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Abstract

Secure Function Evaluation (SFE) protocols are very hard todesign, andreducibilityhas been recog-
nized as a highly desirable property of SFE protocols. Informally speaking, reducibility (a.k.a. modular
composition) is the automatic ability to break up the designof a complex SFE protocols into several
simpler, individually secure components. Despite much effort, only the most basic type of reducibili-
ty, sequential reducibility(where only a single sub-protocol can be run at a time), has been considered
and proven to hold for a specific class of SFE protocols. Unfortunately, sequential reducibility does not
allow one to save on the number of rounds (often the most expensive resource in a distributed setting),
and achieving more general notions is not easy (indeed, certain SFE notions provably enjoy sequential
reducibility, but fail to enjoy more general ones).

In this paper, for information-theoretic SFE protocols, we� Formalize the notion ofparallel reducibility, where sub-protocols can be run at the same time;� Clarify that there are twodistinctforms of parallel reducibility:? Concurrent reducibility, which applies when the order of the sub-protocol calls is not impor-
tant (and reduces the round complexity dramatically as compared to sequential reducibility);
and? Synchronous reducibility, which applies when the sub-protocols must be executed simulta-
neously (and allows modular design in settings where sequential reducibility does not even
apply).� Show that a large class of SFE protocols (i.e., those satisfying the definitions of [22]) provably

enjoy (both forms of) parallel reducibility.

� Laboratory for Computer Science, Massachusetts Instituteof Technology, 545 Technology Square, Cambridge, MA 02139.
E-mail: yevgen@theory.lcs.mit.edu.y Laboratory for Computer Science, Massachusetts Instituteof Technology, 545 Technology Square, Cambridge, MA 02139.
E-mail: silvio@theory.lcs.mit.edu.



1 Introduction

The objective of this paper is to understand, define, and prove the implementability of the notion of parallel
reducibility for information-theoretically secure multi-party computation. Let us start by discussing the
relevant concepts.

SFE Protocols. A secure function evaluation (SFE) is a communication protocol enabling a network of
players (say, having a specified threshold of honest players) to compute a (probabilistic) function in a way
that is as correct and as private as if an uncorruptable thirdparty had carried out the computation on the
players’ behalf. SFE protocols were introduced by Goldreich, Micali and Wigderson [20] in acomputational
setting (where the parties are computationally bounded, but can observe all communication), and by Ben-Or,
Goldwasser and Wigderson [5] and Chaum, Crèpeau and Damgård [13] in aninformation-theoreticsetting
(where the security is unconditional, and is achieved by means ofprivate channels1). We focus on the latter
setting.

SFE Definitions. Together with better SFE protocols, increasingly precise definitions for information-
theoretic SFE have been proposed; in particular, those of Beaver [2], Goldwasser and Levin [16], Canetti [7],
and Micali and Rogaway [22]. At a high-level, these definitions express that whatever an adversary can do
in the real model(i.e., in the running of the actual protocol, where no trusted party exists) equals what an
adversary can do in theideal model(i.e., when players give their inputs to the trusted third party, who then
computes the function for them). This more or less means thatthe most harm the adversary can do in the
real model is to change the inputs of the faulty players (but not based on the inputs of the honest players!),
and then run the protocol honestly.

All these prior definitions are adequate, in the sense that they (1) reasonably capture the desired intuition
of SFE, and (2) provide for the existence of SFE protocols (inparticular, the protocol of [5] satisfies all of
them). Were properties (1) and (2) all one cared about, then the most “liberal” definition of SFE might be
preferable, because it would allow a greater number of reasonable protocols to be called secure. However,
if one cared about satisfyingadditional properties, such as reducibility (i.e., as discussed below, the ability
of designing SFE protocols in a modular fashion), thenmore stringentnotions of SFE would be needed.

Reducibility and Sequential Reducibility. Assume that we have designed a SFE protocol,F , for a func-
tion f in a so calledsemi-idealmodel, where one can use a trusted party to evaluate some other functionsg1; : : : ; gk. Assume also that we have designed a SFE protocol,Gi, for each functiongi. Then, the re-
ducibility property says that, by substituting the ideal calls to thegi’s in F with the corresponding SFE
protocolsGi’s, we areguaranteedto obtain a SFE protocol forf in thereal model.

Clearly, reducibility is quite a fundamental and desirableproperty to have, because it allows one to break
the task of designing a secure protocol for a complex function into the task of designing secure protocols for
simpler functions. Reducibility, however, is not trivial to satisfy. After considerable effort, only the the most
basic notion of reducibility,sequential reducibility, has been proved to hold for some SFE notions: those of
[7] and [22]. Informally, sequential reducibility guarantees that substituting the ideal calls to thegi’s in F
with the correspondingGi’s yields a SFE protocol forf in the real modelonly if a singleGi is executed (in
its entirety!) at a time.2 Therefore, sequential reducibility is not general enough to handle protocols like the
expectedO(1)-round Byzantine agreement protocol of [15] (which relies on the concurrent execution ofn2
specific SFE protocols) whose security, up to now, must be proven “from scratch”.

1This means that every pair of players has a dedicated channelfor communication, which the adversary can listen to only by
corrupting one of the players.

2This is true even if, withinF , one could “ideally evaluate” all or many of thegi’s “in parallel.”
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1.1 Our Results

In this paper, we put forward the notion ofparallel reducibility and prove which SFE protocols satisfy it.
We actually distinguish two forms of parallel reducibility:� Concurrent reducibility.

This type of reducibility applies when, in the semi-ideal model, theg1; : : : ; gk can be executed in any
order. The goal of concurrent reducibility isimproving the round-complexityof modularly designed
SFE protocols.� Synchronous reducibility.

This type of reducibility applies when, in the semi-ideal model, theg1; : : : ; gk must be executed
“simultaneously.” The goal of synchronous reducibility isenlarging the class of modularly designable
SFE protocols(while being round-efficient as well).

1.1.1 Concurrent Reducibility

There are many ways to execute several programsG1; : : : ; Gk at a time. Each such way is called aninter-
leaving. Thek! sequential executions ofG1; : : : ; Gk are examples of interleavings. But they are very special
and “very few,” because interleavings may occur at a round-level. For instance, we could execute theGi’s
one round at a time in a round-robin manner, or we could execute in single roundr ther-th round (if any) of
all theGi’s. Saying that programsG1; : : : ; Gk are concurrently executable means that some specified goal
is achievedfor all of their interleavings.

Assume now that a functionf is securely evaluated by a semi-ideal protocolF which, in a set of
contiguous instructions, only makes ideal calls to functionsg1; : : : ; gk, and letGi be a SFE protocol forgi
(in the real model). Then, a fundamental question arise:

Will substituting eachgi withGi yield a (real-model) SFE
protocol forf in which theGi’s are concurrently executable?

Of course, ifF callsg2 on inputs that include an output ofg1, we cannot hope that theGi’s are concurrently
executable. Thus, to make sense of the question, all the inputs togi’s should be determined before any of
them is ideally evaluated. Moreover, even if allgi’s are evaluated on completely unrelated and “independent”
inputs,F may be secure only for some orders of thegi’s, but not for others, which is illustrated by the
following example.

