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Abstract

We study the design of cryptographic primitives resistard targe class of side-channel attacks, called
“memory attacks”, where an attacker can repeatedly andti@dpplearn information about the secret key,
subjectonly to the constraint that theverall amountof such information is bounded by some parameter
£. Although the study of such primitives was initiated onlgeatly by Akavia et al.[[?], subsequent work
already produced many such “leakage-resilient” primgil@d,[4[44], including signature, encryption, iden-
tification (ID) and authenticated key agreement (AKA) scbeemnfortunately, every existing scheme, —
for any of the four fundamental primitives above, — fails tdisfy at least one of the following desirable
properties:

« Efficiency. While the construction may be generic, it should have seffieientinstantiations, based
on standard cryptographic assumptions, and without rglginrandom oracles.

 Strong Security. The construction should satisfy the strongest possitfiaitien of security (even in
the presence of leakage). For example, encryption schemekidbe secure against chossphertext
attack (CCA), while signatures should beistentiallyunforgeable.

« Leakage Flexibility. It should be possible to set the parameters of the schemémsthe leakage
bound? can come arbitrarily close to the size of the secretdiey

In this work we design the first signature, encryption, ID &kdA schemes which overcome these lim-
itations, and satisfy all the properties above. Moreoviour constructions are generic, in several cases
elegantly simplifying and generalizing the prior constioies (which did not have any efficient instantia-
tions). We also introduce several tools of independentéste such as the abstraction (and constructions)
of true-simulation extractabl&llZK arguments, and a nedeniableDH-based AKA protocol based on any
CCA-secure encryption.
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1 Introduction

Traditionally, the security of cryptographic schemes has been analyzeddealized setting, where an adver-
sary only sees the specified “input/output behavior” of a scheme, Butdather access to its internal secret
state. Unfortunately, in the real world, an adversary may often learn pamti@l information about secret
state via varioukey leakagettacks. Such attacks come in a large variety and incidie-channel attacks
[45,111,8] 46,55, 30], where the physical realization of a crypfagaprimitive can leak additional informa-
tion, such as the computation-time, power-consumption, radiation/noisefhisat@n etc. The cold-boot attack
of Halderman et al.[[37] is another example of a key-leakage attackevatmeadversary can learn (imperfect)
information about memory contents of a machine, even after the machine isqubd@vn. Schemes that are
proven secure in an idealized setting, without key leakage, may becomdeteinjnsecure if the adversary
learns even a small amount of information about the secret key. Indeexl very limited leakage attacks have
been shown to have devastating consequences for the security of atargl schemes.

Unfortunately, it is unrealistic to assume that we can foresee, let alonk, ldbof the possible means
through which key leakage can occur in real-world implementations of agygpbic schemes. Therefore, the
cryptographic community has recently initiated the investigation of increasiregigral (formally modeled)
classes of leakage attacks, with the aim of construdtéagage-resiliencryptographic schemes that remain
provably secure even in the presence of such attacks. Of cours@df/arsary can get unrestricted information
about the secret key (say, of an encryption scheme), then she cartheey in its entirety and the security
of the system is necessarily compromised. Therefore, we must first ptee “upper bound” on the type
or amount of information that the adversary can learn. The nature bflsands varies in the literature, as
we survey later. For this work, we only restrict tamount but not thetype of information that an adversary
can learn through a key-leakage attack. In particular, we will assuméhehattacker can leammy efficiently
computable function of the secret kély, subject only to the constraint that the total amount of information
learned (i.e. the output size of the leakage function) is bounded Hits, where/ is called the “leakage
parameter” of the systeEwCIearly, at this level of generality, the secret-key sizaust be strictly greater than
the Ieakage-parametéﬁ Therefore, the quantit§/s can be thought as threlative leakagef the system, with
the obvious goal to make it as closeltas possible.

Our model of leakage-resilience was recently introduced recently byidlkaal. [2], but already attracted
a lot of attention from the cryptographic community [49] 4] 44, 3]. In paliiclas we survey later, we al-
ready know many “leakage-resilient” primitives, including such fundantigmiaitives as signature schemes,
encryption schemes, identification (ID) schemes and authenticated lesgnagmt (AKA) protocols. Unfortu-
nately, we observe that every existing scheme, — for any of the foulafmental primitives above, — fails to
satisfy at least one of the following desirable properties:

« Efficiency. While the proposed construction may be based on some generic cryptmgpamitives, —
which is in fact preferable for modular design, — it should have seffieientinstantiations, based on
standard cryptographic assumptions, and without relying on randoctesraWe view this property as
the main property we will strive to achieve.

e Strong Security. The construction should satisfy the strongest possible definition ofigeeven in
the presence of leakage). For example, encryption schemes showddure against choseaiphertext
attack (CCA), while signatures should éxistentiallyunforgeable, etc.

