is a probabilistic algorithm.

Executing F' and A: Adversary A interacts with protocolF’ as a traditional adaptive adversary in the
rushing model. Roughly, this is explained below.

The execution off” with an adversaryd proceeds as follows. Initially, each playgihas an inputz;
(for f) and an auxiliary input;, while A has an auxiliary inputv. (Auxiliary inputs represent any a-priori
information known to the corresponding party like the higtof previous protocol executions. An honest
player; should ignorez;, buta; might be useful later to the adversary.) At any point durimg éxecution
of F', A is allowed to corrupt some playgr(as long asd corrupts no more thahplayers overall). By doing
so, A learns the entirgiew ofj (i.e.,z}, a;, j's random tape, and all the messages sent and receivgdipy
to this point input. From now ond can completely control the behavior pand thus makeé deviate from
Fin any malicious way. At the beginning of each rouddfirst learns all the messages sent from currently
good players to the corrupted orfeFhen A can adaptively corrupt several players, and only then dees h
send the messages from bad players to good ones. Withoutflgegerality,A never sends a message from
a bad player to another bad player.

>More generally, one can have an adversary that can corriptcentain “allowable” subsets of players. The collectidn o
these allowable subsets is usually called adgersary structure For simplicity purposes only, we considéresholdadversary
structures, i.e. the ones containing all subsets of cditjirteor less. We call any such adversargestricted

5We can even let the adversary schedule the delivery of godkl messages and let him adaptively corrupt a new player in
the middle of this process. For simplicity, we stick to oursien.



At the end ofF, theview of A, denotedView (A, F') consists ok, A’s random coins and the views of
all the corrupted players. Theaffic of a playerj up to roundR consists of all the messages received and
sent by; up to roundR. Such traffic is denotettaffic;(R) (or by traffic;(R, F'[A]) whenever we wish to
stress the protocol and the adversary executing with it).

Effective Inputs and Outputs of a Real Execution: In an execution off” with A, the effective inpubf
player; (whether good or bad), denotég”, is determined at theommittal roundC R by evaluating the
effective-input functioriZ on j’s traffic at roundC R: xf = I(traffic;(CR, F'[A])). Theeffective outpuof
playerj, denoted;!’, is determined from’s traffic at the last round. R via the effective output functio®:

gj = O(traffic;(LR, F[A])). Note that, for now, the effective inpus” and outputgy’" are unrelated to
computingf.

History of a Real Execution: We let thehistory of a real executigndenotedHistory (A, F), to be
(View(A, F), %!, y¥'). Intuitively, the history contains all the relevant infaation of what happened
when A attacked the protocdf: the view of 4, i.e. what he “learned”, and the effective inputs and owgput
of all the players.

2.2 Simulators and Adversaries

Simulator: A simulatoris a probabilistic, oracle-calling, algorithi$i

Executing S with A: Let A be an adversary for a protocél for function f. In an execution o with
A, there are no real players and there is no real network. ddsfeinteracts withA in a round-by-round
fashion, playing the role of all currently good players inexecution ofA with the real network, i.e.: (1)
(makes up and) sends tba view of a playerj immediately afterd corruptsj, (2) sends tod the messages
of currently good players to currently bad playeasnd (3) receives the messages sentbon behalf of
the corrupted players) to currently good players. In penfog these tasks§ makes use of the following
oracleO(x,a)®:
e BeforeCR. When a playeyj is corrupted byA before the committal round) immediately send$
the input values:; anda;. In particular,S uses these values in making up the vievy of
e AtCR. Atthe end of the committal roun@'R, S sendsO the value,ff:;.9 = ZI(traffic;(C'R)) for each
corrupted playey.® In response() randomly selects a string S(—:‘tsj@-9 = x; for all currently good
playersj, computeg® = f(x°,r), and for each corrupted playgsendsj back toS.
e After CR. When a playeyj is corrupted byA after the committal round;) immediately sends§ the
input valuesr; anda;, as well as the computed valgé. In particular,S uses these values in making
up the view ofj.

We denote byiew (A, S) the view of A when interacting withs' (usingO).

Effective Inputs and Outputs of a Simulated Execution: Consider an execution o (using oracle
O(x,a)) with adversaryA. Then, the effective inputs of this execution consist of abeve defined val-
uesx”. Namely, if a playerj is corrupted before the committal rour@R, then its effective input is
xf = I(traffic;(C'R, S[A])), otherwise { is never corrupted, or is corrupted after the committal cuts
effective input ist? = z;. The effective outputs are the valug$ defined above. Namely,® = f(x%, 7).
"Notice thatS does not (and cannot) produce the messages from good ptaygwed players.
8Such oracle is meant to represent the trusted party in ahadelation off. Given this oracleS’s goal is makingA believe

that it is executingF in a real network in which the players have inputand auxiliary inputs.
®Heretraffic;(R) = traffic; (R, S[A]) of a corrupted playej denotes what! “thinks” the traffic of j after roundR is.