Example 1: Let f be the coin-flipping function (takes no inputs and outputs a joint random bit),g1 be a
coin-flipping function as well, andg2 be the majority function onn bits. LetF be the following semi-ideal
protocol. Each playerPj locally flips a random bitbj. Then the players “concurrently” use ideal calls tog1
andg2(b1; : : : ; bn), getting answersr and
 respectively. The common output ofF is r � 
. We claim thatF is secure if we first callg2 (the majority) and theng1 (the coin-flip), but insecure if we do it the other way
around. Indeed, irrespective of which
 we get in the first ordering, sincer is random (and independent of
), then so isr�
. On the other hand, assume we first learn the random bitr and assume faulty players want
the bias the resulting coin-flip to0. Then faulty players pretend that their (supposedly random) inputsbj for
the majority are all equal tor. This is very likely to bias the outcome
 of majority tor as well (provided
there are enough faulty players), making the coin-flip equalto r � r = 0 with high probability.

Clearly, in the case of the above example, we cannot hope to execute theGi’s concurrently: one of the
possible interleavings is the one that sequentially executes theGi’s in the order that is insecure even in the
semi-ideal model. Thus, the example illustrates that the following condition isnecessaryfor the concurrent
execution of theGi’s.
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Condition 1: F is secure in the semi-ideal model for any order of thegi’s.

Is the above necessary condition also sufficient? Of course,the answer also depends on the type of SFE
notion we are using. But, if the answer were YES, then we wouldget the “strongest possible form of
concurrent reducibility.” Let us then be optimistic and putforward the following informal definition.

Definition 1: We say that a SFE notion satisfiesconcurrent reducibilityif, whenever the protocolsF;G1; : : : ; Gk satisfy this SFE notion, Condition 1 is (both necessary and)sufficient.

Our optimism is justified in view of the following

Theorem 1: The SFE notion of Micali and Rogaway [22] satisfies concurrent reducibility.

We note that we have been unable to prove an analogous theoremfor all other more liberal notions of SFE,
and we conjecture that no such theorem exist. In support of our conjecture, we shall point out in Section 4.3
which stricter properties of the definition of [22] seem to beessential in establishing Theorem 1.

The importance of establishing (as in Theorem 1) the existence of SFE notions satisfying concurrent
reducibility arises from the efficiency gains of concurrentreducibility, as expressed by the following imme-
diate Corollary of Definition 1.

Corollary 1: AssumeF; g1; : : : ; gk satisfy Condition 1,Gi is a protocol forgi takingRi rounds, andF;G1; : : : ; Gk are SFE protocols according to a SFE notion satisfying concurrent reducibility. Then,
there is a (real model) SFE implementation ofF executing all theGi’s in max(R1; : : : ; Rk) rounds.

This number of rounds is the smallest one can hope for, and should be contrasted withR1 + � � � + Rk, the
number of rounds required by sequential reducibility.

1.1.2 Synchronous Reducibility

The need to execute several protocols in parallel does not necessarily arise from efficiency considerations or
from the fact that it is nice not to worry about the order of theexecution. A special type of parallel execution,
synchronous execution, is needed for correctness itself.

Example 2: Let f be the coin-flipping function that returns a random bit to thefirst two players,P1 andP2, of a possibly larger network. That is,f(�; �; �; : : : ; �) = (x; x; �; : : : ; �), wherex is a random bit (and� is the empty string). Consider now the following coin-flipping protocolF . P1 randomly and secretly
selects a bitx1, P2 randomly and secretly selects a bitx2, and thenP1 andP2 “exchange” their selected bits
and both outputx = x1 � x2.

Clearly,F is a secure function evaluation off only if the exchange ofx1 andx2 is “simultaneous”, that
is, P1 learnsx2 only after it declaresx1 and vice versa. This requirement can be modeled as the parallel
composition of two sending protocols:g1(x1; �; �; : : : ; �) = (x1; x1; �; : : : ; �) andg2(�; x2; �; : : : ; �) =(x2; x2; �; : : : ; �). That is, we can envisage a semi-ideal protocol in which playersP1 andP2 locally flip
coins x1 and x2, then simultaneouslyevaluateg1 and g2, and finally exclusive OR their outputs ofg1
andg2. However,no sequential orderof the ideal calls tog1 andg2 would result in a secure coin-flipping
protocol, so the need for a special type of parallel composition is motivated by security rather than efficiency
considerations.

The ability to evaluate several functionssynchronouslyis very natural to define in the ideal model: the
players simultaneously give all their inputs to the trustedparty, who then gives them all the outputs (i.e.,
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no output is given before all inputs are presented). We can also naturally define the corresponding semi-
ideal model, where the players can ideally and simultaneously (i.e., within a single round) evaluate several
functions. Assume now that we have a semi-ideal protocolF for some functionf which simultaneously
evaluates functionsg1; : : : ; gk, and letGi be a secure protocol forgi. Given an interleavingI of theGi’s,
we letF I denote the (real-model) protocol where we substitute thesingleideal call tog1; : : : ; gk with k real
executions of the protocolsGi interleaved according toI. As apparent from Example 2, we cannot hope
that everyinterleavingI will be “good,” that is, will yield a SFE protocolF I for f . (For instance, in the
semi-ideal coin-flipping protocolF of Example 2, no matter how we design SFE protocolsG1 andG2 forg1 andg2, any sequential interleaving ofG1 andG2 yields an insecure protocol.) Actually, the guaranteed
existence of even asinglegood interleaving cannot be taken for granted, therefore:

Can we be guaranteed that there is always an interleavingI
ofG1; : : : ; Gk such thatF I is a SFE protocol forf?

Of course, the answer to the above question should depend on the notion of SFE we are using. This leads us
to the following informal definition.

Definition 2: We say that a SFE notion satisfiessynchronous reducibilityif, whenever the protocolsF;G1; : : : ; Gk satisfy this SFE notion, there exists an interleavingI such thatF I is a SFE protocol
under this notion.

Example 2 not only shows that there are bad interleavings, but also that a “liberal” enough definition of SFE
will not satisfy synchronous reducibility. Indeed, according to the SFE notions of [7, 2, 16], the protocolG1 consisting of playerP1 sendingx1 to playerP2 is a secure protocol forg1. Similarly, the protocolG2
consisting of playerP2 sendingx2 to playerP1 is a secure protocol forg2. However, there isno interleaving
of G1 andG2 that will result in a secure coin-flip. This is because the last player to send its bit (which
includes the case when the players exchange their bits in oneround, due to the “rushing” ability of the
adversary; see Section 2) is completely controlling the outcome. Thus, this example shows that the SFE
notions of [7, 2, 16]do not support synchronous reducibility. However, we show3

Theorem 2: The SFE notion of Micali and Rogaway [22] satisfies synchronous reducibility.

Theorem 2 actually has a quite constructive nature. Namely,the nature of the definition in [22] not only
guarantees that “good” interleavingsI always exist, but also that there are many of them, that they are easy
to find, and that some of them produce efficient protocols. We summarize the last property in the following
corollary.

Corollary 2: With respect to the Micali-Rogaway definition of SFE, letF be an ideal protocol forf that simultaneously calls the functionsg1; : : : ; gk, and letGi be anRi-round SFE protocol forgi.
Then there exists (an easy to find) interleavingI of theGi’s, consisting of� 2max(R1; : : : ; Rk)
rounds, such thatF I is secure.