» Leakage Flexibility. It should be possible to set the parameters of the schemes so that the tektage
¢/s is arbitrarily close ta. We call such schemédsakage-flexible

More formally, we allow adaptive measurements, as long as the sumketleaitputs is bounded ky

2In fact, our actual constructions easily extend to the more generalyfezsikage” model of Naor and Segév[49], where the outputs
can be longer thag, as long as the “average min-entropy”s@f drops by at most bits. However, we do not pursue this generalization,
in order to keep our notation simple.



1.1 Our Results

In this work we design the first signature, encryption, ID and AKA schewlgich simultaneously satisfy the
efficiency, strong security and leakage flexibility properties mentionedeatddoreover, all our constructions
are generic. This means that the actual construction is modularly defidegkplained using natural simpler
blocks, and its security against key leakage is also proven no matter hegvgtmepler blocks are (securely)
implemented. However, unlike the prior generic constructions, which diana any known efficient instanti-

ations (at least, with the desired security and flexibility we seek), ourssaragre general, which will allow us

to obtain several efficient instantiations. Given this fact, it is not surgyigiat our contributions can be roughly
split into two categories: “conceptual” contributions, allowing us to obtain mereeral (and, yet, conceptu-
ally simpler) leakage-resilient constructions, and “concrete” contribsitialowing us to actually instantiate
our general schemes efficiently.

CONCEPTUAL CONTRIBUTIONS. As we will see, existing schemes (e.g., signature and CCA-encryption)
could be largely divided into two categories: potentially efficient schemihl,ssmeinherentlimitation not
allowing them to achieve relative leakage approachifghich also prevents us from using these ideas for our
purposes), and more theoretical schernes[49, 44], achieving gladisledeakage, but relying on the notion of
simulation-soundhon-interactive zero-knowledge (ss-NIZK) [56]. Informally, s&ZK proofs remain sound
even if the attacker can see simulated proofs of arbitrary (even falsejngtats. Unfortunately, it appears that
the existing cryptographic machinery does not allow us to instantiate nealga+NIZK proofs efficientl
On the other hand, a recent breakthrough result of Groth-SaHgsli@@ed that one can obtain efficiemn-
simulation-soundNIZK proofs for a non-trivial class of languages. While the technigoief34] could be
applied to Groth-Sahai proofs to achiehve ss-NIZKs, it is a non-tril@gércise” and the resulting proofs
aresignificantlyless efficient, as the construction involves OR-proofs for Groth-Sahguages. Therefore,
our first idea was to try to generalize the existing constructions sufficiendiging them rely only on regular
NIZKs, in the hope that such regular NIZKs can then be instantiated usenuptlierful Groth-Sahai techniques.

In the end, this is indeed what we realized. However, in the process wealddracted away an elegant
notion of independent interedrue-simulation extractabl@€SE) NIZKs. While quite similar to the notion of
simulation-sound extractable NIZKis [34], it involves a subtle but rather mapbdifference: whether the ad-
versary has oracle access to simulated proofs for arbitrary (eve) &i#gements or only true ones. Intuitively,
both the Naor-Segev'’s leakage-resilient CCA encrypfioh [49] and-Kaiizuntanathan’s leakage-resilient sig-
nature scheme [44] used the technique of encrypting a witndss some relation?, and then providing a
ss-NIZK proofy that the ciphertext indeed contains the encryption of a valid withessThe main reason
for using this technique is to allow the reduction to extract a valid witness fronfreew” valid pair (¢*, ¢*)
produced by the attacket (who saw many such valid pairs earlier). In this paper, we will abstracptbigerty
into the tSE notion mentioned above (of which the above mentioned techniqupdsificsexample, where the
pair (¢, ¢) together makes up a single tSE-NIZK proof). Moreover, we show thetgmnulation extractability,
as we abstract it, igreciselythe right notion for generalizing and proving the security of the previoustruc-
tions. This has two positive effects. First, it makes the generic constreafd@CA-encryption and signatures
somewhat more intuitive, both for proving and understanding. For exatheléaditional “double-encryption”
paradigm of Naor-Yund [50] for designing CCA-secure schemas fthosen-plaintext secure (CPA-secure)
schemes, also used hy [49] in the context of key leakage, can be stdt€@A&-encrypting message under
two keys and proving plaintext equality”. Using our more general “simulagixtnactability view”, it is now
stated as “CPA-encrypting: and proving that one knows the plaintext”. We believe that the latter view is not
only more general, but also more intuitive as a way of explaining “CPA-tévG@nsformation. A similar
discussion is true for our signature constructions.

