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Abstract

Given am-bit to n-bit MAC (e.g.,, a fixed key blockcipher) with MAC securityagainsty queries, we design
a variable-length MAC achieving MAC securify(egpoly(n)) against queries of total lengtn. In particular,
our construction is the first to break the “birthday barrigst’ MAC domain extension from noncompressing
primitives, since our security bound is meaningful evender 2" /poly(n) (assuming: is the best possible
O(1/2™)). In contrast, the previous best construction for MAC dameitension fom-bit to n-bit primitives,
due to Dodis and Steinberger [13], achieved MAC securit® 6f¢> (log ¢)?), which means thaf cannot cross
the “birthday bound” o£2™/2.
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1 Introduction

Most primitives in symmetric-key cryptography are built from block ciphetgeh as AES. In this paper, we will
concentrate on the question of designing variable-input-length (VIL) agesauthentication codes (MACs) from
block ciphers. This question is very well studied, as we survey beloweMer, with few exceptions, most existing
constructions and their analyses make the following two assumptionBséa)dorandomnessthe block cipher

is modeled as a pseudorandom permutation (PRP); an8etecy of Intermediate Results the attacker only
learns the input/output behavior of the corresponding VIL-MAC, betsdaot learn any of the intermediate results.
As observed by Dodis et al. [11-13], each of these assumptions migét kélunnecessarily strong, or simply too
unrealistic in the following two scenarios.

DoOMAIN EXTENSION OF MACs. This is our main question. Since the desired MAC primitive only needs to
be unpredictable it would be highly desirable to only assume that the block cipher is unpretictas well, as
opposed to pseudorandom. Indeed, it seems that assuming the blockisipheredictable is amuch weaker
assumption than assuming full pseudorandomness: to break the lattere alkeds to do is to predict one bit
of “random-looking” information about the block cipher with probability juditte over 1/2, while the former
requires one to fully compute the value of the block cipher on a new point wiiktrivial probability. For example,
in the non-uniform model, any block cipher (in fact, even non-trivialusegandom generator) with arnbit key
can be very efficiently distinguished from random with advantage? [10, 13]. To the best of our knowledge,
no such lower bounds are known for breaking unpredictability, meanatgtbse t2~" MAC security might be
possible for such a block cipher. To put it differently, while we hope éxéting block ciphers are actually PRPs,
it seems quite reasonable to assume that their MAC security couldtimably bettethan their PRP security.
Thus, if we can design a VIL-MAC whose security is tightly related tothpredictabilityof the block cipher, this
VIL-MAC might be more secure than the MAC whose analysis assumgsstglorandomnesd the cipher.

Of course, one might hope that existing block-cipher based VIL-MASgh as CBC-MAC [5, 27] and
HMAC [3, 6] (whose compression function, under the hood, also ubéscl cipher), are already secure when the
block cipher is unpredictable. Unfortunately, as detailed in Dodis et ak1[3]l(see especially [13]), this is not
the case: with few exceptions mentioned shortly, standard constructmosrapletely insecurehen instantiated
with unpredictable block ciphers, — often despite having simple proofsafrisg when one models the block
cipher as a PRP.

RESILIENCE TO SIDE-CHANNELS. Even if the block cipher is a very good PRP, in practice many crypto-
graphic implementations fall prey to various forms of side-channel attacBsJ4,16-18, 29], where the physical
realization of a cryptographic primitive can leak additional information, sashhe computation-time, power-
consumption, radiation/noise/heat emission etc. Thus, hardware peegbayang special attention to securing
block ciphers, such as AES, against such side-channel attacksuglthibis might be a daunting task, it appears
reasonable that specialized hardware implementations of AES might be @®tient to common forms of side-
channel attacks. On the other hand, when the block cipher is used in soreecomeplicated application, such
as the design of a VIL-MAC, it might be hard or impractical to design a speedh “leakage-resilient” imple-
mentation for each such application, instead of doing so for a single, lixerh building block (such as AES).
Motivated by these considerations, Dodis et al. [11-13] proposed thelmtere the internals of the block cipher
implementation are assumed secure, as usual, but all the external inputkehpuior of the block cipher could
potentially leak to the attacker (say, via side-channel attack).

To give this model a name while simultaneously making it more general, we sag t@istruction of a
(deterministic) MACP using some lower level keyed primitive(g)is transparentiw.r.t. f), if (a) the key forP
only consists of one of more keys f@r (b) when making a query/ to P, the attacker not only get8(M), but
also gets all the input/output pairs for every callftmade during the evaluation &f()/). SinceP is deterministic
and all keys reside “insidef, this indeed provides the attacker with the entiesscriptof P(M ), short of what
is happening during the calls th Coming back to our setting, we are interested in buildingaasparentVIL-
MAC out of a block cipher. As we will see, this question is highly non-tri@eén if the block cipher is assumed
pseudorandom, let alone unpredictable. Indeed, as observed By 31 nost existing VIL-MACs, including



CBC-MAC [5,27] and HMAC [3, 6], areompletely insecurerhen the intermediate results are leaked, even when
instantiated with a PRP.

OuR MAIN RESULT. Motivated by these applications, we ask the same question as Dodis etdl3][,1ivhich
simultaneously addresses both of the above concerns.

Question 1 Can one build dransparenVIL-MAC P out of a block cipherf which is only assumeadhpredictabl@

As already mentioned, most standard VIL-MACs built from block ciphaildd address either MAC-preservation
or transparency (even with a PRP). So we turn to the known securesay@s. As it turns out, all of them followed
the principle of An and Bellare [2] of first constructing a compresaiepkly Collision Resistafi?’WCR)* hash
function F' from m to n bits, for some fixedn > n, then iterating this fixed-length WCR using some variant
of the Merkle-Dam@rd transform, and finally composing the output with a freshly keyed blodieciAs argued
by Preneel and van Oorschot [28], any construction of this kind chiege at mosbirthday security Translated
to the MAC-preservation setting, even if our original MACzannot be forged with probability usingq queries,
the resulting VIL-MAC P cannot have security greater th@sq?), meaning thal cannot cros8™/2, even is is
assumed to be (the best possillg)”.

Interestingly, even achieving birthday security turned out to be challgnghen the block cipher is only
assumed unpredictable. The first secure construction of Dodis amgaRLA], based on the Feistel network, only
achieved securit¥)(s¢°®). The bound was then improved @(c¢*) by Dodis, Pietrzak and Puniya [11] using the
“enhanced CBC” construction. Finally, Dodis and Steinberger [13glnearly) birthday security(s¢?) using
a new analysis of the Shrimpton-Stam [30] compression function. All thes&titictions were also transparent.

We ask the question if it is possible to build (hopefully, transparent) VIL&8Arom block ciphers with
beyond birthday securityMost ambitiously, iff cannot be forged with probability usingq queries, we would
like to build a VIL-MAC P with security close t@(sq), meaning our security is meaningful even for values of
approachin@™, providede is assumed to be (the best possilil&)™. As our main result, we answer this question
in the affirmative. Informally (see Section 4 for more details),

Theorem 1 There exist fixed polynomiaign) and b(n) and a construction? of a transparent VIL-MAC from
an n-bit block cipherf, such that the rateof P is a(n) and the MAC security’ of P againstq’ queries of total
lengthgn is at mostO(b(n)qe), wheree is the MAC-security of againstq queries. In particular, this bound is
meaningful forg (and¢’) approaching2™.

OTHER RELATED WORK. As we mentioned, the question of achieving beyond-birthday securibuflaing VIL-
MACs from unpredictable block ciphers was open prior to our work.akt,fthe only domain extension results
for MACs with beyond birthday security we obtained just recently by Yaqd@@] and Lee and Steinberger [19].
However, both results started with a shrinking MAC from strictly more tharo n bits. As we will see below,
building such shrinking MACs (with beyond birthday security) from umiceable block ciphers is highly non-
trivial, and will be one of the key challenges we resolve on route to provimgnain result. (However, we note
that our result does nbsimply reduce to building an to n bit MAC from ann-bit to n-bit MAC.)

Another related area is that of for building Viiseudorandom functiof®RFs) with beyond birthday security
from PRPs, or more generally, fixed-length PRFs. In particular, aksech constructions were found by [1,4,21,
24-26]. However, itis easy to see that none of them work either for th€ Nomain extension, or even for building
VIL-MACs (let alone PRFs) when the intermediate computation results arededor example, the corollary of
our main result, giving &ransparent/IL-MAC from a (g, £,,)-secure PRP with security,, +O(q/2"), appears
to be new.