In other words, independent on the number of sub-protocols,we can synchronously interleave them using at
most twice as many rounds as the longest of them takes.4 Let us remark that, unlike Corollary 1 (that simply
follows from the definition of concurrent reducibility), Corollary 2 crucially depends on the very notion of
[22], as is discussed more in Section 4.3.

3As is illustrated in Section 4.3, the above “natural” protocolsG1 andG2 are indeed insecure according to the definition of [22].
4We note that the factor of2 is typically too pessimistic. As it will be clear from the precise statement of synchronous reducibility

in Section 3, natural protocolsGi (like the ones designed using a general paradigm of [5]) can be synchronously interleaved inmax(R1; : : : ; Rk) rounds.
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1.1.3 In Sum

We have clarified the notion of parallel reducibility, distilled two important flavors of it, and showed that
there exist SFE notions (e.g., the one of [22]) as well as general SFE protocols (e.g., the one of [5]) that
satisfy (both forms of) parallel reducibility.

Theorems 1 and 2 (and their corollaries) do not necessarily imply that the definition of [22] is “prefer-
able” to other others. If the protocol one is designing is simple enough or is unlikely to be composed in
parallel with other protocols, other definitions are equally adequate (and may actually be simpler to use). It
is, however, crucial to understand which SFE notions yield parallel reducibility if we want to simplify the
complex task of designing secure computation protocols.

2 The Micali-Rogaway Definition of SFE

Consider a probabilistic functionf(x; r) = (f1(x; r); : : : ; fn(x; r)) (wherex = (x1; : : : ; xn)). We wish to
define a protocolF for computingf that issecureagainst anyadversaryA that is allowed tocorrupt in a
dynamic fashion up tot (out ofn) players.5

2.1 Protocols and Adversaries

Protocol: An n-partyprotocolF is a tuple(F̂ ; LR;CR; I;O; f) where� F̂ is a collection ofn interactive probabilistic Turing machines that interact in synchronous rounds.� LR — the last round ofF (a fixed integer, for simplicity).� CR — thecommittal round(a fixed integer, for simplicity).� I — theeffective-input function, a computable function from strings to strings.� O — theeffective-output function, a computable function from strings to strings.� f — a (probabilistic) function being allegedly computed.

Adversary: An adversaryA is a probabilistic algorithm.

Executing F and A: AdversaryA interacts with protocolF as a traditional adaptive adversary in the
rushing model. Roughly, this is explained below.

The execution ofF with an adversaryA proceeds as follows. Initially, each playerj has an inputxj
(for f ) and an auxiliary inputaj, whileA has an auxiliary input�. (Auxiliary inputs represent any a-priori
information known to the corresponding party like the history of previous protocol executions. An honest
playerj should ignoreaj , butaj might be useful later to the adversary.) At any point during the execution
of F ,A is allowed to corrupt some playerj (as long asA corrupts no more thant players overall). By doing
so,A learns the entireview ofj (i.e.,xj, aj, j’s random tape, and all the messages sent and received byj) up
to this point input. From now on,A can completely control the behavior ofj and thus makej deviate fromF in any malicious way. At the beginning of each round,A first learns all the messages sent from currently
good players to the corrupted ones.6 ThenA can adaptively corrupt several players, and only then does he
send the messages from bad players to good ones. Without lossof generality,A never sends a message from
a bad player to another bad player.

5More generally, one can have an adversary that can corrupt only certain “allowable” subsets of players. The collection of
these allowable subsets is usually called theadversary structure. For simplicity purposes only, we considerthresholdadversary
structures, i.e. the ones containing all subsets of cardinality t or less. We call any such adversaryt-restricted.

6We can even let the adversary schedule the delivery of good-to-bad messages and let him adaptively corrupt a new player in
the middle of this process. For simplicity, we stick to our version.

5



At the end ofF , theview ofA, denotedView(A;F ) consists of�, A’s random coins and the views of
all the corrupted players. Thetraffic of a playerj up to roundR consists of all the messages received and
sent byj up to roundR. Such traffic is denotedtrafficj(R) (or by trafficj(R;F [A℄) whenever we wish to
stress the protocol and the adversary executing with it).

Effective Inputs and Outputs of a Real Execution: In an execution ofF with A, theeffective inputof
player j (whether good or bad), denoted̂xFj , is determined at thecommittal roundCR by evaluating the
effective-input functionI on j’s traffic at roundCR: x̂Fj = I(trafficj(CR;F [A℄)). Theeffective outputof
playerj, denoted̂yFj , is determined fromj’s traffic at the last roundLR via the effective output functionO:ŷFj = O(trafficj(LR;F [A℄)). Note that, for now, the effective inputŝxF and outputŝyF are unrelated to
computingf .

History of a Real Execution: We let thehistory of a real execution, denotedHistory(A;F ), to behView(A;F ); x̂F ; ŷF i. Intuitively, the history contains all the relevant information of what happened
whenA attacked the protocolF : the view ofA, i.e. what he “learned”, and the effective inputs and outputs
of all the players.

2.2 Simulators and Adversaries

Simulator: A simulatoris a probabilistic, oracle-calling, algorithmS.

Executing S with A: Let A be an adversary for a protocolF for function f . In an execution ofS withA, there are no real players and there is no real network. Instead,S interacts withA in a round-by-round
fashion, playing the role of all currently good players in anexecution ofA with the real network, i.e.: (1)
(makes up and) sends toA a view of a playerj immediately afterA corruptsj, (2) sends toA the messages
of currently good players to currently bad players7 and (3) receives the messages sent byA (on behalf of
the corrupted players) to currently good players. In performing these tasks,S makes use of the following
oracleO(x;a)8:� BeforeCR. When a playerj is corrupted byA before the committal round,O immediately sendsS

the input valuesxj andaj . In particular,S uses these values in making up the view ofj.� At CR. At the end of the committal roundCR, S sendsO the valuex̂Sj = I(trafficj(CR)) for each
corrupted playerj.9 In response,O randomly selects a stringr, setsx̂Sj = xj for all currently good
playersj, computeŝyS = f(x̂S ; r), and for each corrupted playerj sendŝySj back toS.� AfterCR. When a playerj is corrupted byA after the committal round,O immediately sendsS the
input valuesxj andaj, as well as the computed valueŷSj . In particular,S uses these values in making
up the view ofj.

We denote byView(A;S) the view ofA when interacting withS (usingO).

Effective Inputs and Outputs of a Simulated Execution: Consider an execution ofS (using oracleO(x;a)) with adversaryA. Then, the effective inputs of this execution consist of theabove defined val-
uesxS . Namely, if a playerj is corrupted before the committal roundCR, then its effective input isx̂Sj = I(trafficj(CR;S[A℄)); otherwise (j is never corrupted, or is corrupted after the committal round) its
effective input isx̂Sj = xj. The effective outputs are the valuesyS defined above. Namely,̂yS = f(x̂S; r).

7Notice thatS does not (and cannot) produce the messages from good playersto good players.
8Such oracle is meant to represent the trusted party in an ideal evaluation off . Given this oracle,S’s goal is makingA believe

that it is executingF in a real network in which the players have inputsx and auxiliary inputsa.
9Heretrafficj(R) = trafficj(R; S[A℄) of a corrupted playerj denotes whatA “thinks” the traffic ofj after roundR is.
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History of a Simulated Execution: We let thehistory of a simulated execution, denotedHistory(A;S),
to behView(A;S); x̂S ; ŷSi. Intuitively, the history contains all the relevant information of what happened
whenA was communicating withS (andO): the view ofA, i.e. what he “learned”, and the effective inputs
and outputs of all the players.