Second, we show a generic way to build tSE-NIZKs whisioids using (expensive) ss-NIZKlsistead,

3 The work of [34] constructs ss-NIZK proofs for practical langusgad uses them to construct group signatures, but the resulting
scheme has signature size of “thousands or perhaps even milliorsupf glements’{[35] despite being constant.



| Reference| Unforgeability | Model | Leakage | Efficient? |

[4] Existential Random Oracleg  1/2 Yes
4] Entropic Random Oracle 1 Yes
[44] Existential Standard 1 No
This Work Existential Standard 1 Yes

Table 1: Previous work on leakage-resilient signatures and results afidink

| Reference| Attack | Model | Leakage| Efficient? |

[2]149] CPA | Standard 1 Yes
[49] CCA | Standard  1/6 Yes
[49] CCA | Standard 1 No

This Work | CCA | Standard 1 Yes

Table 2: Previous work on leakage-resilient encryption and resultssofviirk

our method usesegular NIZKs and any CCA-secure encryption schellﬂePerhaps surprisingly, given the
current state-of-the-art NIZK and CCA schemes, the combination “COMZK” appears to be much more
efficient in practice than the combination “CPA + ss-NIZﬁ(As a result, we were able to provide a general
framework for building leakage-flexible signature and CCA-encrypticmemes, eventually allowing us to
efficiently instantiate our schemes (by avoiding using ss-NIZKs). We suinenaur results for signature and
CCA-encryption schemes in Tables 1 ddd 2, also comparing them to therlmstgnstructions. In all the
tables, the “sub-optimal” entries (for efficiency, security, model or nddtakage of prior constructions) are
written in italics, and most prior rows are also explained in the related workoR€E2. For signatures, we
stress that no efficient construction in the standard model was knowntpraur work, for any non-trivial
relative leakage fraction (let alorig.

Once we have efficient leakage-flexible signature schemes, we eltbaitvthe standard signature-based
ID scheme, where the verifier asks the prover to sign a random messejjg,extends to the leakage setting.
Moreover, the resulting actively secure ID scheme inherits its relativaggatkkom the corresponding signature
scheme, and satisfies the strongest notion of “anytime-leakage” [4Beet@n 6.11), where the leakage can
occur even during the impersonation attack. We summarize our results rhi&nes in Tablg 3. Although
our method is pretty simple, we notice that the other two popular methods of buildisghemes — the use
of YX-protocols for hard relations analyzed in [4] (see first two rows ofd&B), and the use of CCA-secure
encryption (where the prover decrypts a random challenge ciphertektiperently do not allow us to obtain
optimal results, even when instantiated with leakage-flexible hard relatioc@€Arencryption schemes. See
Sectiorf 6.1l for more details.

Finally, we summarize our results for AKA protocols in Table 4. We actuallyinkit@o such protocols.
First, similarly to the case of ID schemes, we can obtain leakage-resilient #dkdmes from any leakage-
resilient signature scheme, as formally explainedin [4]. The idea is totébesign every flow of a standard
Diffie-Hellman-based protocol, but with a leakage-resilient signaturerseh We notice, though, that the
resulting protocol is notleniable Namely, the transcript of the protocol leaves irrefutable evidence that th
protocol took place. Motivated by this deficiency, we design anotheerge®KA protocol based on CCA-
encryption. The details are given in Sectionl 6.2, but, intuitively, the parntiesypt the flows of the standard
Diffie-Hellman-based protocol, effectively proving their identities by ssstully re-encrypting the appropriate
flows. Although we do not formalize this, this protocols is “deniable”, bsedhe transcript of the protocol

“This is OK for the signature application, but might appear strange fo€@A-encryption application, as we need “CCA to get
CCA". However, as a building block for tSE-NIZKs, we only negdndardCCA schemes (which are known), and as a result obtain
leakage-resilien€CCA schemes.

SIndirectly, the same realization was made by Grbth [35] and Camenisth[&8] in different concrete contexts.



Reference | Security | Model | Leakage | Efficient? |
[4] Pre-Impersonation Standard 1 Yes
[4] Anytime Standard]  1/2 Yes
[44] (implicit) Anytime Standard 1 No
This Work Anytime Standard 1 Yes

Table 3: Previous work on leakage-resilient identification schemes aotigef this work

| Reference| Model | Leakage | Deniable? | Efficient? |
] Random Oracle 1 No Yes
[4,144] Standard 1 No No
This Work Standard 1 No/Yes* Yes

* QOur first AKA protocol is not deniable; our second — is.