History of a Simulated Execution: We let thehistory of a simulated executipdenotedHistory (A, S),

to be(View (A, S), x°, ¥°). Intuitively, the history contains all the relevant infaation of what happened
when A was communicating witl$ (andO): the view of A, i.e. what he “learned”, and the effective inputs
and outputs of all the players.

2.3 Secure Computation

Definition 3: An n-party protocolF’ is a SFE protocol resilient againstestricted adversaries that computes
a probabilisticrn-input/n-output functionf (x, r), if there exists a simulata$ such that for any inpuk =
(1,...,2,), auxiliary inputa = (aq,...,a,), and anyt-restricted adversaryl with some auxiliary input
«, the histories of the real and the simulated executionsdamtically distributed:

History (A, F') = History(A, S) 1)
Equivalently,( View (A, F), X!, ') = (View(4, S), x°, °).

Simulators and Oracles vs. Ideal Adversaries. A standard benchmark in determining if a SFE notion is
“reasonable” is the fact that for every real adversarghere exists an “ideal adversaryl’ that can produce
(in the ideal model with the trusted party) the same viewdagot from the real network® We argue that
the existence of a simulatdf in the Micali-Rogaway definition indeed implies the existerof such an
adversaryA’. A’ simply runsA against the simulatof. If A corrupts a playey before the committal
round, A’ corrupts; in the ideal model, and gives the valugsanda; (that it just learned) t& on behalf of
the oracleO. Right after the committal round df has been simulated kfy, A’ computes from the traffic
of A the effective input@;9 of currently corrupted players hands them to the trusted party, and returns the
outputs of the corrupted players fbon behalf ofO. Finally, if A corrupts a playey after the committal
round, A’ corrupts; in the ideal model, and gives the values a; and the output of (that it just learned)
to S on behalf of the oracl®. At the end,A’ simply outputs the resulting view of in the simulationt?

We notice, however, that the “equivalent” ideal adversafymplied by the definition of [22] is much
more special than the possible ideal adversary envisagethey definitions (e.g., [7P?

3 The Notion of Parallel Reducibility

First, let us define theemi-ideaimodel which generalizes the real model with the ability ity evaluate
some functions. More precisely, in addition to regular sifwhere each player sends messages to other
players), the semi-ideal model allows players to hdeal rounds In such a round, the players csimulta-
neouslyevaluate several functions, . . ., ¢* using a trusted third party. More specifically, at the beiign
of this round each player gives tletuple of his inputs to a trusted party. At the end of the rqueath
player gets back from the trusted party the correspondituple of outputs. (Note, thegetuples are parts
of players’ traffic.)

The Micali-Rogaway definition of security of a protocBlin the semi-ideal model is the same as that
of a real model protocol with the following addition:

e The simulatorS has to simulate all the ideal rounds as well, since they atteopavhat the adversary
A expects.S has to do this using no special-oracle”. In other words, given thginputs of corrupted

101 fact, this requirement is more or less the SFE definitiofybf

The construction ofd’ intuitively explains the definition of effective inputs® and effective output§® of the simulated
execution, as they are exactly the inputs/outputs in thefull in the ideal model.

2For instance, such’ is constrained to rua only once and in a black-box manner.



players in an ideal roundy has to generate the corresponding outputs of corrupte@rsiand give
them back to4. Also, whenA corrupts a playey, S has to produce on its own tlgeinputs/outputs of
players during all the ideal rounds that happened so far (as thegeai®of;’s traffic, and therefore
j's view).

Let F be a SFE protocol fof in the semi-ideal model, and let us fix our attention on anyi@aar ideal
roundR that evaluates some functions, . .., g*. We say that the ideal roun@ is order-independerif for
any sequential ordering of ¢', ..., ¢*, semi-ideal protocoF remains secure if we replace the ideal round
R with k ideal rounds evaluating a singé at a time in the order given by (we denote this semi-ideal
protocol byF™).

LetG4,...,G) be SFE protocols fog', ..., g*. We would like to substitute the ideal calls¢bs with
the corresponding protocofs;’s and still get a secure protocol fgr As we informally argued before, there
are many ways to substitute (oritaerleavg the G;'s, which is made precise by the following definition.

Definition 4:

e An interleavingof protocolsGy, . .., Gy is any scheduld of their execution. Namely, a single round
of an interleaving may execute in parallel one round of onmoreG;’s with the only restriction that
the rounds of eacty; are executed in the same order as they arg;in

e A synchronous interleavingf protocolsGy, . .., Gy with committal roundsC Ry, ..., CRy is any
interleaving! such that for any < i, ¢ < k, roundC R; of G; strictly precedes roun@ R, + 1 of G,.
We call the place after all the “pre-committal” rounds butdve all the “post-committal” rounds the
synchronization point of.

e Given an interleaving of Gy,...,G}, we let F'! be a protocol obtained by substituting the ideal
round R with the execution of the protocolsy, ..., Gy in the order specified by. The committal
round of F'!, its effective input and output functions are defined in aightforward manner from
those of F and G, ..., G}. More specifically, given the traffic of in £/, we replace allj’s traffic
insideG; (if any) with theeffective inputs and outputs 5 in G;, and apply the corresponding effective
input/output function off’ to the resulting traffic. We also remark that when we € we let the
auxiliary input of player; to be its view of the computation so far.