2.3 Secure Computation

Definition 3: An n-party protocolF is a SFE protocol resilient againstt-restricted adversaries that computes
a probabilisticn-input/n-output functionf(x; r), if there exists a simulatorS such that for any inputx =(x1; : : : ; xn), auxiliary inputa = (a1; : : : ; an), and anyt-restricted adversaryA with some auxiliary input�, the histories of the real and the simulated executions are identically distributed:History(A;F ) � History(A;S) (1)

Equivalently,hView(A;F ); x̂F ; ŷF i � hView(A;S); x̂S ; ŷSi.
Simulators and Oracles vs. Ideal Adversaries. A standard benchmark in determining if a SFE notion is
“reasonable” is the fact that for every real adversaryA there exists an “ideal adversary”A0 that can produce
(in the ideal model with the trusted party) the same view asA got from the real network.10 We argue that
the existence of a simulatorS in the Micali-Rogaway definition indeed implies the existence of such an
adversaryA0. A0 simply runsA against the simulatorS. If A corrupts a playerj before the committal
round,A0 corruptsj in the ideal model, and gives the valuesxj andaj (that it just learned) toS on behalf of
the oracleO. Right after the committal round ofF has been simulated byS, A0 computes from the traffic
of A the effective inputŝxSj of currently corrupted playersj, hands them to the trusted party, and returns the
outputs of the corrupted players toS on behalf ofO. Finally, if A corrupts a playerj after the committal
round,A0 corruptsj in the ideal model, and gives the valuesxj, aj and the output ofj (that it just learned)
to S on behalf of the oracleO. At the end,A0 simply outputs the resulting view ofA in the simulation.11

We notice, however, that the “equivalent” ideal adversaryA0 implied by the definition of [22] is much
more special than the possible ideal adversary envisaged byother definitions (e.g., [7]).12

3 The Notion of Parallel Reducibility

First, let us define thesemi-idealmodel which generalizes the real model with the ability to ideally evaluate
some functions. More precisely, in addition to regular rounds (where each player sends messages to other
players), the semi-ideal model allows players to haveideal rounds. In such a round, the players cansimulta-
neouslyevaluate several functionsg1; : : : ; gk using a trusted third party. More specifically, at the beginning
of this round each player gives thek-tuple of his inputs to a trusted party. At the end of the round, each
player gets back from the trusted party the correspondingk-tuple of outputs. (Note, thesek-tuples are parts
of players’ traffic.)

The Micali-Rogaway definition of security of a protocolF in the semi-ideal model is the same as that
of a real model protocol with the following addition:� The simulatorS has to simulate all the ideal rounds as well, since they are part of what the adversaryA expects.S has to do this using no special “g-oracle”. In other words, given theg-inputs of corrupted

10In fact, this requirement is more or less the SFE definition of[7].
11The construction ofA0 intuitively explains the definition of effective inputŝxS and effective outputŝyS of the simulated

execution, as they are exactly the inputs/outputs in the runof A0 in the ideal model.
12For instance, suchA0 is constrained to runA only once and in a black-box manner.
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players in an ideal round,S has to generate the corresponding outputs of corrupted players and give
them back toA. Also, whenA corrupts a playerj, S has to produce on its own theg-inputs/outputs of
playerj during all the ideal rounds that happened so far (as these areparts ofj’s traffic, and thereforej’s view).

LetF be a SFE protocol forf in the semi-ideal model, and let us fix our attention on any particular ideal
roundR that evaluates some functionsg1; : : : ; gk. We say that the ideal roundR is order-independentif for
any sequential ordering� of g1; : : : ; gk, semi-ideal protocolF remains secure if we replace the ideal roundR with k ideal rounds evaluating a singlegi at a time in the order given by� (we denote this semi-ideal
protocol byF �).

LetG1; : : : ; Gk be SFE protocols forg1; : : : ; gk. We would like to substitute the ideal calls togi’s with
the corresponding protocolsGi’s and still get a secure protocol forf . As we informally argued before, there
are many ways to substitute (or tointerleave) theGi’s, which is made precise by the following definition.

Definition 4:� An interleavingof protocolsG1; : : : ; Gk is any scheduleI of their execution. Namely, a single round
of an interleaving may execute in parallel one round of one ormoreGi’s with the only restriction that
the rounds of eachGi are executed in the same order as they are inGi.� A synchronous interleavingof protocolsG1; : : : ; Gk with committal roundsCR1; : : : ; CRk is any
interleavingI such that for any1 � i; ` � k, roundCRi of Gi strictly precedes roundCR`+1 of G`.
We call the place after all the “pre-committal” rounds but before all the “post-committal” rounds the
synchronization point ofI.� Given an interleavingI of G1; : : : ; Gk, we letF I be a protocol obtained by substituting the ideal
roundR with the execution of the protocolsG1; : : : ; Gk in the order specified byI. The committal
round ofF I , its effective input and output functions are defined in a straightforward manner from
those ofF andG1; : : : ; Gk. More specifically, given the traffic ofj in F I , we replace allj’s traffic
insideGi (if any) with theeffective inputs and outputsof j inGi, and apply the corresponding effective
input/output function ofF to the resulting traffic. We also remark that when we runGi, we let the
auxiliary input of playerj to be its view of the computation so far.

The fundamental question addressed by parallel reducibility is

AssumingF;G1; : : : ; Gk are SFE protocols, under which conditions isF I a SFE protocol as well?

We highlight two kinds of sufficient conditions: (1) specialproperties of the protocolF makingF I secure
irrespective ofI (which will lead us toconcurrent reducibility), and (2) restrictions on the interleavingI
such that mere security ofF andG1; : : : ; Gk is enough (which will lead us tosynchronous reducibility).
The following Main Theorem restates Theorem 1 and 2 of the introduction.

Parallel-Reducibility Theorem: Consider the SFE notion of Micali-Rogaway. LetF be a semi-ideal SFE
protocol forf evaluatingg1; : : : ; gk in an ideal roundR; let Gi be a SFE protocol forgi; and letI be an
interleaving ofG1; : : : ; Gk. ThenF I is a SFE protocol forf if either of the following conditions holds:

1. (Concurrent-Reducibility Theorem) R is an order-independent round ofF .
2. (Synchronous-Reducibility Theorem)I is a synchronous interleaving.

As we argued in the introduction, if we wantF I to be secure for allI, roundR must be order-independent.
Thus, Micali-Rogaway definition achieves the strongest form of concurrent reducibility. On the other, hand,
we also argued that if we do not put any extra conditions onF andG1; : : : ; Gk (aside from being SFE
protocols), not all interleavingsI necessarily result in a SFE protocol. In fact, we showed thatunder a “too
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liberal” definition of SFE (which includes all SFE definitions other than Micali-Rogaway), it could be thatno
interleavingI will result in a secure protocolF I . The stringent definition of Micali-Rogaway (in particular,
the existence of a committal round) not only shows that such an interleavingmustexist, but also allows us
to define a rich class of interleavings which guarantee the security of F I : the only thing we require is that
all the “pre-committal” rounds precede all the “post-committal” rounds. In other words, players should first
“declare” all their inputs togi’s, and only then proceed with the “actual computation” of any of thegi’s. The
intuition behind this restriction is clear: this is exactlywhat happens in the semi-ideal model when players
simultaneously evaluateg1; : : : ; gk in F .