Table 4: Previous work on leakage-resilient AKA and results of this work

can be simulated without the knowledge of parties’ secret keys. To thebear knowledge, this protocol
was not suggested and analyzed even in the leakage-free setting,iivyguears interesting already. Here we
actually show that our (new) deniable AKA protocol works even in thegmee of leakage.

CONCRETECONTRIBUTIONS. As we explained above, we generically reduce the question of buildicget
leakage-flexible ID schemes and AKA protocol to the question of efficiengifantiating our leakage-flexible
signature and/or encryption schemes. Such instantiations are givention§8dqwith most details in Ap-
pendix@). We also explained how the latter instantiations became possiblewodyrsince we gave generic
constructions of both primitives based on the new notion of tSE-NIZK, aed #inowed that satisfying this
notion may be possible usimydinary NIZKs for appropriate languages, without relying on the expensive
simulation-sound NIZKs. Unfortunately, efficient construction of (ewainary) NI1ZKs, due to Groth and Sa-
hai [3€], are only known for a pretty restrictive class or languagedimelar groups. Thus, obtainingcancrete
efficient instantiation still requires quite a substantial effort.

Specifically, all the building blocks have to be instantiated efficiently, andessped in a form such that
the resulting NP relation satisfies the severe limitations imposed by the GrothN8ZKa. For example, to
build leakage-resilient CCA-encryption, we need to have an efficiektgaflexible CPA scheme, a CCA
scheme supporting labels and a one-time signature scheme, all conneetbeitday an efficient NIZK for
a complicated “plaintext equality” relation. Similarly, for leakage-resilient aigre schemes, we need an
efficient second-preimage resistant (SPR; see Defirifidn 2.1) relatiba &&CA scheme supporting labels,
once again connected by an efficient NIZK for a complex relation. Ngrsingly, such tasks cannot typically
be done by simply combining “off-the-shelf” schemes from the literature bet, it requires very careful
selection of parameters to make everything “match”, followed by a roundrdidr efficiency optimizations.
Usually, though, it requires the design of new primitives, which work wethwther known primitives, to
enable efficient NIZK. For example, in this work, we designed two new 8fdtions (see Clainis .1 and
[C.2), since prior SPR relations did not appear to mesh well with our CCAyptien scheme. To emphasize
the importance of the new SPR relations, we point out that combining presamssructions with Groth-Sahai
proofs would require committing to the witness bit-by-bit in order to achieveefihactability.

Overall, we get two different efficient instantiations of both leakagéieessignature and CCA encryption
schemes in the standard model, based on standard (static and “fixedJesgtimptions in bilinear groups,
called external Diffie-Hellman (SXDH) and Decision-Linear (DLIN). tging many technicalities, the high-
level idea of all these schemes, as well as the efficiency they achievesdsilied in Sectionl5. The actual
low-level details of how to put “everything together”, in the most efficienhre, is described AppendiX C.



1.2 Related Work

LEAKAGE-RESILIENCE AND MEMORY ATTACKS. Our model of leakage, sometimes called memory-attacks,
was first proposed by Akavia, Goldwasser and Vaikuntanathlan [2, aso constructed CPA secure PKE
and IBE schemes in this model under tearning with errors (LWE)Rssumption. Later Naor and Segevi[49]
generalized the main ideas behind these constructions to show that all sdiesed ohash proof systen{see
[18]) are leakage-resilient. In particular, this resulted in efficient tansons based on the DDH arid-Linear
assumptions, where the relative leakage on the secret key could be naggedach 1. Moreover, [49] showed
how to also achieve CCA security in this model by either: (1) relying on thermeigand inefficient) Naor-
Yung paradigm where the leakage-rate can be made to appraagR) using efficient hash proof systems with
leakage-rate only approaching6. Unfortunately, it seems that the hash proof system approach to building
CCA encryption is inherently limited to leakage-rates belg\®: this is because the secret-key consists of two
components (one for verifying that the ciphertext is well-formed and onédcrypting it) and the proofs break
down if either of the components is individually leaked in its entirety.

The work of [3] generalizes [49] still further by showing how to constieakage-resilient IBE schemes
generically based oidentity-based hash proof systemsth several instantiations.