Perhaps the closest work to ours is a paper of Maurer and Tes$drovf showed how to build a variable-
length random oracle from am-to-n bit random oracle. Their construction, analyzed in the indifferentiability

WCR security states that it is infeasible to find collisiongigiven oracle access .

2Defined as the average number of calls to the block cigtyarn-bit input block.

*We cannot just build beyond birthddg + ¢)n to n bit MAC and then compose it with the beyond birthday VIL-MAC construction
of [19, 32], as each construction would lose a factog of exact security, resulting in already known “birthday” secuéitieq?).
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framework of [9, 22], has fixed polynomial rate (just like our construgtiand securit2(=9" for anys > 0.
However, although our construction borrows some ideas from tha3df fi2e two settings appear incomparable.
On the one hand, the Maurer-Tessaro paper has to build an “inditff@éity simulator” for their setting (which
required “input extraction” not required in our setting). However, tagsumed a truly random function, and could
use various probability calculations in deriving their result. In our settirggbtbck cipher is only unpredictable,
and we have to make an explicit reduction to unforgeability, which makes mattiessantially more delicate.

1.1 Outline of Our Construction

Our construction is quite involved, although we abstract it into severakselfained layers. As a side benefit,
some of these layers (see below) are of potentially independent interdstpald be used for other purposes.

STEP1: REDUCING TO3n-TO-2n WCRAND 2n-T0O-n MAC. First, we notice that the above mentioned birthday
limitation [28] of the An-Bellare approach no longer holds provided we buMd@R hash functiorf’ from m to

2n bits (for somem > 2n, saym = 3n). Namely, “birthday or2n bits” might still give good enough security
2™, However, even if we succeed in doing so with beyond birthday secwritict will be one of our key results),
we now also have to build a “final” MAG from 2n to n bits. Thus, using known techniques but with different
parameters (see Lemma 1 and Figure 1), our problem reduces to builgimgdogirthday WCRE' from 3n to 2n
bits and a beyond birthday MAG from 2n to n bits.

STEP2: REDUCING TO COVER-FREE FUNCTIONS. It so turns out that both of these tasks—i.e. the construction
of the WCR functionF' and the construction of the MAG—can be achieved from a more powerful (keyed)
primitive which we introduce, called eover-freefunction. Informally, a keyed functiop from {0, 1} (recall,

we will havem = 3n) to ({0,1}")* (for some parametet), whereg(s) = (z1(s),...,2(s)) € ({0,1}")?,

is calledcover-free(CF) if, given oracle access g it is infeasible to produce a sequence of (distinct) queries
51,52,...,5¢ € {0,1}™ such that, for someé < j < q, z¢(s;) € {z¢(s1),...,2i(sj—1)} forall £ € [t]. In other
words, for each new query; one of the coordinates @f s;) must be “uncovered” by previous coordinates of that
index. The case = 1 corresponds to the standardto n bit WCR security* however better (and in particular
beyond-birthday) cover-free security can be achieved with largeesaft.

First, as depicted on the left side of Figure 2, we can compose Wikh ¢ independently keyed block ciphers
fi,-- fr, by settingG(s) = fi(z1) @ ... ® fi(z:), whereg(s) = (z1,...,2:). We show that the resulting' is
easily seen to be a secure MAC frambits ton bits. Moreover, the MAC security @ is tightly related to the CF
security ofg and the MAC security of (see Lemma 2). Intuitively, a new forgery fof will give a new forgery
for at least one of th¢,’s, by the CF security of. Sincem = 3n > 2n, this already gives us the need&dto n
bit MAC.

More interestingly, as depicted on the right side of Figure 2, we show haerpose a CF function with
2t independently keyed block ciphefs, . .. fi, f1, ..., f{ (in a variant of the “double-pipe” mode of [20]) to get a
WCR functionF’ from m bits to2n bits. Moreover, the WCR security @ will be “roughly” O(&’ + ¢¢), where
¢’ is the CF security of ande is the MAC security off (see Lemma 3). Thus, as long as we can buildy@#th
securitye’ close toO(qe), the WCR security of” will also be such. The proof of this result critically uses the
“multi-collision to forgery” technique of Dodis and Steinberger [13].

Summarizing the discussion above, our task of building a VIL-MA@hus reduces to building a CF function
g with securitye” ~ O(ge) wheree is the MAC security of the underlying-bit to n-bit primitive f. We also wish
to build the CF functiory with ¢t as small as possible (which is relevant since the efficiendy, aficluding the size
of key, is proportional t@). See Lemma 4.

STEP 3: BUILDING CF FUNCTIONS. This is, by far, the most involved part of our construction. The inspinatio
for this construction came from the afore-mentioned paper of Maurefesshro [23], who showed how to build a
VIL random oracle from amn-to-n bit random oracle. As we mentioned already, the setting of [23] is incorhlgara
to our setting, especially since we cannot assume that our block cipheseisd@random. However, our actual
construction of CF functions is quite similar to the corresponding “cowsa*flayer of the construction of [23],

“By analogy with collision-resistance, we could have called such familieaklyeover-free”, but since we do not envision their use in
the “unkeyed” setting, we stick with the current name.



although we had to make some changes (actusltyplification$ to the construction of [23], and our analyses are
completely different. Our CF construction has three layers which we inforicell combinatorial, cryptographic
and algebraic. An impatient reader can look at Figure 3 for a concrama@e (witht = 3 and other notation
explained below).

STEP 3A: USING INPUT-RESTRICTING FAMILIES. This purely combinatorial step is precisely the same as
in [23], and is also the most expensive step of our construction. We vélansnkeyedunction E from {0, 1}

to ({0,1}™)" (herer is a parameter) called amput-restricting function familyIRFF; see Definition 1). Intuitively,
IRFF has the property that after agyjueriess; ... s, to E, the numbe? of new inputss for which ther-tuple
E(s) is covered by the union df(s),. .., E(s4) is “not much larger” thary, and this should be true even when
g is almost2™. Recall, our final goal is to ensure that it is hard to prodaicgsuch new inputs. While IRFFs do
not (andcannot)® quite get us there, they ensure that there are not that many choices &tabker of which new
inputs to “cover” by old inputs.

We discuss the known constructions of IRFFs in Section 4, but mention #habtistructions of IRFFs are
completely combinatorial, and closely related to constructions of certain tyfpeigtdy unbalanced bipartite
expander graphs. While well-studied, these types of expander gesiphsot yet completely understood, and
in particular the “extreme” setting of parameters relevant to our case hdman the object of much attention.
Therefore, although the existence of IRFFs with “good parameters’awkriand lead to the asymptotic bound
claimed in Theorem 1), the concrete constructions are pretty inefficientertieless, as these parameters and
efficiency are improved by future research in computational complexityjlsour final construction.

STEPS3B-C: ADDING CONFUSION ANDMIXING. Recall, IRFFs convert our inpwinto anr-tuple(z;. ..., z,).

To get the finak-tuple(z1, .. ., z;) for our CF functiong, we can imagine repeating the following two-step prece-
dure (steps 3b and 3¢}imes, each time with a freshly keyed block cipi®(so the total number of block cipher
keys forg will be t). First, we pass alt valuesz, ..., x, through the block cipheF (“confusion step”), getting
the valuesy....,y.. This is the cryptographic “confusion” layer. Then we algebraically “ma¥’2r values
(z1...x,y1 - ..yr) through a fixed, degreemultivariate polynomiap (see Equation 3). This gives us one of the
t outputs values; . . . z.

The intuition for these last two steps is hard to explain (and, indeed, olys@i quite involved). At a high
level, the confusion step (evaluatidt(z,) ... F(x,)) is certainly needed to make a reduction to unforgeability,
while the mixing step uses the fact that low-degree polynomials have few sao#s*non-trivial” collision on the
output ofp will enable one to guess one of the valyesve are trying to forge. Of course, the difficulty is to make
a successful guess for when and where the non-trivial collisignwdl happen, with probability roughiyl /@,
where( is the guarantee given by IRFF (ébis close tog). It turns out, there is a trivial strategy to make such
a guess with “birthday” probability /Q? ~ 1/¢?, even whent = 1. Of course, such probability is too low, and
this is why we repeat steps 3b:times, for an appropriately chosen parametaie then show that the required
guessing strategy can be reduced to the analysis of two “balls-andgansss. The relevance of such games to
the domain extension of MACs was first introduced by Dodis and Steinbgr8 Unfortunately, the two “balls-
and-bins” games we have to analyze are significantly more complicated thgamntieeof [13]. Nevertheless, as our
most involved technical step, we show that both games can be won withgilipbaughly 1/(Q - Q'/*). Thus,
by choosing > log @ (say,t = n), we get the desired bourfd(1/Q) ~ O(1/q).