Remark 1: In the parallel-reducibility theorem we do not allow the adversary choose the interleavingI
adaptively in the process of the computation. This is only done for simplicity. For example, synchronous
reducibility will hold provided the adversary is restricted to select a synchronous interleavingI. And con-
current reducibility holds if the semi-ideal protocolF remains secure if we allow the semi-ideal adversary
adaptively order the ideal calls tog1; : : : ; gk.

4 Proof of the Parallel-Reducibility Theorem

For economy and clarity of presentation, we shall prove bothconcurrent and synchronous reducibility “as
together as possible”. LetS be the simulator forF , let� be the order of committal rounds of theGi’s in the
interleavingI (if several committal rounds ofGi’s happen in one round, order them arbitrarily), and letSi
be the simulator forGi. We need to construct the simulatorSI for F I . The proofs for the concurrent and
synchronous reducibility are going to be very similar, the main differences being the following:� Concurrent Reducibility. SinceR is an order-independent round ofF , the protocolF � is also secure,

i.e. has a simulatorS�. We will useS� instead ofS (together withS1 : : : Sk) in constructingSI . In
particular,S� will simulate the ideal call togi right after the committal round ofGi, which is exactly
the order given by�.� Synchronous Reducibility. Here we must useS itself. In particular, at some pointS will have to
simulate thesimultaneousideal call tog1; : : : ; gk, and expects to see the inputs of the corrupted
players. Since the interleavingI is a synchronous interleaving, it has a synchronization point where
all the effective inputs of the corrupted players are definedbefore any of theGi’s went on “with the
rest of the computation.” It is at this point where we letS simulate the ideal call, because we will be
able to provideS with all the (effective) inputs.

To simplify matters, we can assume without loss of generality that each round ofI executes one round of a
singleGi. Indeed, if we can construct a simulator for any such interleaving, we can do it for any interleaving
executing in one round a round of severalGi’s: arbitrarily split this round into several rounds executing a
singleGi and use the simulator for this new interleaving to simulate the original interleaving.13

4.1 The SimulatorSI
As we will see in Section 4.2, the actual proof will constructSI in k stages, that is, will constructk simu-
latorsS1; : : : ; Sk, whereSk will be SI . However, we present the finalSI right away because it provides a
good intuition of why the proof “goes through” (but can be skipped otherwise).

For concreteness, we concentrate on the concurrent reducibility case. As one can expect,SI simply runsS� and usesS1; : : : ; Sk to simulate the interleaving ofG1; : : : ; Gk.
13Here we use the fact that non-corrupted players executeGi’s independently from each other, so the adversary can only benefit

by executing a round of singleGi at a time.
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� RunS� up to roundR (can do it sinceF I andF � are the same up to roundR).� Tell eachSi to corrupt all the players already corrupted by the adversary (it is irrelevant what we give
to Si as their inputs).� Assume we execute some round of protocolGi in the interleavingI. SI then usesSi to produce the
needed messages from good-to-bad players and gives back toSi the response of the adversary.� Right after the committal roundCRi of Gi has been simulated, use theeffective input function ofGi
and the traffic of the adversary in the simulation ofGi to determine the effective inputwij of each
corrupted playerj to gi.� We notice that at this stageS� is exactlywaiting to simulate the ideal call togi for the adversary. SoSI givesS� the effective inputswij as the adversary’s inputs togi, and learns fromS� the outputzij
of each corrupted playerj.� We notice that after roundCRi has been simulated, the simulatorSi expects to see the outputs of all
the corrupted players from thegi-oracle that does not exist in our simulation. Instead, we giveSi the
valueszij that we just learned fromS�.� We keep running the above simulation up to the end of the interleavingI. We note that at this stageS� has just finished simulating the ideal calls to all thegi’s, and waits to keep the simulation ofF �
starting from roundR+ 1. And we just letS� do it intil the end ofF I (we can do it sinceF I andF �
are the same again from this stage).� It remains to describe howSI handles the corruption requests of the adversary. This willdepend on
where inF I the corruption request happens. But in any caseSI tellsS� that the adversary asked to
corrupt playerj and learns fromS� the viewVj of j in (the simulation of)F �.? If the corruption request happens before roundR, simply returnVj to the adversary.? Otherwise, the adversary expects to see (possibly partial)transcript ofj inside everyGi, whichVj does not contain. However,Vj still contains the supposed inputswij of playerj to eachgi.? For eachi we now ask the simulatorSi to corrupt playerj in order to learn its view insideGi.

To answer this request,Si needs help from thegi-oracle (that does not exist in our simulation),
whichSI provides as follows.

- If the corruption happened before the committal roundCRi, Si only expects to see the
input and the auxiliary input of playerj to gi. We give himwij as the actual input and
extract fromVj the view ofj prior to roundR asj’s auxiliary input.

- If the corruption happened after roundCRi,14Si also expects to see the outputzij of playerj in gi. However, in this case such an output is also contained inVj, since right after the
(already elapsed) roundCRi, we have simulated the ideal call togi in F �. Thus,zij is part
of j’s view in F �, and as such should be included byS� in Vj .? We see that in any of the above two cases we can provideSi with the information it expects.

Therefore, we get back the viewW ij of j in Gi so far.? SI now simply combinesVj with W 1j ; : : : ;W kj to get the final simulated view ofj, and gives it
back to the adversary (we will argue later that the security of theGi’s implies that these views
“match”).

We remark that the simulator for synchronous reducibility is very similar. We essentially need to replaceS�
by S and letS simulate the single ideal call tog1; : : : ; gk at the synchronization point ofI, when the traffic

14This includes the case when the corruption happened “after the end” ofGi. We treat this corruption as having the adversary
corrupt playerj at the very end of the computation ofGi. This kind of “post-executuion” corruption has caused a lotof problems
preventing some other SFE notions to satisfy reducibility.In our situation, this case presents no special problems dueto the
universality of the simulator and the information-theoretic security.
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of the adversary will simultaneously giveS the (effective) inputs of the corrupted players to all thegi’s.

4.2 Proof Outline

While we have already constructed the simulatorSI , in the proof we will need to use the security of some
particularGi. Therefore, we will need “to move slowly” from the assumed secure protocolF or F � (eval-
uating allg1; : : : ; gk ideally) to the protocolF I (whose security we need to establish and which runsk real
protocolsG1; : : : ; Gk). Roughly, we need to “eliminate” one ideal call (to somegi) at a time, by “replacing”
it with the protocolGi. Using the security ofGi, we will then argue that this “substitution” still leaves the
resulting protocol a SFE protocol forf . To make the above idea more precise, we need some notation.15

First, from the interleavingI of G1; : : : ; Gk, we define the “projection interleaving”Ii (for eachi � k).
This is the interleaving of the protocolsG1; : : : ; Gi intermixed with the ideal calls togi+1; : : : ; gk. More
precisely, we remove fromI the rounds of allG` for ` > i. For concurrent reducibility, we add the ideal
calls tog` (for every` > i) right after the place where we previously had the committalround ofG`. We
notice that this order of the ideal calls is consistent with the permutation�. In particular, we will identify the
“base” interleavingI0 of g1; : : : ; gk with the permutation�. For synchronous reducibility, we add asingle
ideal call togi+1; : : : ; gk right at thesynchronization pointof I, and still call the resulting interleavingIi ofG1; : : : ; Gi; gi+1; : : : ; gk a synchronous interleaving. Notice thatIi�1 is also a “projection” ofIi.