The fundamental question addressed by parallel redugiisli
Assuming, G, ..., G are SFE protocols, under which conditionsi$ a SFE protocol as well?

We highlight two kinds of sufficient conditions: (1) specibperties of the protocdi’ making F! secure
irrespective ofl (which will lead us toconcurrent reducibility, and (2) restrictions on the interleavirg
such that mere security df and G, ..., Gy is enough (which will lead us teynchronous reducibili}y
The following Main Theorem restates Theorem 1 and 2 of th@dhiction.

Parallel-Reducibility Theorem: Consider the SFE notion of Micali-Rogaway. Llébe a semi-ideal SFE
protocol for f evaluatingg', ..., ¢* in an ideal roundr; let G; be a SFE protocol fog’; and let be an
interleaving ofG, ..., G:. ThenF! is a SFE protocol forf if either of the following conditions holds:

1. (Concurrent-Reducibility Theorem) R is an order-independent round Bf
2. (Synchronous-Reducibility Theorem)! is a synchronous interleaving.

As we argued in the introduction, if we waht to be secure for all, round R must be order-independent.
Thus, Micali-Rogaway definition achieves the strongesnfof concurrent reducibility. On the other, hand,
we also argued that if we do not put any extra conditionstoand G4, ..., Gy (aside from being SFE
protocols), not all interleavings necessarily result in a SFE protocol. In fact, we showeduhder a “too



liberal” definition of SFE (which includes all SFE definit®other than Micali-Rogaway), it could be thret
interleaving will result in a secure protocdf!. The stringent definition of Micali-Rogaway (in particular
the existence of a committal round) not only shows that sucimi@rleavingmustexist, but also allows us
to define a rich class of interleavings which guarantee tharitg of F: the only thing we require is that
all the “pre-committal” rounds precede all the “post-cortiaii rounds. In other words, players should first
“declare” all their inputs t@'’s, and only then proceed with the “actual computation” of aftheg*’s. The
intuition behind this restriction is clear: this is exactiyrat happens in the semi-ideal model when players
simultaneously evaluaig, ..., ¢* in F.

Remark 1: In the parallel-reducibility theorem we do not allow the asary choose the interleavirg
adaptively in the process of the computation. This is onlgedfior simplicity. For example, synchronous
reducibility will hold provided the adversary is restridtéo select a synchronous interleavihgAnd con-
current reducibility holds if the semi-ideal protocklremains secure if we allow the semi-ideal adversary
adaptively order the ideal calls td, .. ., g*.

4 Proof of the Parallel-Reducibility Theorem

For economy and clarity of presentation, we shall prove looticurrent and synchronous reducibility “as
together as possible”. Lét be the simulator fo#, let = be the order of committal rounds of tiig’s in the
interleaving! (if several committal rounds af;’s happen in one round, order them arbitrarily), anddgt
be the simulator for7;. We need to construct the simulatsf for F/. The proofs for the concurrent and
synchronous reducibility are going to be very similar, tr@mdifferences being the following:

e Concurrent ReducibilitySinceR is an order-independent round Bf the protocolF'™ is also secure,
i.e. has a simulata§™. We will useS™ instead ofS (together withS; ... S.) in constructingS’. In
particular,S™ will simulate the ideal call tg’ right after the committal round af;, which is exactly
the order given byr.

e Synchronous ReducibilityHere we must usé itself. In particular, at some poirfi will have to
simulate thesimultaneousdeal call tog', ..., ¢*, and expects to see the inputs of the corrupted
players. Since the interleavingis a synchronous interleaving, it has a synchronizatiomtpehere
all the effective inputs of the corrupted players are defipefre any of the7;’s went on “with the
rest of the computation.” It is at this point where we $esimulate the ideal call, because we will be
able to provideS with all the (effective) inputs.

To simplify matters, we can assume without loss of gengrtit each round of executes one round of a
singleG;. Indeed, if we can construct a simulator for any such inéetleg, we can do it for any interleaving
executing in one round a round of sevefgls: arbitrarily split this round into several rounds exeegta
singleG; and use the simulator for this new interleaving to simulagedriginal interleaving?

4.1 The Simulator S

As we will see in Section 4.2, the actual proof will constrgétin & stages, that is, will construét simu-
lators S, ..., S*, whereS* will be S'. However, we present the findl right away because it provides a
good intuition of why the proof “goes through” (but can bepgleéd otherwise).

For concreteness, we concentrate on the concurrent rélityaiase. As one can exped; simply runs
S™ and uses, . .., S to simulate the interleaving d@fy, ..., Gy.

Here we use the fact that non-corrupted players exegyiteindependently from each other, so the adversary can argfit
by executing a round of singlg; at a time.



RunS™ up to roundR (can do it since?’! andF'™ are the same up to rourig).

Tell eachS; to corrupt all the players already corrupted by the advegrgtis irrelevant what we give
to S; as their inputs).