EFFICIENCY. Our final VIL-MAC construction useS§t keys for f, where we recall that the minimal value of
t ~ logq < n. Theoretically, we can reduce key material down to a single key fdoy “keying” f via fixed,
reserved input bits. Namely, to simulate (at méstkeys this way we need to reserMeg, (5n) | bits of input (and
“truncate” the same number of bits in the output), effectively reducing thekidémgth of the construction from
down ton’ = n — [logy(5n)]. Due to the output truncation, we now also need to guess the milsigg5n)|
output bits not returned by our forger, incurring an (acceptablejiadedl O(n) degradation of the security bound.
Our final VIL-MAC also achieves rate roughly proportional@grt) = O(rn). Achieving a low value of-
(coming from the combinatorial IRFF part) is more problematic (see Sectiattdpugh existentially one can also

SBecause they do not have a key and do not rely on any computatiGnahpsons.
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Figure 1: A high-level view of our constructidviD|[F,, G]. The inputz is padded in a suffix-free manner intebit
blocksz1, ..., zp. All wires shown carryn-bit values. Fy: : {0,1}*" — {0,1}*" andGy; : {0,1}*" — {0,1}"
are compression functions keyed by independent ki¢ys;.

maker = O(n). So the best rate we can hope to achieve using our approaztnty. Therefore, we primarily
view our result as an importafeasibility result, much like the result of Maurer and Tessaro [23]. Nevertheless,
our feasibility opens the door for future, potentially more efficient cocsivos.

2 Preliminaries

A keyed function familys a mapf : {0,1}* x Dom(f) — {0,1}" whereDom/(f) C {0,1}*. The strings in
{0,1}" are thekeysof f and we writef(z) for f(k,x) for k € {0,1}* andxz € Dom(f).
For MACs we consider the following game, whetds a halting adversary with oracle accesgito

Game ForgeA4, f):
ke (0,1} (2,y) — Al
If 2z € Dom(f), fx(z) = y andz was not a query ofl then A
wins, otherwised looses.

We define the insecurity of as a MAC to be

InSecy*“(T, q, p) = max Pr[A wins Forge(A, f)]

where the maximum is taken over all adversarleaking at most queries of total combined length at mest
(after padding, if any) and of “running time” at mdst The “running time” is defined to be the total running time
of the experiment, including the time necessary to compute the answdrs tperies. Moreover we “bill” the
final verification queryfx(x) (and its length) ta4 (so thatA must in fact make; — 1 queries ifx € Dom(f);
seen another way, we ask to verify its own forgery, if it attempts one). Whefihas fixed input length (i.e.
Dom(f) = {0,1}™ for somem € N) theny is a function ofg and it is convenient to elide the last argument,
writing InSec;““(t, q) instead ofinSecy““(t, ¢, u).

Theweak collision resistancer “wcr” security of a function familyf is measured as the maximum advantage
of an adversary in finding a collision for a randomly keyed membgtrwhen given oracle access to this member.
We write

InSeci" (T, q)

for the maximum such advantage over all adversatiesaking at most queries of running time at mo%t. (Here
we do not measure the total query length, as we will only measure the waitgeaxf fixed input length construc-
tions.) We skip a formal pseudocode-based definition of this standardinbtibmention that the adversary must
make the queries verifying its collision, not merely output a colliding pair.

Given a block lengtln and a message, we letPad,,(z) be a suffix-free encoding af of length a multiple
of n bits (for example, the standard Merkle-Daang padding ofr, which appends the length af as the last
block®). Furthermore, given two keyed compression functigns{0, 1} x {0,1}3" — {0,1}?", G : {0,1}"2 x

5This limits the message length to at ma&tblocks, but this is not a serious limitation for practical values.of



{0,1}2" — {0, 1}" we define a keyed functiobID[F, G] : {0, 1}"1+%2 x {0,1}* — {0,1}" by
MDI[F, Gliz k3 (x) = Gz (Fier (x| Fiz (w1 - - - Fir (21[|0°™) -+ )

wherePad,,(r) = x129 - - - 7, and eachr; hasn bits, for allk; € {0,1}%1, k3 € {0,1}"2 (see Fig1).
The proof of the following (standard) lemma is given in Appendix B:

Lemmal LetF : {0,1}" x {0,1}*" — {0,1}?>", G : {0,1}*2 x {0,1}*" — {0,1}", and consideMDI[F, G]
as a function of key spad®, 1} 12, Then, forg = u/n,

InSecyipyi ¢ (T 4, 1) < InSecy™ (T, q) + InSec;™(T', q)

Informally speaking, Lemma 1 reduces our task to building, fromadit to n-bit primitive f, compression
functionsF' andG such thatF' has beyond-birthday wcr security atidhas beyond-birthday mac security, where
these securities must be based only the mac securityiad., breaking the wcr security @ must imply breaking
the mac security of , and breaking the mac security @fmust likewise imply breaking the mac security ff

To the latter end we introduce in this paper the notion abaer-freekeyed function familyg : {0,1}" x
{0,1}™ — ({0,1}™)!. Heret is a parameter of the definition and we write the outpugdfr) as (2F(z), .. .,
2k (x)) € ({0,1})" wherezk(z) € {0,1}" for eachi; later we will simply write (21 (z), ..., z(z)) when the
dependence on a kéyis understood. In the cover-free game, an adversary adaptivelegygon distinct points
s1,82,... € {0,1}™, and wins if for someg each block of output ofi(s;) is “covered” by a previous output, in
the sense thatf (s;) € {zF(s;) : i < j}, 1 < £ < t. The following game formalizes this:
Game CoverA, g):

kE — {0,1}"%;

If A% makes distinct queries, ..., s, € {0,1}" to g such that

28 (s;) € {25 (s;) i < j}, 1 <0<t forsomej < g,
Then A wins; Otherwise A looses.

We define the cover-free (CF) insecuritypés

InSe¢,”" (T, q) := max Pr[A wins Cover(4, g)]

where the maximum is taken over all adversadesaking at most; queries and of running time at madst with
the same conventions as above on the running time. We (informally) say thattoh family iscover-freeto
mean it has small cover-free insecurity.

Given a (cover-free) function family : {0,1}* x {0,1} — ({0,1}")" where the/-th block of g, is given
by the functionz¥ : {0,1}™ — {0,1}" and a function familyf : {0,1}*" x {0,1}" — {0,1}" we define the
composed function family o g : {0, 1} x {0,1}™ — {0,1}" by

(f © Dt (5) = €D fro (£ (5))
(=1

wherek € {0,1}* andky, ...,k € {0, 1}”’, andkk; - - - k; is a shorthand for the concatenationkofky, .. ., k;.
See Figure 2. We also defingarallel compositionf 5 g : {0, 1}%2%" x {0,1}"™ — {0,1}?" of f andg, defined
by
(fBg)kklmktk’lmkg(S) = (f o Pkkyk: (SIS Og)kk’lmkg(s)'

In other words,f © g is simply the concatenation of two functiorfso ¢ instantiated with the samgkey but
independenyf-keys.

Recall that our constructioMD|F, G| takes as parameters keyed compression functions {0, 1}% x
{0,1}3" — {0,1}?" andG : {0,1}"2 x {0,1}*>" — {0,1}". Given a cover-free function family : {0, 1}* x



Figure 2: On the left, the compositidif o g)ix, ..k, = {0,1}™ — {0,1}". On the right, the parallel composition
(f B D kbobyky + 10, 1™ — {0, 132",

{0,1}3 — ({0,1}™)* and a function familyf : {0,1}* x {0,1}* — {0,1}", we will setx; = x + 2t/,
ko9 = Kk + tx, and define

Fi: (s) = (fo9)k (s) 1)
Gry(r) = (fog)rs (0"]|r) )

for all s € {0,1}3", r € {0,1}*", kt € {0,1}", k5 € {0,1}"2. The specification of our construction is thus
now reduced to defining the cover-free function famjlyWe note that the:-bit to n-bit function family f is a
parameter of the scheme (not constructed from any lower-level primitiiejeas; must be instantiated frorj,
and its cover-free security reduced to the mac securit; ake the next section for details on the construction of
g.