Slightly abusing the notation, we now define (in a straighforward way) “intermediate” semi-ideal pro-
tocolsF i = F Ii , which essentially replace the ideal calls tog1; : : : ; gi with G1; : : : ; Gi (but leave the ideal
calls togi+1; : : : ; gk). We note thatF k = F I andF 0 is eitherF � (the concurrent case) orF (the syn-
chronous case). We know by the assumption of the Theorem thatF 0 is secure, and need to show thatF k
is secure. Naturally, we show it by induction by showing thatthe security ofF i�1 implies that ofF i. Not
surprisingly, this will follow from the security ofGi.

To summarize, the only thing we need to establish is the following. AssumeF i�1 is a SFE protocol forf with the simulatorSi�1. We need to construct a simulatorSi for F i such that for all inputs of the players
and for any adversaryAi in F i, we getHistory(Ai; F i) � History(Ai; Si). We constructSi from Si�1
and the simulatorSi for Gi. Essentially,Si will run Si�1 in F i and useSi (together withSi�1’s simulation
of the ideal call togi) to answer the adversary insideGi. In the “other direction”, given adversaryAi in F i,
we define the adversaryAi�1 in F i�1. This adversary will runAi in F i�1, and will also useSi (together
with the ideal call togi in F i�1) to interact withAi insideGi. Informally, we will say that “Si = Si�1+Si”
and “Ai�1 = Ai + Si”.

The assumed security ofF i�1 implies thatHistory(Ai�1; F i�1) � History(Ai�1; Si�1). SinceAi�1
essentially runsAi, the history ofAi�1 in F i�1 will naturally “contain” (we define it precisely later) the
history ofAi run againstF i�1 and the simulatorSi. We denote this history byHistory(Ai; F i�1+Si). Then
the above equality of histories, combined with the definition of Si = Si�1 + Si, will immediately imply
thatHistory(Ai; F i�1 + Si) � History(Ai; Si). What will remain to show is thatHistory(Ai; F i) �History(Ai; F i�1 + Si). We remark that the “environments”F i andF i�1 + Si are identical except the
former runs the actual protocolGi, while the latter evaluatesgi ideally and uses the simulatorSi to deal
with Ai insideGi. Not surprisingly, the last equality (whose verification isthe main technical aspect of the
proof) will follow from the security ofGi. Namely, assuming that the last equality is false, we will construct
an adversaryAi for Gi such thatHistory(Ai; Gi) 6� History(Ai; Si), a contradiction. Roughly,Ai will
simulate the whole network of players inF i (both the adversaryAi and the honest players!), except when
executingGi.
This completes a brief outline of the proof. The full proof can be found in the Appendix.

15Below, we will try to use superscripts when talking about notions related to computingf , like F i, Si, Ai. And we will use
subscripts for notions related to computing somegi, like Gi, Si, Ai.
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4.3 The Definitional Support of Parallel Reducibility

Since at least synchronous reducibility provably does not hold for other SFE definitions, one may wonder
what specific features of the definition of [22] are “responsible” for parallel reducibility. While such key
features can be properly appreciated only from the full proof of the parallel-reducibility theorem, we can
already informally highlight two such features on the basisof the above proof outline.

On-line Simulatability: The simulatorS not only is universal (i.e., independent of the adversaryA) and
not only interacts withA in a black-box manner, but must also interact withA “on-line”. In other words,S runs withA only once: each time thatS sends a piece of information toA, this piece becomes part ofA’s final view. This is in contrast with traditional simulators, which would be allowed to interact withA
arbitrarily many times, to “rewind”A in the middle of an execution, and to produce any string they want asA’s entire view.

The ability to generateA’s final view on-line is probably the most crucial for achieveing any kind of
parallel reducibility. For example, an adversaryA of the composed protocol might base it actions in sub-
protocolG1 depending on what it sees in sub-protocolG2 and vice versa. Therefore, the resulting views ofA insideG1 andG2 are veryinter-dependent. It thus appears crucial that, in order to simulate these inter-
dependent views, the simulatorSi for Gi should be capable of extendingA’s view insideGi incrementally
“in small pieces” (as it happens withA’s view in the real execution) that should never “be taken back”. If,
instead, one were only guaranteed that he could simulate theentire (as opposed to “piece-by-piece”) view
of A in eachGi separately, there is no reason to expect that these two separate views would be as inter-
dependent asA can make them in the real model. As demonstrated in Section 4.1, on the other hand, having
on-line “one-pass” simulation makes it very easy to define the needed on-line simulator forA.

Committal Rounds: Intuitively, the committal round corresponds to the “synchronization point” in the
ideal function evaluation: when all the players have sent their inputs to the trusted party, but have not
received their corresponding outputs yet. Not surprisingly, the notion of the committal round plays such
a crucial role in synchronous reducibility. In particular,the very existence of “good” interleavings (i.e.,
synchronous interleaving, as stated in Theorem 2) is based on the committal rounds. Committal rounds also
play a crucial role in Corollary 2. Indeed, the greedy concurrent execution of all the “pre-committal” rounds
of any number of sub-protocolsG1; : : : ; Gk (which takes at mostmax(R1; : : : ; Rk) rounds), followed by
the greedy concurrent execution of all the “post-committal” rounds ofG1; : : : ; Gk (which also takes at mostmax(R1; : : : ; Rk) rounds), yields asynchronous interleavingof G1; : : : ; Gk with the claimed number of
rounds.

The Price of Parallel Reducibility. The definitional support of parallel reducibility “comes ata price”: it
rules out some reasonable protocols from being called secure. For example, havingP1 simply sendx1 toP2 is not a secure protocol (in the sense of [22]) for the function g1(x1; �; �; : : : ; �) = (x1; x1; �; : : : ; �) of
Example 2. Indeed, assume adversaryA corrupts playerP2 before the protocol starts and does not corrupt
anyone else later on. ThenA will learn x1 in the real execution. Therefore, for the simulatorS to match the
view ofA, it must also sendx1 toA in round1. For doing so,S must learnx1 from its oraclebefore round1. SinceA does not corrut player1, this can only happen whenS learns the output of corrupted playerP2 (which is indeedx1) after the committal round. Unfortunately, the committal round is round1 itself,
because only then doesP1 manifest its inputx1 via its own message traffic. Thus,S will learn x1 only after
round1, which is too late.

In sum, a reasonable protocol for functiong1 is excluded by the definition of [22] from being secure, but
this “price” has a reason: Example 2 proves that such (individually) reasonable protocol is not synchronously
reducible.
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Full Proof of the Parallel-Reducibility Theorem

Here we give a full proof of the Paralle-Reducibility Theorem following the outline given in Section 4.2.
Recall that the only thing we had to prove was the following. AssumeF i�1 is a SFE protocol forf with
the simulatorSi�1. We need to show thatF i is a SFE protocol forf as well. That is, we need to con-
struct a simulatorSi for F i such that for all inputs of the players and for any adversaryAi in F i, we getHistory(Ai; F i) � History(Ai; Si). For concreteness, we concentrate on the concurrent reducibility case.
With all the previous discussion, the proof for synchronousreducibility can be easily traced as well.