Assume we execute some round of protoGglin the interleavingl. S’ then usesS; to produce the
needed messages from good-to-bad players and gives bagkhie response of the adversary.
Right after the committal round'R; of GG; has been simulated, use tbiective input function afr;
and the traffic of the adversary in the simulation(®f to determine the effective inpm'zj- of each
corrupted playey to ¢°.

We notice that at this stage” is exactlywaiting to simulate the ideal call t¢ for the adversary. So
S’ gives S™ the effective inputsv} as the adversary’s inputs 16, and learns from§™ the outputz}
of each corrupted player.

We notice that after roun@'R; has been simulated, the simulajrexpects to see the outputs of all
the corrupted players from thg-oracle that does not exist in our simulation. Instead, we §j the
valueSz]i- that we just learned from§™.

We keep running the above simulation up to the end of thel@aeing /. We note that at this stage
S™ has just finished simulating the ideal calls to all #is, and waits to keep the simulation &t
starting from round? + 1. And we just letS™ do it intil the end of '/ (we can do it sincé"! and F'™
are the same again from this stage).

It remains to describe how! handles the corruption requests of the adversary. Thisdejlend on
where inF! the corruption request happens. But in any cgséells S™ that the adversary asked to
corrupt player; and learns frons™ the viewV; of j in (the simulation of)F'".

% If the corruption request happens before rodtydimply returnV; to the adversary.

* Otherwise, the adversary expects to see (possibly patral¥cript of;j inside everyG;, which
V; does not contain. Howevelr; still contains the supposed inpu1,§ of player; to eachy’.

* For eachi we now ask the simulatd$; to corrupt player; in order to learn its view insidér;.
To answer this reques$; needs help from thg‘-oracle (that does not exist in our simulation),
which ST provides as follows.

- If the corruption happened before the committal rodn&;, .S; only expects to see the
input and the auxiliary input of playefto g'. We give himw? as the actual input and
extract fromV; the view of; prior to roundR asj’s auxiliary input.

- Ifthe corruption happened after routitiz;,' S; also expects to see the outpfiof player
4 in g*. However, in this case such an output is also containdd isince right after the
(already elapsed) rourdR;, we have simulated the ideal callgbin F'™. Thus,z;. is part
of j's view in F'", and as such should be included Y in V;.

* We see that in any of the above two cases we can prao¥jdeith the information it expects.
Therefore, we get back the vieW]? of j in G; so far.

% S now simply combined/; with le, e Wf to get the final simulated view gf and gives it
back to the adversary (we will argue later that the secufith®G;’s implies that these views
“match”).

We remark that the simulator for synchronous reducibiktyery similar. We essentially need to replete
by S and letS simulate the single ideal call ig, . . ., ¢* at the synchronization point @ when the traffic

14This includes the case when the corruption happened “afecend” ofG;. We treat this corruption as having the adversary
corrupt playerj at the very end of the computation . This kind of “post-executuion” corruption has caused afgproblems
preventing some other SFE notions to satisfy reducibility.our situation, this case presents no special problemstaltiee
universality of the simulator and the information-thea@security.

10



of the adversary will simultaneously givethe (effective) inputs of the corrupted players to all ¢fs.

4.2 Proof Outline

While we have already constructed the simulaér in the proof we will need to use the security of some
particularG;. Therefore, we will need “to move slowly” from the assumedwse protocolF’ or F™ (eval-
uating allg", . . ., ¢* ideally) to the protocoF! (whose security we need to establish and which furesal
protocolsGy, . .., Gy). Roughly, we need to “eliminate” one ideal call (to sogigat a time, by “replacing”
it with the protocolG;. Using the security of7;, we will then argue that this “substitution” still leaveseth
resulting protocol a SFE protocol fgr. To make the above idea more precise, we need some notation.

First, from the interleavingd of G4, ..., G}, we define the “projection interleaving® (for eachi < k).
This is the interleaving of the protocols,, ..., G; intermixed with the ideal calls tg'*!, ..., ¢*. More
precisely, we remove froni the rounds of all7, for ¢ > i. For concurrent reducibility, we add the ideal
calls tog* (for every? > 1) right after the place where we previously had the commitiahd of G,. We
notice that this order of the ideal calls is consistent wihpermutationr. In particular, we will identify the
“base” interleavingl® of ¢', ..., ¢* with the permutationr. For synchronous reducibility, we addsimgle
ideal call tog’*!, ..., ¢* right at thesynchronization poindf 7, and still call the resulting interleavinkf of
Gi,...,G;,¢"t, ... ¢* asynchronous interleaving. Notice tHat! is also a “projection” off*.

Slightly abusing the notation, we now define (in a straigivBmd way) “intermediate” semi-ideal pro-
tocols ¥ = F!I', which essentially replace the ideal callsjtg. . ., ¢* with G4, ..., G; (but leave the ideal
calls tog‘t!, ..., ¢*). We note thatF’* = F! and F? is either F™ (the concurrent case) dr (the syn-
chronous case). We know by the assumption of the Theoren¥that secure, and need to show thal
is secure. Naturally, we show it by induction by showing tiat security off”—! implies that of . Not
surprisingly, this will follow from the security of7;.