Recall that, by Lemma 1, we are interested in boundim8ec:;” (T, ¢) and InSeq:*°(T, q) in terms of
InSec;““(T', q). Towards this goal, we give two lemmas that upper boln®ec;sy (7', ¢) andInSec;:; (T, q)
as a function ofnSec;™* (T, ¢) andIinSec;““(T', q). The proofs of both lemmas are given in Appendix B.

Lemma 2 Letg : {0,1}* x {0,1}™ — ({0,1}™), f: {0,1}* x {0,1}"* — {0,1}". Then

INSect2e(T, g) < INSecc®™™ (T, q) + t - InSeck™* (T, ).

Lemma 3 Letg : {0,1}* x {0,1}™ — ({0,1}™)%, f : {0,1}*" x {0,1}"* — {0,1}". Then
InSecye (T, q) < InSecc™ (T, q) + 2tqlog q - InSecf**(T + O(q), q)-

(We note that, unlike Lemmas 1 and 2, the proof of Lemma 3 is not a triviality. fiicpéar, it requires a “multi-
collision to forgery” (MTF) bin-filling game of the type used in [13].) Combiningrhmas 1, 2 and 3 we directly
obtain:

Lemma 4 Letg : {0,1}" x {0,1}3" — ({0,1}™), f : {0,1}* x {0,1}"* — {0,1}" and letF, G be as in(1),
(2). Then, ifg = u/n,

INSechiSir ¢y (T G, 1) < 2- InSeci™ (T, q) + (2tglog g + t) - InSecF*(T + O(q), q)



n

2
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2

Figure 3: lllustration of the cover-free functich,g,{;f : {0,1}™ — ({0,1}™)! for parameters = 2, ¢t = 3.
Additional wires not shown on the diagram carry the input of éatto thei-th copy ofp.

Lemma 4 reduces our problem to constructing the cover-free function fanfitym the function familyf such
that InSec;”* (T, ¢) can be bounded in terms 6iSec;*“(T', ¢). This is the topic of the next section, and the
paper’s main technical achievement.

When a keyed function is built from a smaller primitive, where the functioeisdonsists of a finite set of keys
for the smaller primitive (which is potentially called several times with differegskethe notions of MAC, WCR
and cover-free securities naturally extend toamsparentmodel, where the adversary receives a full transcript of
the function’s computation at each query, up to calls to the primitive (namédlyg, toathe lower-level primitive
appear as oracle calls in the transcript, so as not to reveal the primitexss.kin fact,all results and proofs of
this paper can be (easily) interpreted and are valid in this stronger “aesrdf) model. However, to keep the
presentation simple, we will not further remind this from here on.

3 Building Cover-Free Function Families from MACs

This section contains our main result, the construction of a cover-fregidmnfamily based om-bit to n-bit
primitives, that achieves beyond-birthday security assuming only goo@ Be&urity from the primitives. We note
in passing that annkeyedunctiong : {0,1}™ — ({0,1}")* cannot be cover-free against information-theoretic
adversaries unleg®™ > 2™ or unless is as large as the desired query security, which gives valueshat are
too large to be practical for most settings.

Our construction uses the notion of arput-restricting function family(IRFF), introduced by Maurer and
Tessaro [23]. The following definition is slightly modified for our purposes

Definiton 1 Let K = K(n) < 2" and letm > n. A (m,n,r,J, K)-IRFFis a setf of functionsEy, ..., E, :
{0,1}™ — {0,1}™ such that(i) » > 2 and Ej(s) # En(s) forall s € {0,1}" and all h # &/, (ii) for all
s # s € {0,1}™ there exists € {1,...,r} such thatE,(s) # Ex(s'), and(iii) for any subset/ C {0, 1}" such
that |1/| < rK we have

|{s € {0,1}" : Ep(s) eUforall h =1...7r} < 5JU|.

The constructions of input-restricting function families are discussed itiddet

Our cover-free function family is also adapted from [23]. The consivudakes as parameters > n as well
as integers,t > 1 and a(m,n,r, 8, K)-IRFFE = {Ey,...,E,}. LetF!, ...  F! be n-bit to n-bit primitives
(later to be instantiated as members of function fanfily {0,1}* x {0,1}" — {0,1}", possibly fixed-key
blockciphers). The construction also uses a (concrete, unkeyed)dap : {0,1}2"™™ — {0, 1}" described below.
Let Z57! - {0,1}™ — ({0, 1}")! be defined by

Zi(s) = (21(s), -, zi(s))
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where
ZE(S) = p(El (3)7 s 7Er(s)v FZ(EI(S))v s aFE(ET(S)))

for 1 < ¢ < t (see Figure 3). Frorzfrgﬁ}f we obtain a keyed function family of signatufe, 1}* x {0,1}™ —
({0,1}™)* by instantiating eacE* with a member of a function family : {0,1}* x {0,1}™ — {0,1}"; however,
we opt for the unkeyed notation (in whidh!, ..., F? are implicitly keyed) when possible to reduce notational
overhead.

As for the functiorp, it is the polynomial

T T
p(xla"'ax’l’ayl)"'ayr>:qujiy; (3)
j=1i=1
wherezq, ..., y, aren-bit strings treated as elements of the filg. The only properties gb that matter are the
two following:
l. Invertibility. Foranyl < j < rand any valuesi,...,z,,y1,...,Yj—1,Yj+1,---,Yr, 2 € Fan such that
x1,...,z, are not all zero, there are few valugssuch thap(x1,...,z,,y1,...,y) = 2, and these values
y; are efficiently enumerable.
IIl. Collision Invertibility. For anyl < j, 7/ < r and any valuesy,..., &y, Y1,-..,Yj—1, Yj+1s- -+ Yrs
.., y@...,y}_l,y},ﬂ,...,y;. € Fon such that(xy,...,z,) # (2),...,2]) there are few values

yj =y} such that
p(xlv" Ly Y1, - '7y7‘) :p(xllv . 7x;~7y/11' . '7y7/")a
and these values are efficiently enumerable.

Both properties are easily verifiable from the fact th@t;, ..., z,,y1,...,y.) is a polynomial ofy; of the type
c+z1y; + - + 2y, Wherec does not depend oyy. Maurer and Tessaro use a different construction instead of
p which does not obviously satisfy either property above, that requitesging the set of function§F*} to a set
{F%v} wherev ranges from 1 tgm/n + 17.

To state our main theorem, ItvTime(&, ¢) be the amount of time required to list the valdesc {0,1}"™ :
Ehy(s) = vandEy(s) € Ufor h # ho} for any givenhy € [r], v € {0,1}" and set/ C {0,1}" such that
|U| < rq. We have:

Theorem 2 Let€ be a(m, n,r, 0, K)-IRFF, letf : {0,1}"x{0,1}" — {0, 1}" be a function family, and consider
75! as a keyed function family of key spae1}"* by settingf’ = fx, foranyky - - -k € {0,1}%*. Then

INSecs”, (T, q) < 6rQ*Q'/" - InSec™ (Timac, q) )

Zf,r,t

m,n

foranyq < K, where) = ¢ré and
Tmac=T + O(Qt) + grinvTime(&, q) 4+ RootTime, (n)

whereRootTime, (n) is the time required to find all the roots of a polynomial of degrée a field of sizéf,-. In
particular, whent = n andq < 2"/(rd), we have

INSecX (T, q) < (12r%6n°) - - InSeC (T 4)

E,rt
Z %,

Proof. Let A’ be an adversary for the game Co(ver,;?f) that runs in timel” and that has success probability
e 4. It suffices to design an adversabyfor the game Forge, f) with advantage at least

e (6rQt3QY") ™!



and that runs in timé,,,...

B has access to a random memlggy of f. B chooses random keyst,, ...,k € {0,1}", and selects a
random index,, € [t]. ThenB simulatesA’ with oracleZ;’;/, instantianting the functiol’ with fr, T4 # £y
and instantianting‘ with f;,, using its oracle. MoreoveB proceeds to “forget” the value @f, treats each of
the functionsF* as an oracle, and tries to forge any one of them (predicting their outpam emqueried input),
making only one such forgery attempt during the game. Sides chancé /t of forging F* if it does make a
correct forgery, it suffices foB to make such a forgetful forgery with chance at least

5A/(6er2Q1/t)_1

in order for it to forgefy, with chance at least, (6rQt>Q/*)~1.