Simulator Si: We constructSi from Si�1 and the simulatorSi for Gi. Essentially,Si will run Si�1 inF i and useSi (together withSi�1’s simulation of the ideal call togi) to answer the adversary insideGi.
Informally, “Si = Si�1 + Si”.� RunSi�1 up to roundR (can do it sinceF i�1 andF i are the same up to roundR).� Tell Si to corrupt all the players already corrupted by the adversary (it is irrelevant what we give toSi

as their inputs).� Unless in the interleavingIi we execute a round ofGi (which we do not have inIi�1), still useSi�1
to answer the adversary (this includes a round ofG` for ` < i, or the ideal call tog` for ` > i).� If we execute a round ofGi in Ii, useSi to answer.� Right after the committal roundCRi of Gi has been simulated, use theeffective input function ofGi
and the traffic of the adversary in the simulation ofGi to determine the effective inputwj of each
corrupted playerj to gi.� We notice from the definition of the interleavingIi�1 as a “projection” of the interleavingIi, that at
this stageSi�1 is exactlywaiting to simulate the ideal call togi for the adversary. SoSi givesSi�1
the effective inputswj as the adversary’s inputs togi, and learns fromSi�1 the outputzj of each
corrupted playerj.� We notice that after roundCRi has been simulated, the simulatorSi expects to see the outputs of all
the corrupted players from thegi-oracle that does not exist in our simulation. Instead,Si givesSi the
valueszj that it just learned fromSi�1.
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� We keep running the above simulation up to the end of the interleavingIi. At this stage, we simply
runSi�1 (who just finished the simulation ofIi�1) until the end ofF i (we can do it sinceF i andF i�1
are the same again from this stage).� It remains to describe howSi handles the corruption requests of the adversary. This willdepend on
where inF i the corruption request happens. But in any caseSi tellsSi�1 that the adversary asked to
corrupt playerj and learns fromSi�1 the viewVj of j in (the simulation of)F i�1.? If the corruption request happens before roundR, simply returnVj to the adversary.? Otherwise, the adversary expects to see (possibly partial)transcript ofj insideGi, which Vj

does not contain. However,Vj still contains the supposed inputswj of playerj to gi.? Si asks the simulatorSi to corrupt playerj in order to learn its view insideGi. To answer
this request,Si needs help from thegi-oracle (that does not exist in our simulation), whichSi
provides as follows.

- If the corruption happened before the committal roundCRi of Gi, Si only expects to see
the input and the auxiliary input of playerj to gi. We give himwj as the actual input and
extract fromVj the view ofj prior to roundR asj’s auxiliary input.

- If the corruption happened after roundCRi (including the case when it happened after
“the end” ofGi), Si also expects to see the outputzj of playerj in gi. However, in this
case such an output is also contained in theVj, since right after the (already elapsed) roundCRi, we have simulated the ideal call togi in F i�1. Thus,zj is part ofj’s view in F i�1,
and as such should be included bySi�1 in Vj .? We see that in any of the above two cases we can provideSi with the information it expects.

Therefore,Si gets back the viewWj of j in Gi so far.? Si now simply combinesVj with Wj to get the final simulated view ofj, and gives it back to
the adversary (we will argue later that the security ofGi implies that these views “match”).

Now assume we are given any adversaryAi for F i. In order to argue thatHistory(Ai; F i) � History(Ai; Si),
we need to define a corresponding adversaryAi�1 in F i�1.
Adversary Ai�1: This adversary will runAi in F i�1, and will also useSi (together with the ideal call togi in F i�1) to interact withAi insideGi. Informally, we will say that “Ai�1 = Ai + Si”. Not surprisingly,
the description ofAi�1 is almost word-for-word the description of the simulatorSi, but “turned the other
way around”.� RunAi up to roundR in F i�1 (can do it sinceF i�1 andF i are the same up to roundR).� Tell Si to corrupt all the players already corrupted by theAi (it is irrelevant what we give toSi as their

inputs).� Unless in the interleavingIi we execute a round ofGi (which we do not have inIi�1), still runAi inF i�1 (this includes a round ofG` for ` < i, or the ideal call tog` for ` > i).� If we execute a round ofGi in Ii, useSi to answer toAi, but do nothing inF i�1.� Right after the committal roundCRi of Gi has been simulated, use theeffective input function ofGi
and the traffic ofAi in the simulation ofGi to determine the effective inputwj of each corrupted
playerj to gi.� We notice from the definition of the interleavingIi�1 as a “projection” of the interleavingIi, that at
this stage the protocolF i�1 is just about to execute the ideal call togi and waits forAi�1 to provide
the inputs of the corrupted players. SoAi�1 provides the effective inputswj it just extracted from the
trafic ofAi, and learns the outputzj of each corrupted playerj.
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� We notice that after roundCRi has been simulated, the simulatorSi expects to see the outputs of all
the corrupted players from thegi-oracle. Instead,Ai�1 givesSi the valueszj that it just learned from
the ideal call togi.� We keep running the above simulation up to the end of the interleavingIi. At this stage, we simply
runAi in F i�1 until the end of the protocol (we can do it sinceF i andF i�1 are the same again from
this stage).� It remains to describe howAi�1 handles the corruption requests ofAi. This will depend on where in
(the simulation of)F i the corruption request happens. But in any caseAi�1 corrupts the corresponding
playerj in F i�1 and learns the viewVj of j.? If the corruption request happens before roundR, simply returnVj toAi.? Otherwise,Ai expects to see (possibly partial) transcript ofj insideGi, which Vj does not

contain. However,Vj still contains the supposed inputswj of playerj to eachgi.? Ai�1 asks the simulatorSi to corrupt playerj in order to learn its view insideGi. To answer
this request,Si needs help from thegi-oracle, whichAi�1 provides as follows.

- If the corruption happened before the committal roundCRi, Si only expects to see the
input and the auxiliary input of playerj to gi. We give himwj as the actual input and
extract fromVj the view ofj prior to roundR asj’s auxiliary input.

- If the corruption happened after roundCRi, Si also expects to see the outputzj of playerj in gi. However, in this case such an output is also contained in theVj , since right after
the (already elapsed) roundCRi, we have made the ideal call togi in F i�1. Thus,zj is
part ofj’s view Vj in F i�1, and can be provided toSi as well.? We see that in any of the above two cases we can provideSi with the information it expects.

Therefore,Ai�1 gets back the viewWj of j in Gi so far.? Ai�1 now simply combinesVj with Wj to get the final simulated view ofj, and gives it back toAi (we will argue later that the security of theGi’s implies that these views “match”).