To summarize, the only thing we need to establish is theviatig. AssumeFi~! is a SFE protocol for
f with the simulatorS’~—!. We need to construct a simulai§f for £ such that for all inputs of the players
and for any adversaryt’ in F*, we getHistory(A?, F*) = History(A*, S?). We constructs’ from S¢—1
and the simulatos; for G;. Essentially,5* will run =1 in F* and useS; (together withS*~!’s simulation
of the ideal call toy*) to answer the adversary insidg. In the “other direction”, given adversar/ in F*,
we define the adversarg’~! in F*~1. This adversary will rund’ in F*~!, and will also useS; (together
with the ideal call tgj® in F~!) to interact withA? insideG;. Informally, we will say that §* = S~ 1+ S;”
and “A'""1 = A1 + S;".

The assumed security ¢f—! implies thatHistory (A*~!, F"~1) = History (A*~!, §'~!). SinceA’~!
essentially runsd?, the history ofA*~! in F*~! will naturally “contain” (we define it precisely later) the
history of A’ run agains#~! and the simulatos;. We denote this history bifistory (A*, F*~'+4S;). Then
the above equality of histories, combined with the definitod S° = S~! + S;, will immediately imply
that History (A*, F'~! + S;) = History(A*,S?). What will remain to show is thallistory (A?, F?) =
History (AY, F©=1 + S;). We remark that the “environmentg” and F*~! 4- S; are identical except the
former runs the actual protocél;, while the latter evaluates’ ideally and uses the simulatéf; to deal
with A? insideG;. Not surprisingly, the last equality (whose verificatioriiie main technical aspect of the
proof) will follow from the security oiG;. Namely, assuming that the last equality is false, we witistauct
an adversaryd; for G; such thatHistory(A;, G;) # History(A;, S;), a contradiction. Roughly4; will
simulate the whole network of players it (both the adversaryi’ and the honest players!), except when
executingG;.

This completes a brief outline of the proof. The full proohdze found in the Appendix.

**Below, we will try to use superscripts when talking aboutios related to computing, like F*, S*, A®. And we will use
subscripts for notions related to computing saghdike G, Si, A;.
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4.3 The Definitional Support of Parallel Reducibility

Since at least synchronous reducibility provably does ndd For other SFE definitions, one may wonder
what specific features of the definition of [22] are “respblesi for parallel reducibility. While such key
features can be properly appreciated only from the full paddhe parallel-reducibility theorem, we can
already informally highlight two such features on the basithe above proof outline.

On-line Simulatability: ~ The simulatorS not only is universal (i.e., independent of the advers&yyand
not only interacts with4 in a black-box manner, but must also interact wittfon-line”. In other words,
S runs with A only once each time thafS sends a piece of information té, this piece becomes part of
A’s final view This is in contrast with traditional simulators, which vidipe allowed to interact withd
arbitrarily many times, to “rewind’A in the middle of an execution, and to produce any string thegtvas
A’s entire view.

The ability to generated’s final view on-line is probably the most crucial for achimg any kind of
parallel reducibility. For example, an adversatyof the composed protocol might base it actions in sub-
protocolG; depending on what it sees in sub-protocl and vice versa. Therefore, the resulting views of
A insideG; andG. are veryinter-dependentlt thus appears crucial that, in order to simulate thesa-int
dependent views, the simulat8y for G; should be capable of extendints view insideG; incrementally
“in small pieces” (as it happens with'’s view in the real execution) that should never “be takerkhal,
instead, one were only guaranteed that he could simulatentire (as opposed to “piece-by-piece”) view
of A in eachG; separately, there is no reason to expect that these twoatepaews would be as inter-
dependent ad can make them in the real model. As demonstrated in SectigoA the other hand, having
on-line “one-pass” simulation makes it very easy to defimertbeded on-line simulator fat.

Committal Rounds: Intuitively, the committal round corresponds to the “syrartization point” in the

ideal function evaluation: when all the players have seairtmputs to the trusted party, but have not
received their corresponding outputs yet. Not surprigintiie notion of the committal round plays such
a crucial role in synchronous reducibility. In particuléne very existence of “good” interleavings (i.e.,
synchronous interleaving, as stated in Theorem 2) is baségeccommittal rounds. Committal rounds also
play a crucial role in Corollary 2. Indeed, the greedy corentrexecution of all the “pre-committal” rounds

of any number of sub-protocolS, ..., G, (which takes at moshax(R;, ..., Rx) rounds), followed by

the greedy concurrent execution of all the “post-comniit@alinds ofG, . . . , Gy (which also takes at most
max (R, ..., Rg) rounds), yields aynchronous interleavingf G, ..., G with the claimed number of
rounds.

The Price of Parallel Reducibility. The definitional support of parallel reducibility “comesagprice”: it
rules out some reasonable protocols from being called sedtor example, having?; simply sendz; to
P, is not a secure protocol (in the sense of [22]) for the fumcgi(z, A, A, ..., \) = (z1, 71, A, ..., A) of
Example 2. Indeed, assume adversdrgorrupts playei?, before the protocol starts and does not corrupt
anyone else later on. Thehwill learn z; in the real execution. Therefore, for the simulasoto match the
view of A, it must also send; to A in round1. For doing soS must learnz; from its oraclebefore round
1. Since A does not corrut playet, this can only happen whefi learns the output of corrupted player
P, (which is indeedz;) after the committal round. Unfortunately, the committalimdis round 1 itself,
because only then doé§ manifest its inputz; via its own message traffic. ThuS,will learn z; only after
round 1, which is too late.