It is easier to consider a modified version4¥f which we call simplyA, that directly issue&-queries rather
than Z‘,fr;f’;f—queries; more precisely} issues a sequence of queries ..., z, whereq’ < ¢r and eachr; €
{0,1}"; B answers the query; with the tuple(F!(z;),...,F!(z;)). We can assumd never makes the same
query twice. We leQ; = {z; : j <i} andletS; = {s € {0,1}" : Ej(s) € Q;for1 < h <r}for0<i<¢
(with Qy = Sy = 0). Note that

il < [Sy] <1916 < 16 =Q

by the input-restricting property @. We also letAS; = S;\S;—1 for 1 < i < ¢’ and putz,(C) = {2(s) : s € C}
foranyC C {0,1}™ (which B can compute after it answerss i-th query as long a8 C S;). We sayA “wins the
generous cover-free game” at ti#h query if there exists an € S; such that(s) € z(S;\{s}) for1 < ¢ < t.
Clearly, there exists ad of same running time ad’ whose advantage, in the generous game is at least as
great as 4/, sinceA can simply simulated’ and ask the variouB-queries needed to compute the answerd'te
queries; by definitionA wins if A’ wins CovefA, Zf,;f}f). (It is easy to check that ifl’ makes (distinct) queries
21,...25 € {0,1}™ such thatz(s;) € {z(s;) : i < j}, thenA wins the generous cover-free game by the time
it has finished asking the queries necessary to compute the answer toetlyes gof A’.) Thus it is sufficient
to haveB forge one of theF-functions with probability at least(6rQt>Q'/*)~!. We now viewB as simply
answeringA’s F-queries (as opposed to computing answe@i;ﬁf—queries) though in realitys is running the
whole computation, including the simulation 4f by A.

We view each value € S; as a “bin” witht “slots”; the¢-th slot of bins “receives a ball” or “becomes full” at
queryj > iif s € S; (namely, if the bin already exists at that point)zifs) € z,(S;\{s}), and if eithers ¢ S;_;
or z¢(s) ¢ z(Sj—1\{s}). Once a bin receives a ball in a slot, the slot remains full. A slot canneivemore than
one ball, and bins are never removed; we note that no bins exist at thesththai AS;| bins are added at theth
guery. Under these definitiond, wins the “generous” cover-free game precisely if some bin becomes. &gl
its slots become full). It is helpful to picturé and B as playing an adversarial game in whidhwins if it fills a
bin without B forging one of the function¥', . .., F?, and whereB wins otherwise (in fact, we may even picture
A as choosing the answers to its queries, whilebserves and tries to guess an answer before it is revealed).

We say that ball of a bins € AS; is “early” if z,(s) € z¢(S;\{s}) and “late” otherwise; thus a ball is early
if and only if it is added to a bin at the samequery which creates the bi? plays one of two different forging
strategies with equal probability. The first strategy is designed to préxemhany early balls from appearing in
bins while the second strategy is designed to prevefiom filling a bin (the second strategy only functions well
if not too many early balls appear in bins, whence the necessity of thetfastgy). We name the two strategies
“early prevention” and “late prevention”; despite these names, we enzghthe two strategies are not played
sequentially; instead? flips a coin at the start to decide which strategy to use.

We start by describingg’s early prevention strategy. L&t = ¢rd; as noted above) > |S,|, soQ is an upper
bound for the total number of bins created during the game. The gdéibafarly prevention strategy is to prevent
A from creating, for every < k < ¢, Q'~*/* or more bins that each haweor more early balls in them. In other
words, we only require this strategy to work (iferge a functionF* with “good enough” probability) if there is
somel < k < t such that)'~*/* or more bins are created withor more early balls in them.

We model the early prevention strategy via a slightly simplified balls-in-bins gaswrithed below. To connect
this balls-in-bins game with the “real” game playedByand A, it is helpful to first review the process via which
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bins are created and early balls are added to them. Consider axueade byA. Then
AS; ={s € {0,1}"" : Ey,(s) = z; for somehg € [r] andE}(s) € Q;—; for h # ho}

and the elements @kS; are the new bins created by this query. EachsbinAS; hast slots and the “value%,(s)

of the ¢-th slot of s is revealed wherB makes the quer¥*(z;); after the valuey(s) is revealed, an early ball is
added to thé-th slot of s according to whether there exists &re S;\{s} such that,(s) = z4(s’) or not (notice
thatz,(s’) is known at this point for al¥’ € S;). Thus, the process of filling the newly created bins with early balls
consists int “phases” (the querieB*(z;), ..., F!(x;), which are made sequentially @3), where the/-th phase
simultaneously reveals the values of thth slots of all the new bins, and whether these slots receive early balls or
not. The following balls-in-bins game thus abstracts the process of crexti@w bins and early balls:

‘EARLY PREVENTION BALLS-AND-BINS GAME. This game is played between two adversareand B.
Parameters are integets/, Q > 1. Rules are as follows:

e The game proceeds ifirounds. At round, A announces some numhbegr> 0 of bins such thazjéi v; <

Q.

¢ At the beginning of each round the bins are empty. Each bin haslots. Each round consists bphases.
At the ¢-th phase A reveals which of the; bins have thei¢-th slot “filled” by a “ball”.

e Before each phase of each roudtlis allowed to secretly predict a bin that will receive a ball at that phase;
B wins if it makes a correct guess, but it is only allowed to make one guesgydhe entire game.

e Letbd,; be the number of binerlat receikeor more balls at round, and letb;, = . b, ; where the sumis
taken over all the rounds. Thehis required to fill bins such thd#, > Q~*/ for at least one value df,
1<k<t.

In Proposition 1 of Appendix A we exhibit a strategy Brthat gives it at leastt>Q'/*)~! chance of winning the
above game, regardless 4% strategy. Thus, it)!~*/t or more bins each receivieor more early balls for some

1 < k < t, and if B uses this strategy3 has chancét>Q'/*)~! of correctly predicting, before the answer to some
queryF(z;) is given, that the value returned by this query will result in glof some (specific) bin € AS;
receiving an early ball. To gue®(z;), B further chooses a randosh € S;\{s}, and solvesy(s) = z(s') in
order to gues¥‘(z;) (sinces receives an early ball in sldtprecisely when there exists ahc S;\{s} such that
ze(s) = zp(s')). To see thaty(s) = z(s') is really “solvable” two different cases must be considered, according
to whethers’ € AS; or not. If s ¢ AS; thens’ was created by an earliet-query and the value of its slots are
known, in particular the value,(s’) of its ¢-th slot is known. Lett, = Ep(s) for1 < h < r, lethy € [r] be the
unique index such that,, = =; and lety;,, = F*(7,) for 1 < h < r. Then all the valuesy, ..., 7., 7y, -- -, U,

are known toB except for the valug,, , which it needs to guess using the equation

p(fla"wf?“agla"wyr):ZK(S/)' (5)

By condition (i) of Definition 1(zy,...,Z,) # (0,...,0) so, by the ‘Invertibility’ property ofp, there are few
valuesy,,, that solve (5). More precisely, sing¢z:, .. .,7,) is a nonzero polynomial of degree at mesh g, ,

B has to choose from the at mostoots ofp(z1, . ..,7,) — z¢(s"), wherez,(s’) is just a constant. In the second
cases’ € AS; andz(s’) is not known (likez,(s), it is about to be revealed). Lef, = Ej,(s'), leth(, € [r] be the
unique index such thei[’h,0 = z; and lety), = F*(7,) for 1 < h < r. Then all the values,, ..., 7., 7}, ..., 7,
are known taB except@’%, andB needs to solve

p(fl,. . wf’l‘?yla” . 7@7“) :p(5,177f{r7y,177y;) (6)

(this is z¢(s) = z(s')) for ., 7;,, (or at least forg, ). Buty,, = 7, ; sincez,, = f’h& = x;; also, by the
injectivity of £, (z1,...,%,) # (Z,,...,7.), so it follows by the ‘Collision Invertibility’ property op that there

are few valueg,, = %6 solving (6); in fact these are the at mostifferent roots op(z1, . .., 9,) —p(T}, ..., 7..),
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considered as a polynomial i),, = ?Zg)- The termRootTime,(n) in Theorem 2 accounts fa8’s root-finding
costs, which are incurred only once in the computation.