Equality of Distributions: From the security ofF i�1, we know thatHistory(Ai�1; F i�1) � History(Ai�1; Si�1) (2)

which is the same ashView(Ai�1; F i�1); x̂F i�1 ; ŷF i�1i � hView(Ai�1; Si�1); x̂Si�1 ; ŷSi�1i (3)

We notice that the view ofAi�1 (both againstF i�1 andSi�1) actually contains the view of the adver-
saryAi thatAi�1 was running in the background. We denote these views byView(Ai; F i�1 + Si) andView(Ai; Si�1 + Si), and letHistory(Ai; F i�1 + Si) def= hView(Ai; F i�1 + Si); x̂F i�1 ; ŷF i�1i (4)History(Ai; Si�1 + Si) def= hView(Ai; Si�1 + Si); x̂Si�1 ; ŷSi�1i (5)

Thus, Equation (2) (i.e., assumed security ofF i�1) implies thatHistory(Ai; F i�1 + Si) � History(Ai; Si�1 + Si) (6)

However, from the definition ofSi and the definitions of the effective inputs/outputs ofF i based on those
of F i�1, we observe that the latter distribution issyntactically the sameasHistory(Ai; Si)! That is,History(Ai; Si�1 + Si) � History(Ai; Si) (7)

Therefore, Equation (6) and Equation (7) imply that what remains to prove is thatHistory(Ai; F i) � History(Ai; F i�1 + Si) (8)
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The Last Piece: We finally show Equation (8). We remark that the “environments” F i andF i�1 + Si
are identical except the former runs the actual protocolGi, while the latter evaluatesgi ideally and uses
the simulatorSi to deal withAi insideGi. We call the first experiment the “real” experiment and the
second – the “simulated” experiment. Assume that Equation (8) it is false for some input configuration� = hx;a; �i. LetH(Gi) = History(Ai; F i) andH(Si) = History(Ai; F i�1 + Si) on the configuration�. Thus,H(Gi) 6� H(Si).

We notice that the overall randomness generating the histories of the real and the simulated experiments
is identical except the real experiment uses the coinsC of the honest players insideGi (which do not
depend on anything else as players are supposed to use brand new randomness inside a sub-routine), while
the simulated experiment uses the randomness of the simulator Si and thegi-oracle executing the ideal
call in F i�1 (which again do not depend on anything else; call themD). SinceH(Gi) 6� H(Si), there
exists a particular setting
 of all the other randomness except forC andD (this includes the randomness
of Ai, of all the honest players everywhere but inGi, all the trusted parties forg` where` > i) such thatH(Gi j 
) 6� H(Si j 
).

We let�0 = h�; 
i be the auxiliary string of the adversaryAi forGi that we will construct. We notice that�0 determines the entire (identical) state of the real and simulated experiments up to roundR; in particular,
setB of players currently corrupted byAi, and fixed inputsw and auxiliary inputsb of all currently honest
players togi. SinceAi will immediately corrupt players inB and ignore their inputs, their inputs togi will
not be relevant to get the contradiction, so the initial configuration forGi whereAi will successfully run can
be thought ashw;b; �0i.

Here is the description ofAi for Gi. As we said, it starts from corrupting players inB and ignoring their
inputs. Then it simply keeps runningAi against the entire network of honest players inF i (i.e, simulating
both, whichAi can do because it has� and
) exceptfor the run ofAi insideGi, whereAi actually uses
the network available to him. When the running ofAi insideGi is completed,Ai knows the view ofAi
insideGi, and it also simulated completely in its mind the run ofAi in the interleavingIi. NowAi wants to
continue running in its mind the interaction ofAi with the honest players for the rest ofF i. For that, it needs
to know the outputs of honest players inGi. To “get them”,Ai samples uniformly aconsistentrandomnessC of honest players insideGi that would have produced the view that the adversaryAi got insideGi (note,
this step is not polynomial time, but we do not care). Here we use the fact thatC are supposed to be brand
new random coins independent of everything else, and never used by honest players upon the termination
of Gi. Having sampledC, Ai can simplydeterministicallyfinish the run ofAi (as it knows
, C and�).
Having done so,Ai stops.

We see that embedded in the view ofAi is the view ofAi thatAi ran in the background. We notice
that whenAi interacts with the real networkGi, this view ofAi, and in fact the entire “history” of this
run ofAi (its view we got fromAi and the effective inputs and outputs ofF i of all the players, assuming
honest players used randomnessC insideGi), is identically the sameasHistory(Ai; F i j 
) = H(Gi j 
).
Indeed, it does not matter if honest players sampledC from the beginning at random and used it, or that we
let honest players sample randomC 0, got the history ofAi, sampledrandomC consistent with this history,
and pretend the honest players actually usedC.

Now assume that we runAi againstSi. Up to the completion of the interleaving, the entire “history” of
the run ofAi we got fromAi is syntacticallythe same that when we run it againstF i�1 + Si. However,
when we finish the interleaving, a tricky thing happens. In the first case, we interpret the run ofAi againstSi as if honest players executedGi, and sample random consistent randomnessC of honest players. In
the second case, we just give players their effective outputs from the trusted party, and generate the actual
randomnessCj of playerj usingSi, but only ifAi corruptsj later. If we argue that the latter two processes
are indeed identical (i.e. it is OK to sample random consistent C whenAi is run againstSi), we would
be done obtaining a contradiction. We need to use a somewhat elaborate argument for that, which we
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semi-informally sketch.

We emphasize again the3 experiments that we need to compare:

1. Run ofAi againstF i.
2. Run ofAi againstF i�1, where we letSi simulateGi, then pick a random consistentC and run the

“resulting” F i until completion.
3. Run ofAi againstF i�1 + Si, where we letSi simulateGi, as well as generate the randomnessCj of

playerj corrupted byAi after the end of the interleaving.

We know from the security ofGi that the Experiments 1. and 2. are identical “all the way” (ifnot, we are
done getting a contradiction, as they correspond to the runsof Ai againstGi andSi). We also know that
Experiments 2. and 3. aresyntacticallythe same up to the end of the interleavingIi. We assumed that
Experiment 1. and 3. are “different” (in their entirety). Tostill get a contradiction we show by extending the
argument “one-round-at-a-time” that Experiments 2. and 3.must be identical “all the way” as well. For that
we will use theuniversality of the simulatorSi, i.e. that it “does not know” which adversary it is talking to.

Assume we established up to round~R that Experiments 2. and 3. are the same. The starting~R is the
end of the interleaving, where we know this is the case. We also know from this, that the effective outputs
of honest players inGi are distributed the same in Experiments 2. and 3.

If in round( ~R+1) the adversaryAi does not corrupt any player, we are done, since honest players do not
use their randomnessCj they used insideGi, only their inputs and outputs, which we know are distributed
the same. The only problem is whenAi corrupts a player. In Experiment 2. we return the (consistent) valueCj that we sampled at the end of the interleaving. In Experiment3. we let the simulatorSi generate this
randomness. However, we still argue that these two answers are distributed in the same way (conditioned
on what happened before). In particular, assumeAi so far has corrupted playersj1; : : : ; jp after the end
of the interleaving (so thatjp = j). Ai could base its decisions to corrupt these players on some powerful
information it extracted since the end of the interleaving.

However, the simulatorSi is universal and has to answer in the same way no matter whyAi asked to
corrupt these players. In particular, there exists an adversaryA0i that does the same thing asAi up to the
end of the run ofAi inside the interleaving, and then for “no specific reason” asks Si to corrupt the same
playersj1; : : : ; jp. SinceSi cannot distinguish between these two cases (it only sees therequests of whom
to corrupt), its responses must be the same as well. But when the adversary asks to corrupt these players “for
no reason” right at the end of the interleaving, the securityof Gi (against thisA0i) implies that the answersCj1 ; : : : ; Cjp that Si gives are distributedexactly the sameas the true randomness of the actual players
conditioned on the viewAi got insideGi, which are exactly the answers we sampled in Experiment 2.!

This shows that Experiments 2. and 3. are indeed the same, Experiments 1. and 2. are the same, and yet we
assumed that Experiments 1. and 3. are different, a contradiction.
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