In sum, a reasonable protocol for functighis excluded by the definition of [22] from being secure, but
this “price” has a reason: Example 2 proves that such (iddally) reasonable protocol is not synchronously
reducible.
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Full Proof of the Parallel-Reducibility Theorem

Here we give a full proof of the Paralle-Reducibility Thewréollowing the outline given in Section 4.2.
Recall that the only thing we had to prove was the followingssémeF*~! is a SFE protocol foif with
the simulatorS*~!. We need to show that” is a SFE protocol forf as well. That is, we need to con-
struct a simulatoS? for F* such that for all inputs of the players and for any adversérjn F*, we get
History(A!, F'*) = History(A?, S*). For concreteness, we concentrate on the concurrent biityaiase.
With all the previous discussion, the proof for synchronmducibility can be easily traced as well.

Simulator S%:  We constructS’ from S*~! and the simulatoss; for G;. Essentially,S* will run S*~1 in
F' and useS; (together withS*~!’s simulation of the ideal call tg®) to answer the adversary insidg.
Informally, “S* = S~ + S;”.

e RunS~! up to roundR (can do it sinceg"*~! and F* are the same up to rour).

e Tell S; to corrupt all the players already corrupted by the advegrgais irrelevant what we give t®;
as their inputs).

e Unless in the interleaving® we execute a round a@f; (which we do not have id*~1), still useS*~*
to answer the adversary (this includes a round/pfor ¢ < 4, or the ideal call tg) for ¢ > 7).

e If we execute a round af; in I¢, useS, to answer.

e Right after the committal roun@ R; of G; has been simulated, use tbffective input function of;
and the traffic of the adversary in the simulation(sf to determine the effective input; of each
corrupted playey to ¢°.

e We notice from the definition of the interleavidg~! as a “projection” of the interleaving’, that at
this stageS’~! is exactlywaiting to simulate the ideal call t¢f for the adversary. S8 gives S*~!
the effective inputsw; as the adversary’s inputs 6, and learns from5*~! the outputz; of each
corrupted playey.

e \We notice that after roun@ R; has been simulated, the simulatrexpects to see the outputs of all
the corrupted players from thg-oracle that does not exist in our simulation. Inste$fdgives S; the
valuesz; that it just learned frong*~!.
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e We keep running the above simulation up to the end of thel@seing I°. At this stage, we simply
run S*~! (who just finished the simulation @f—1) until the end ofF”* (we can do it sincé™ and F*~!
are the same again from this stage).

e It remains to describe how* handles the corruption requests of the adversary. Thisdeplend on
where inF* the corruption request happens. But in any csistells S~! that the adversary asked to
corrupt playerj and learns fron$* ! the viewV; of j in (the simulation of)F L.

% If the corruption request happens before routygimply returnV; to the adversary.

x Otherwise, the adversary expects to see (possibly pamtaigcript of; inside G;, which V;
does not contain. Howevelr; still contains the supposed inputs of player; to g*.

x S* asks the simulatos; to corrupt player;j in order to learn its view insidé&;. To answer
this requestS; needs help from thg‘-oracle (that does not exist in our simulation), whigh
provides as follows.

- If the corruption happened before the committal rodh8; of G;, S; only expects to see
the input and the auxiliary input of playérto ¢*. We give himw; as the actual input and
extract fromV; the view of; prior to roundR asj’s auxiliary input.

- If the corruption happened after rouddR; (including the case when it happened after
“the end” of G;), S; also expects to see the outpytof player; in g'. However, in this
case such an output is also contained inithesince right after the (already elapsed) round
CR;, we have simulated the ideal callgbin F*~!. Thus,z; is part ofj’s view in F 1,
and as such should be included Yy * in V;.

* We see that in any of the above two cases we can prao¥jdeith the information it expects.
Therefore,S* gets back the viewV; of j in G; so far.

* S* now simply combined/; with W; to get the final simulated view gf, and gives it back to
the adversary (we will argue later that the securityzgfimplies that these views “match”).

Now assume we are given any adversadhjor F*. In order to argue thatlistory(A*, F*) = History (A, S%),
we need to define a corresponding advers&ry* in Fi—1,

Adversary A*~':  This adversary will rund? in F*~!, and will also useS; (together with the ideal call to
g' in 1) to interact withA? inside G;. Informally, we will say that 4°~1 = A* + S;”. Not surprisingly,
the description ofd*~! is almost word-for-word the description of the simulaft but “turned the other
way around”.

e RunA’ up to roundR in F*~! (can do it since”"~! and F* are the same up to rourg).

e Tell S; to corrupt all the players already corrupted by #ig(it is irrelevant what we give t8; as their
inputs).

e Unless in the interleaving’ we execute a round @; (which we do not have id*~1), still run A% in
Fi=1 (this includes a round af, for ¢ < i, or the ideal call tgj’ for ¢ > 7).

o If we execute a round af; in I*, useS; to answer tad’, but do nothing inF* 1.

e Right after the committal roun@ R; of G; has been simulated, use tekective input function of;
and the traffic ofA? in the simulation ofG; to determine the effective input; of each corrupted
player; to ¢'.