Naturally, B’s further guessing o#’ and of the correct roag,, erodes its probability of making a correct
forgery even it has correctly guessed an early ball is about to bedaddebin slot, but it is easy to bound this
erosion:B has chance at leasf|S;| > 1/Q of correctly guessing’ and chance at leasfr of correctly guessing
the root. Thus, il %/t or more bins each receiveor more early balls for some < k < ¢ and if B is using its
‘early prevention’ strategy (which we have just finished describingh th has chance at least

1
TQtQQl/t

of forging. As B uses this strategy with probabili%/, we can therefore assume that fewer thizh*/* bins
receivek early balls for everyl < k < t, or elseB already reaches the requisite probability of success of
eA(6rQE2QVH) L,

We now discus®’s ‘late prevention’ strategy. HerB attempts to prevend from filling a bin with ¢ balls by
guessing the arrival of late balls. We note that, if a quBf{z;) results in some late ball being placed in thth
slot of bins, thens ¢ AS; (by definition of ‘late’) and so the values(s), . .., z:(s) are already known prior to the
answer of the quer¥‘(z;). Moreover the fact that the queRf (z;) results in a late ball appearing in birmeans
there is some’ € AS; such that (i)E, (s') = z; for somehg € [r], (i) the queriesF‘(E},(s')) have already been
made€ for h # ho, and (iii) z,(s) = z¢(s') (the valuez,(s’) will become known whe®*(z;) is answered). Let
T = E(s),...,T, = E.(s) (soz),, = ;) andy; = FY(T)),...,7, = F(z,), all of which are known taB
excepty;lo. Then, if B has correctly guessed a late ball is going to appear id-theslot of bins andhas correctly
guessed the value of € AS;, it can predic*(x;) by solving

p(f’l,...,f;,,yll,...,ﬂ;):,Zg(8> (7)

for y;m, for which there are at mostsolutions. (This is the second (and last) place we require the ‘Invertibility’
property ofp.) Given these observations, the following balls-and-bins game clearlylmBde‘late prevention’
task, up to but not including guessing the root of (7):

‘L ATE PREVENTION' BALLS-AND-BINS GAME. This game is played between two adversadeand B. Pa-
rameters are integetsq’, Q > 1. Rules are as follows:

e The game involves “bins” with slots each, where each slot can contain either contain a ball or not. At the
beginning of the game, there are no bins. Bins are added to the game idsateselow, and never removed.

e The game proceeds ifi rounds, each of which consistsidfphases”.

e At the beginning of round, A announces some numbgr> 0 such thagjﬁ vj < Q. Ifv; =0, the round
is skipped. N

e At phasel of roundi, 1 < ¢ < t, A chooses a subset (possibly empty) of the currently existing bins that do
not yet have a ball in theit-th slot, and places balls in all of thefsth slots, simultaneously. Moreovet,
labels each ball placed with a number from Ifo(Multiple balls with the same label are allowed, and not
all labels are required to appear.)

e At the end of round, A introducesy; new bins to the game, each possibly already containing some balls.
Throughout the game, the total number of new bins introducediathmore balls already in them must be
less tharQ*/t forall 1 < k < t.

¢ Before each phase of each roumtljs allowed to secretly predict a bin that will receive a ball at that phase
and a label for that balll3 wins if it guesses both correctly. It is only allowed to make one guess dtireng
game.

"This means4 has made the querigs, (s") for h # hg so that, in fact, all querieB” (En(s")) for1 < ¢ <tandh # ho have already
been made (not jugt = ¢).
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e A must fill some bin witht balls by the end of the game.

We note that the new bins introduced at the end of rouookrrespond to the elements AfS; and thaty; corre-
sponds tdAS;|. The “label” for a ball placed in a bin at phase corresponds to an elemesite AS; such that
ze(s) = z¢(s'), discussed above. (In the ‘real game’ betwéeand A several such elementsmay exist, so that
more accurate modelization would allodvto choose a nonempty list of labels rather than a single label for each
ball; however, seeking to minimize the guessing advantads of would automatically make each of these lists a
singleton anyway.)

In Proposition 2 of Appendix A we exhibit a strategy fBrin the ‘late prevention’ game that succeeds with
probability (3Qt2Q1/ ©)~! regardless off’s strategy. The ‘late prevention’ strategy Bfconsists simply of cou-
pling the B-strategy of Proposition 2 with a guessing of the root of (7). Thus, ag ésrfewer tha)!—*/* bins
receivek or more early balls fot < k < ¢, as long asA fills some bins witht balls and as long aB uses its late

prevention strategy3 has chance at least
1

3rQt2QL/t

of forging. SinceB uses the ‘late prevention’ strategy with probabil%tythis concludes the proof.

4 Implications
Replacingg in Lemma 4 by our cover-free functicmf,;fﬁt and using Theorem 2 witlw = 3n, we obtain:

Theorem 3 Let& be a(3n,n,r, 8, K)-IRFF, let f : {0,1}* x {0,1}" — {0,1}", and consideZ’"" as a keyed

3n,n

function family of key spacf, 1}*¢ like in Theorem 2. Definé, G by (1), (2) with g = ZgnT,ﬁ Then

Inseclﬁ%[F,G] (Ta q N) < 127"Qt3Q1/t : |nseCI}laC(Tmac, Q) (8)
+ (2tqlog g +t) - InSecy (T + O(q), q)

whereq = p/n and@ = ¢ré as long ag; < K, and where
Tmac=T + O(Qt) + ¢rinvTime(&, q) + RootTime,(n).
In particular, whent = n and@ < 2" (i.e.q < 2"/ré) andq < K we have

InSeciS oy (15, 1) < 24r°6n°q - InSect*(Timag, q) ©
+ (2nqlogg+n) - InSec‘}‘aC(T + O(Q)v q)

By default we shall apply the second part of Theorem 3, choaosiagn. In order to interpret (9) we need to
know what values of, § and K are achievable via IRFFs and to kntnwTime (€, ¢) for those IRFFs, as this term
dominatesl jac.

The question of instantiating the IREFwas already studied by Maurer and Tessaro [23], who reduced it to
the construction of certain types of highly unbalanced bipartite expamedphg. While well-studied, these types
of expander graphs are not yet completely understood, and in partibelaetting of parameters relevant to our
case has not been the object of much attention. Here we mention bounelgeddby two explicit constructions
as well as those achieved by a non-explicit, probabilistic construction] ¢tases we setr = 3n. We note that
InvTime(€, ¢) can always be upper bounded ¥/ by appending three functions to the IRFF that read off each
block of input via the identity. Moreover, we can easily enforce conditippf(Definition 1 as long ag < 2".
Since the family sizes in question are anyway polynomial in we assume these tweaks without further mention.
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Existential construction. A probabilistic construction [23] achieves(&n, n,r, d, K)-IRFF £ with » = O(n),
d~1landK = Q(%). In this cas&) = ¢rd = O(nq). Then the right-hand side of (9) becomes

O(n5q) * Insed‘;lac(Tmac, q)

AssumingInSec;*(Tmac ¢) ~ 1/2", MD[F, G] achieves query security up to= Q(2"/n”). However, this
construction is inexplicit.

Expanders of [31]. Expanders of Ta-Shma, Umans and Zuckerman yield an ex@ieitz, r, §, K)-IRFF £ with

r = poly(n), 6 = poly(n) andK = Q(ﬁ?n)). In this cas&) = gpoly(n). The right-hand side of (9) becomes

O(poly(n)q) - INSec;* (Tmac q)-

AssumingInSec;*“(Tmac ) ~ 1/2" we can then achieve query security ugite: (2" /poly(n)). (We note this
construction is strictly better from all standpoints than the one presentedhbyeand Tessaro [23].)

Expanders of [15]. Expanders of Guruswami, Umans and Venkatesan yield an ex@icit, r, §, K)-IRFF £
with r = n2(2), § = poly(n) and K = 2719 for anye € (0,1). In this case) = gpoly(n)n°(=). We can set
t =log(Q) =logq + O(% logn). For constant the right-hand side of (9) again becomes

O(poly(n)q) - INSec/* (Tmac q)-

AssumingInSec;“(Tmac ¢) ~ 1/2" the insecurity thus remains negligible as longzas K = 2n(1-¢)  The
advantage of this construction is that it affords efficient inversion tim@ @fpoly(n)) (as opposed t®(q¢?) for
the previous two constructions).

Interpretation. The assumptiomSec;*(Tmac q) ~ 1/2" is only realistic as long &&,a. does not allow to do
an exhaustive search over the key spac¢;aissuming the latter has si2é > 2", this implies that our upper
bounds are only meaningful ... ~ InvTime(&,q) < 2 (sinceT .. is dominated bynvTime(&, ¢)). The
first two constructions, which are only known to hdweTime (€, q) = O(¢?), therefore only give a meaning-
ful bound forq < 2%/3. Thus, with the current understanding lof Time(&, ¢), they might become beyond
birthday only ifx > 3n/2 (and approacly ~ 2™ only if x > 3n). However, the last construction, having
InvTime(&,q) = O(gpoly(n)), yields beyond-birthday security evenxif= n, which is the case of AES-128.
Once again, though, we stress that the current limitations of our appevadtue only to the limitations in the
current constructions of expander graphs, and are not related temgptographic” difficulties. Needless to say,
future advances in the constructions of expander graphs will not onisoireur parameters, but will likely have
other applications in many areas of theoretical computer science.

Heuristic Instantiation. In practice, we expect a variety of heuristic instantiations to potentially agprthe
IRFF parameters of the non-explicit construction, most important of whitheisetting ofr = O(n), which
directly affects the rate and the efficiency. Here is one such construséised on block ciphers. We simply
implement each; : {0,1}%" — {0,1}" as the XOR of three (independently keyed) fixed key block ciphers,
i.e. Ei(zllyllz) = fr,(2) @ fro(y) @ fri5(2). We note that in this case tite keysky i, ..., k.3 do not
constitute key material, but rather fixed constants of the construction. Weatore that, for a good enough
block cipher, this construction might achieve the parametetsO(n), § = poly(n) (or possibly eved = O(1))
andK = 2"/poly(n).
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A Early and Late Balls-in-Bins Games

Proposition 1 There exists an adversary for the ‘Early Prevention’ balls-and-bins game of Section 3 whose
advantage is at leagt>Q'/*)~" for any adversaryd. MoreoverB runs in timeO(Qt).

Proof. B’s strategy is as follows:

1. B chooses a random index between 0 and— 1, a random index between 1 angiQ'~™/*| and a random
indexu between 1 and.
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2. B counts and catalogs the bins that receivéalls or more, updating its list before each new phase. When
B finds its list hasy members or more3 identifies thev-th member of the list (in order it was added to the
list) and, if the last phase of the current round was less tha@hpredicts that a ball will be added to this bin
at theu-th phase of the current round.

3. In all other cases (i.€f its list never contain® members or if the last phase number is greater than or equal
to u) B does not guess.

Let ¢; be the number of balls placed byinto bins that already havgor more balls in them at the moment of
placement) < j <t¢—1, and leth; be the number of bins that receiy@r more ballsp) < j <¢. Noteb; < ¢j_1
fori <j<t.

Assuming by contradiction tha’s chance of success is less thafQ'/*)~! we will show by induction ory
thatb; < Ql—j/t for 1 < j < t, which will contradictA’s obligation to make; > Ql—j/t for all least one value
ofj,1<j<t.

Let0 < mp < t and assume that < Q'~J/ for j < my. This holds forng = j = 0 since the total number
of binsby does not excee@. We will showb,,,1 < Q'~(m+1/t thus proving by induction thd; < Q'~7/*
forl <j<t.

Say B selectsn = mg (which happens with probability/t). Then for each ball thatl places into a bin with
m or more balls already in it the index of that ball's bini#s catalog of bins receiving: or more balls must be
at mostb,,, < |Q'~"/t|, soB has chancé /t|Q'~™/t| of correctly guessing the indexand the slot: for that
ball; moreover, ifB correctly guesses andw, the phase at whicls adds thev-th bin to its list will be less than
u, since otherwisel could not longer add a ball at slatto that bin. Thus each ball places into a bin withn
or more balls gives3 chancel /¢ LQl‘m/tJ of winning. Since these probabilities refer to disjoint everdtscan
never guess two different balls in the same gam®,chance of winning if it selects: = my is therefore at least
Cmo /tQY 0/, SinceB selectan = mq with probability 1/t and since we are assumiits chance of success is
less thar(t2Q'/*)~1, we get

Cmo 1
t2Q1—m0/t < tQQl/t

namely
Cmg < Ql—(m0+1)/t

which impliesb,,, 11 < Q'~(mo+D/t sinceb,,, 11 < cm,, as desired.
Finally the running ofB is dominated by the task of maintaining a list of bins having receivext more balls.
SinceA places at mosDt balls and there are at magtbins, this takes timé&(Qt). O

Proposition 2 There exists an adversarg for the ‘Late Prevention’ balls-and-bins game of Section 3 whose
advantage is at leagBQt>Q'/*)~! for any adversaryd. MoreoverB runs in timeO(Qt).

Proof. B’s strategy is as follows:

1. B chooses a random indexbetween 1 and), a random index: between 1 and, and a random index
between 0 and — 1.

2. B waits until a round such thad~;_; v; > v, and lets/ = v — 7., ; v;. Thenl <o’ < ;.

j<iVi =

3. B waits until phase: of rounds, then chooses a bin uniformly at random from all bins having already at
leastm balls in them, and predicts that a ball of laléls about to be added to this bin.

4. In all other cases (e.g there is noi such thad _;_, v; > v, or no bin withm balls in them already at round
u) B does not guess.
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We note thatB ignores the fact that balls are assigned to particular slots, and may irsfaptdly” guess a bin at
phaseu for which theu-th slot is already full.

To analyze this strategy, lef be the number of balls placed byinto bins that already havgor more balls
in them at the moment of placemefit< j <t — 1, and leth; be the number of bins introduced wijhor more
balls already in them) < j < t. We haveb; = 0 sinceb; < Q1~%/* = 1 ande¢;_; > 1 sinceA fills some bin with
t balls. Letd; be the number of bins at end of the game wjitbr more balls in them. Note thd < @ and that
dj <cj_1—c¢j+0b; Scj_l—i-bjforj > 1.

Fix a value ofm. For every ball placed byl into a bin already containing: balls, B has chancé /Qt of
guessing the correct round, label and phase for which that ball igthrand then has chance at leagt,,, of
guessing the correct bin. Thishas chance at least, /Qtd,,, of winning, since there are,, such balls and since
successful guesses for these balls constitute disjoint events. Bisekects each value af with chance at least
1/t, B’s chance of winning is thus at least

1 e
=y (10)
Q2 —~ dp,
We claim the sum in (10) is at least:= Q~'/*/3. Indeed, otherwise each ratig, /d,, less thans, so

co < Bdy < BQ

and
em < B < Blem—1 +bm) < Blem-1 + Q™)
for m > 1. Unfolding these inequalities, we get

c1 < BBMB(..BBQ+ QT . )+ Q1= 4 Q1=
= ﬁtQ—F fﬁle—(t—j)/t

Jj=1

(BQYVY

M8

< +

=1

< +

Wl Wl
M\H?

a contradiction since;_; > 1. ThusB’s chance of winning is at least

1
3Qt2Q1/t
as claimed. The running time @ is dominated by the task of maintaining a list of bins withor more balls in
them. AsA may throw at mosf)¢ balls it is easy to see such a list can be maintained in @{@t). O

B Proofsoflemmas1,2and3

Proof of Lemma 1. Let A be a mac-adversary f&dD|[F, G] whose queries have total length at mpsind that
achieves advantage,. Define a wer adversar for I as follows: given a randomly keyed membgy: of I’ as
oracle,B chooses a random kéy < {0, 1}*2 and simulates! on oracleMD|[F, G]k;,k;“ using its own oracle to
computel:; then B wins if someFj:-collision occurs during this computation. Let be the advantage ds.
Also define a mac adversafyfor G as follows: given a randomly keyed memtéey; of G as oracle(” chooses a

random keyk?' € {0,1}*t and simulates! on oracleMDIF, Gy« 1+ USING its own oracle to computgy; ; when
12
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A announces a forgery; “copies” the induced forgerg;, which succeeds as long as the inpuGtp is fresh.
Letec be the advantage @f. Then we have 4 < ep + e¢ since if A succeeds a forgery, either the inputddor
its forgery is fresh or else some collision férhas occurred among the computation of its queries (this uses the
suffix-freeness oPad,,(-)). Sincesp < InSec" andec < InSe;*“, we are done. O

Proof of Lemma 2. Let z, : {0,1}" — {0,1}" be the function giving thé-th block of g’s output for some
implicit selection of a key: € {0, 1}".