¢ We notice from the definition of the interleavidg ! as a “projection” of the interleaving’, that at
this stage the protocdl”~"! is just about to execute the ideal callgoand waits forA*~! to provide
the inputs of the corrupted players. 86! provides the effective inputs; it just extracted from the
trafic of A?, and learns the output of each corrupted player
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e \We notice that after roun@ R; has been simulated, the simulatrexpects to see the outputs of all
the corrupted players from thg-oracle. Instead4d*~! givessS; the valuesy; that it just learned from
the ideal call toy".

e We keep running the above simulation up to the end of thel@zeing I*. At this stage, we simply
run A% in F*~1 until the end of the protocol (we can do it sing& and F*~! are the same again from
this stage).

e It remains to describe how‘~! handles the corruption requests4#. This will depend on where in
(the simulation of ¥ the corruption request happens. Butin any cé’sé corrupts the corresponding
playerj in F*~! and learns the view; of ;.

x If the corruption request happens before routygimply returnV; to Al

x Otherwise, A’ expects to see (possibly partial) transcriptjaiside G;, which V; does not
contain. Howevery; still contains the supposed inputs of player; to eachy’.

x A~! asks the simulato§; to corrupt player;j in order to learn its view insidé’;. To answer
this requestS; needs help from thg*-oracle, which4*~! provides as follows.

- If the corruption happened before the committal rodn&;, .S; only expects to see the
input and the auxiliary input of playef to ¢*. We give himw; as the actual input and
extract fromV; the view of; prior to roundR asj’s auxiliary input.

- Ifthe corruption happened after rount;, S; also expects to see the outputof player
J in g*. However, in this case such an output is also contained ifvthsince right after
the (already elapsed) rour@R;, we have made the ideal call g in F*~!. Thus,z; is
part of j’s view V; in F~1 and can be provided i8; as well.

* We see that in any of the above two cases we can pravjdeith the information it expects.
Therefore, A"~ ! gets back the viewV; of j in G; so far.

* A" now simply combined/; with W; to get the final simulated view gf and gives it back to
A" (we will argue later that the security of tlig’s implies that these views “match”).

Equality of Distributions: ~ From the security of*~!, we know that
History (A", F*"1) = History (A" !, 5" 1) (2)
which is the same as
(View (A1 F=h), &0 g1 = (View(AT1, 871, 2577, 55) (3)
We notice that the view oft*~! (both againstF*~! and S*~!) actually contains the view of the adver-
sary A’ that A*~! was running in the background. We denote these view¥ iy (A¢, F*~! + S;) and
View(A*, S*~1 + S;), and let
History (A", F'=' + 8;) £ (View(A", Fi=' + 5;), &', "
History (A", SL + 8;) & (View(A", 7L +5), &5 1, 3%
Thus, Equation (2) (i.e., assumed security®f ) implies that
History (A", F*~' + S;) = History(A*, ™! + S;) (6)

However, from the definition o and the definitions of the effective inputs/outputsfifbased on those
of F'~!, we observe that the latter distributionsigntactically the samas History (A?, S*)! That is,

i—1

) (4)
) (5)

History(A*, S*™! + S;) = History (A", §%) (7)
Therefore, Equation (6) and Equation (7) imply that whataers to prove is that
History(A?, F') = History (A, F©=! + §;) (8)
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The Last Piece: We finally show Equation (8). We remark that the “environnsérft® and Fi~! + S,

are identical except the former runs the actual prot@églwhile the latter evaluateg’ ideally and uses
the simulatorS; to deal with A® inside G;. We call the first experiment the “real” experiment and the
second — the “simulated” experiment. Assume that Equa®jrit (s false for some input configuration
x = (x,a,a). Let H(G;) = History(A?, F*) and H(S;) = History(A*, F'=! + S;) on the configuration

We notice that the overall randomness generating the hastof the real and the simulated experiments
is identical except the real experiment uses the céinsf the honest players insid@; (which do not
depend on anything else as players are supposed to use laardmdomness inside a sub-routine), while
the simulated experiment uses the randomness of the soniflaand theg’-oracle executing the ideal
call in F*~! (which again do not depend on anything else; call thejn Since H(G;) # H(S;), there
exists a particular setting of all the other randomness except t@rand D (this includes the randomness
of A?, of all the honest players everywhere butGh, all the trusted parties fay® where? > 4) such that
H(G; | ) # H(Si | 7).

We leta’ = (x, v) be the auxiliary string of the adversa#y for G; that we will construct. We notice that
o/ determines the entire (identical) state of the real and Isited experiments up to rourg; in particular,
setB of players currently corrupted by’, and fixed inputsv and auxiliary input of all currently honest
players tog®. SinceA; will immediately corrupt players if? and ignore their inputs, their inputs §6 will
not be relevant to get the contradiction, so the initial aguniation forG; whereA; will successfully run can
be thought agw, b, o).