Let A be ag-query MAC adversary fof o g. We can assumd makes only distinct queries. LBbrge the the
event thatd wins Forgé€A, f o g) and letCover be the event that ill’s sequence of queries, ..., s, € {0,1}™
there is a query; such thatzy(s;) € {z(s;) : 7 < j}, 1 < £ < t; also letey,. be the probability oForge and
ecover D€ the probability ofCover. Then obviously

6COVCI‘ S Insedgjover<T7 q)

since an andversany’ for the game Covér, g) can simply simulated by choosing random keys, . .., k; for
finorder to answer’s queries tof o g. SinceA is arbitrary, and by definition dhSec;s, (T, ), it thus suffices
to show

€mac < Ecover T+ Insed}laC(Tv Q)- (11)

For this we construct an adversasyfor the game Forde, f) running in timeT" and making at most queries,
of advantage at leagtmac — cover)/t. By definition of the game Forg®, f), B has oracle access to some
memberfy, of f for some unknown ke, € «'. B sampleg random keysk,, ...,k € {0, 1}”' and a random
key k € {0,1}", chooses a random indéx € [t], and simulates! on the oraclf o g),7-. wherek; = k; if
i # £y andk; = ko otherwise (in the latter case, using its own oracle). WHeannounces its forgergs,y) €
{0,1}™ x {0,1}", B computesfi(s) = (21(s), .-, 2,(s)). If 2, (s) ¢ {z,(s") : s" was previously queried by
A} thenB can win by outputting the forgertg, (s), w) where

w=y& @D gi, (24(5))

t£0g

as long asA is correct in its forgery. Sinc is in the set
{0 € [t]: z(s) & {2,(s") : s’ was previously queried by} }

with probability at leasfl /¢ as long as this set is nonempty and since this set is nonempty as long as the even
Cover doesn’t occurB thus wins with probability at Ieas%t(smaC — Ecover)- O

The proof of Lemma 3 requires a “multicollision to forgery” (MTF) bin-fillingrga of the type used in [13, 19].
The bin-filling game used for the proof of Lemma 3 is, in fact, slightly simpler thancd the games presented
in [13,19], and represents in some sense the basic core of an MTF Banthais reason, and also to distinguish it
from two other MTF games presented in Section 3, we call it the “Plain” game.

‘PLAIN’ BALLS-AND-BINS GAME. This game is played between two adversadeand B. Parameters are
integerst, g > 1. The rules are as follows:

e There is a set of “bins” (possibly infinite), which are empty at the start®fjime. The game proceedsgjin
rounds.

e Atroundi, A places a ball in one of the bingl must fill some bin with more thahballs by the end of the
game.

» Before any roundB can secretly guess wherewill place its next ball.B is only allowed one guess in the
game.B wins if and only if it makes a correct guess.
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Proposition 3 There is a strategy for the @y@ in the ‘Plain’ balls-in-bins game that give chance of success
at least(gq'/t)~" against anyA. MoreoverB runs in timeO(q).

Proof. B chooses a random index between 1 and and random index between 1 ang. At thei-th round of
the game B guesses uniformly among all bins already containindalls, or gives up if no such bins exist. For
computations showing this strategy achieves chance of success g4déd9t ! see [13] or [19]. FoiB’s running
time, we note that its most costly task is maintaining a list of bins witbr more balls in them. This can be done
intime O(q). O

Note: Whent = log(q), a closer analysis can shaWs chance of successgs ! /(1+0(1)) with the above strategy.
For the following corollary (as in the rest of the paper) logs are base 2.

Corollary 1 If ¢ > log g, there is a strategy givingg chance of success at least2q in the Plain balls-and-bins
game, where3 runs in timeT + O(q).

Proof of Lemma 3. Let z, : {0,1}" — {0,1}" be the function giving thé-th block of g's output for some
implicit selection of a key: € {0, 1}".

Let A be ag-query wcr adversary fof © g with chance of success,;; and of running tim&". Let Cover be the
event thatd makes (distinct) queries, . . ., s, such that there is somye< ¢ for which z,(s;) € {2¢(s;) : @ < j},
1 < £ < t. Letecover be the probability ofCover. Then it suffices to show there is someuery adversary3 of
running timeT” + O(q) whose chance of winning Forg8, f) is at least

(Ecoll — Ecover)/2tqlog q. (12)

B has oracle access to some random menfpeof f. To begin,B chooses a randor € {0,1}" and2t
random valuesi, ... k, ki,...,k; € {0, 1}”'. Then B plays one of the two following strategies, each with
probability 3:

Strategy 1:B selects a random inde < [t] and simulates! on oracle(ng)kEl“.Etk,l.”,Cg wherek, = kg if ¢ # £,

andk, = kg otherwise; namely3 computes queries tﬁ% by calling its own oracléfy,, and computes all other
f-queries using its own key$3 then plays a ‘Plain’ balls-in-bins game within which bins aren-bit values (one
bin for each string i{0, 1}™). Each query made by constitutes a ball, whereby the queryg {0, 1} is placed
in bin number( f o g)kgl_% (s) (this this the first output half O(fﬁg)ka---ak'l---k;(5))- WhenB guesses that a ball

(query)s is about to be placed in bip, it stops and outputs the forgefyy, (s), w) where

w=y®EP fr,(2e(5))-

00

Strategy 2: B selects a random indefy € [t| and simulatesA on oracle(fag)kklmkf?lm
¢ # ly andk/y = ko otherwise. B chooses a random indgxbetween 1 and, and whenA makes itsj-th
query s; B evaluates only the first half of output := (f o ¢)kk,..k,(s;) € {0,1}". B then finds the values
I={s;:i<7,(fo9)kk -k (si) = u}, and chooses a random membgrc I, or gives up if none exists. Then
B outputs the forgeryz,, (s;), w) where

w=(fo g)kaa(so) &5 @ f%(ze(sj))‘

(40

7 Wherek/, = kj if

To analyze’sB chance of succeeding, I8t= {s1, s2, ...} be the values queried by and letFullBin be the
event that4 obtains an--multicollision on the first output halves of its queries for some log(gq), namely that
there exists somg’ C S, S| > log ¢, such thatfog),z .7 (s') = (fo9)z,.7,(5") (€SP (f 0 @)y ke (8') =
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(f © 9)kky-k, (7)) for all ', s” € S under Strategy 1 (resfstrategy 2). (For the convenience of this definition,
we may assumé completes the simulation of after it outputs its forgery.) TheRr[FullBin] is the same under
Strategy 1 or Strategy 2 since the kiay has the same distribution as the kéys. .., k¢, K/, ..., k), and may
therefore be indistinguishably substituted for any of these.

If FullBin occurs and3 uses Strategy 1, thed has chance at least2q of winning the balls-in-bins game (by
Corollary 1). If it wins the balls-in-bins gam&’s forgery will be correct if in additiorf, is in the set

{¢ € [t] : z(s) has not yet been queried fp }

(wheres is the ball (query) for whichB makes its guess), which happens with probability at léasts long as
this set is nonempty, which itself happens as long as the &wert does not occur. SincB uses Strategy 1 with
probability%, we thus get thaB has chance at least

%(Pr[FuIIBin A —Cover]/qt)
of winning from its first strategy.

If —=FullBin occurs andB uses Strategy and A obtains a collision3 has chance at leasf g of guessing the
indexj of the second colliding input of the collision correctly and, if this guess isecbrchance at leasy log(q)
of correctly selecting the first colliding input from the setbecause-FullBin means|I| < log(q). If all this
occurs,B’s forgery will be correct if in additior, is in the set

{€ € [t] : z¢(s;) has not yet been queried f%}

which happens with probability at leaktt as long as this set is nonempty, which itself happens as loGgas
does not occur. Thus from its second stratétlgas chance of succeeding at least

1
i(Pr[—'FuIIBin A =Cover A Collision] /gt log q)
whereCollision denotes the event thatwins (obtains a collision). ThuB’s chance of winning is at least

(Pr[FullBin A ~Cover| 4+ Pr[—=FullBin A =Cover A Collision])

2qtlogg
> (Pr[FullBin A =Cover A Collision] + Pr[=FullBin A —=Cover A Collision])
2¢qtlogq
1
=z 2t logq(Pr[—'Cover A Collision] + Pr[=Cover A Collision])
1
Z (ECOH - <C:cover)

2qtlog q

verifying (12), as desired. Finally, concernififs running time, we see that its overhead in Strategy 1 is bounded
in Proposition 1, whereas its overhead in Strategy 2 consists in the one-tike &rsumerating previous queries
havingu as their first half of output, which takes tini&q). O

21