Here is the description of; for G;. As we said, it starts from corrupting playersfnand ignoring their
inputs. Then it simply keeps runningf against the entire network of honest playergin(i.e, simulating
both which A; can do because it hasand~y) exceptfor the run of A* inside G;, whereA; actually uses
the network available to him. When the running 4f inside G; is completed,4; knows the view ofA’
insideG;, and it also simulated completely in its mind the run4sfin the interleavingl’. Now A; wants to
continue running in its mind the interaction 4f with the honest players for the restBf. For that, it needs
to knowthe outputs of honest players@y. To “get them”, A; samples uniformly &onsistentandomness
C of honest players insidé; that would have produced the view that the adverstrgot insideG; (note,
this step is not polynomial time, but we do not care). Here sethe fact thaf’ are supposed to be brand
new random coins independent of everything else, and nesest by honest players upon the termination
of G;. Having sampled”, A; can simplydeterministicallyfinish the run ofA? (as it knowsy, C andy).
Having done soA; stops.

We see that embedded in the view 4f is the view of A* that A; ran in the background. We notice
that whenA; interacts with the real networ&;, this view of A%, and in fact the entire “history” of this
run of A’ (its view we got fromA; and the effective inputs and outputs Bf of all the players, assuming
honest players used randomnésmsideG;), isidentically the samasHistory (A?, F* | v) = H(G; | 7).
Indeed, it does not matter if honest players sampglddom the beginning at random and used it, or that we
let honest players sample randdrfy got the history ofd?, sampledandom(' consistent with this history,
and pretend the honest players actually uSed

Now assume that we rud; againstS;. Up to the completion of the interleaving, the entire “higtoof
the run of A* we got from4; is syntacticallythe same that when we run it agaidst ! + S;. However,
when we finish the interleaving, a tricky thing happens. kfilst case, we interpret the run af against
S, as if honest players executéd, and sample random consistent randomn@ss honest players. In
the second case, we just give players their effective ositfsam the trusted party, and generate the actual
randomnesg’; of player; usingS;, but only if A corrupts; later. If we argue that the latter two processes
are indeed identical (i.e. it is OK to sample random consisté when 4; is run againsts;), we would
be done obtaining a contradiction. We need to use a someudiairate argument for that, which we
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semi-informally sketch.

We emphasize again tl3eexperiments that we need to compare:

1. Run ofA* againstF".

2. Run of A* againstF*~!, where we letS; simulateG;, then pick a random consiste@tand run the
“resulting” F* until completion.

3. Run ofA’ againstF ! + S;, where we letS; simulateG;, as well as generate the randomn€ssf
player; corrupted byA® after the end of the interleaving.

We know from the security of7; that the Experiments 1. and 2. are identical “all the wayh¢t, we are
done getting a contradiction, as they correspond to the ofia againstG; and S;). We also know that
Experiments 2. and 3. asyntacticallythe same up to the end of the interleaviffg We assumed that
Experiment 1. and 3. are “different” (in their entirety). 3iill get a contradiction we show by extending the
argument “one-round-at-a-time” that Experiments 2. anah@st be identical “all the way” as well. For that
we will use theuniversality of the simulato§;, i.e. that it “does not know” which adversary it is talking to

Assume we established up to rouRdthat Experiments 2. and 3. are the same. The stafifig the
end of the interleaving, where we know this is the case. We laitew from this, that the effective outputs
of honest players idr; are distributed the same in Experiments 2. and 3.

Ifin round (R+ 1) the adversaryl’ does not corrupt any player, we are done, since honest gldgarot
use their randomness; they used insidér;, only their inputs and outputs, which we know are distridute
the same. The only problem is whelf corrupts a player. In Experiment 2. we return the (consisteriue
C; that we sampled at the end of the interleaving. In Experindenwe let the simulato; generate this
randomness. However, we still argue that these two answerdistributed in the same way (conditioned
on what happened before). In particular, assutheso far has corrupted playeys, . . ., j, after the end
of the interleaving (so that, = j). A? could base its decisions to corrupt these players on somerfidw
information it extracted since the end of the interleaving.

However, the simulato$; is universal and has to answer in the same way no matterAttasked to
corrupt these players. In particular, there exists an adwerd, that does the same thing as up to the
end of the run of4’ inside the interleaving, and then for “no specific reasoksas; to corrupt the same
playersjy, ..., jp. SinceS; cannot distinguish between these two cases (it only seeeduests of whom
to corrupt), its responses must be the same as well. But vileeardversary asks to corrupt these players “for
no reason” right at the end of the interleaving, the secuft; (against thisd}) implies that the answers
Cj,...,Cj, that S; gives are distributegxactly the samas the true randomness of the actual players
conditioned on the viewA® got insideG;, which are exactly the answers we sampled in Experiment 2.!

This shows that Experiments 2. and 3. are indeed the sameriEnts 1. and 2. are the same, and yet we
assumed that Experiments 1. and 3. are different, a cooti@li
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