Leakage-resilient signature schemes in the model of memory attacks wsteuobed in the random-oracle
model by [4]44], and in the standard model byi[44]. The random-osatiemes are highly-efficient but suffer
from two limitations. Firstly they rely on the Fiat-Shamiir [28] transform which ifyd&mown to be secure in
the Random Oracle model and is not sound in genéral [32]. Secondlgctiemes can only tolerate leakage
which approaches$/2 of the secret key. On the other hand, the standard-model schemes adloglative-
leakage approaching but are based on generic simulation-sound NIZKs and do not come wifffieient
instantiation.

The work of [4] also constructs identification (ID) schemes and authéetideey agreement (AKA) pro-
tocols. For ID schemes, two notions of security (we describe these in olefdictio 6.11) were considered:
a weaker notion called pre-impersonation leakage-resilience and aetrootion called anytime leakage-
resilience. Although efficient schemes in the standard model were givéoth notions, the leakage resilience
could be made to approactonly for pre-impersonation leakage while, for anytime leakage, the goleenses
can only tolerate a leakage-rate beldy2. For AKA schemes, a construction was given based on leakage-
resilient signatures (only requiring a weakened notion of security calfedmc-unforgeability). Using the
appropriate signature schemes, this yielded two types of constructidicgergfconstructions in the random-
oracle model and generic but inefficient constructions in the standardlrfimath of which have leakage-rates
approaching).

OTHER MODELS OF LEAKAGERESILIENCE Several other models of leakage-resilience have appeared in
the literature. They differ from the model we described in that they restrectype as well asamount of
information that the adversary can learn. For example, the wodkpasure resilient cryptograph$4,23,43]
studies the case where an adversary can only learn some suhabt of the physical bits of the secret.key
Similarly, [41] studies how to implement arbitrary computation in the setting wheaglagrsary can observe a
smallsubset of the physical wires of a circuMost recently,[[2[7] study a similar problem, where the adversary
can observe a low-complexity (e.gdC?) function of the wires. Unfortunately, these models fail to capture
many meaningful side-channel attacks, such as learning the hammingtwEilga bits or their parity.

In their seminal work, Micali and Reyzin [48] initiated the formal modeling oksathannel attacks under
the axiom thatonly computation leaks information{OCLI), where each invocation of a cryptographic primi-
tive leaks a function obnly the bits accessed during that invocation. Several primitives have bestructed
in this setting including stream ciphefs [25] 54] and signatures [26]. Magently, [42] construct a general
compiler that can secual primitivesin this setting assuming the use of some limited leak-free components
and the existence of fully homomorphic encryption. On the positive side,@id @odel only imposes a bound
on the amount of information learned during each invocation of a primitivenauon the overall amount of



information that the attacker can get throughout the lifetime of the system. Qretaive side, this model
fails to capture many leakage-attacks, such as the cold-boot atta¢k hfwidareall memory contents leak
information, even if they were never accessed.

Lastly, we mention several models of leakage-resilience which are striatygsr than the memory-attacks
model. Firstly, the Bounded-Retrieval Model [19, 24 4, 3] imposes dalitiadal requirement on leakage-
resilient schemes, by insisting that they provide a way to “grow” the s&ese{possibly to many Gigabytes)
S0 as to proportionally increase the amount of tolerated leakage, but witlvoeiasing the size of the public-
key, the computational-efficiency of the scheme, or the ciphertext/sighadormunication lengths. The work
of [4] constructs “entropic” signatures, ID schemes and AKA protogokhis setting, while the work of [3]
constructs PKE and IBE schemes in this model. A different strengthening @utkiliary input model[21, 20]
where the leakage is not necessarily bounded in length, but it is (ordyjree] to be computationally hard to
recover the secret-key from the leakage. The work of [21] contstsyanmetric-key encryption in this model,
under a strengthening of the learning parity with noise (LPN) assumptioite J&@] constructs public-key
encryption under the DDH and LWE assumptions. Yet another strengthehithe memory-attacks model,
proposed by[[31], is to require that there is a single scheme (paramdterike by the security parameter)
which can tolerate essentially any amount of relative-leakage where dloe xcurity of the scheme degrades
smoothly as the relative-leakage increases. In this maddel, [31] conatsychmetric-key encryption scheme.

2 Definitions of Leakage-Resilient Primitives

We model leakage attacks by giving the adversary accede#&kage oraclewhich he can adaptively access to
learn leakage on the secret key. A leakage or@é];é(-) is parametrized by a secret ke, a leakage parameter
¢, and a security parameter A query to the leakage oracle consists of a functign {0, 1}* — {0, 1}, to
which the oracle answers with) = h;(sk). We only require that the functiorig be efficiently computable,
and the total number of bits leaked)s, o; < /.

Definition 2.1 (Leakage Resilient Hard Relationi relation R with a randomized PPT sampling algorithm
KeyGen is an/-leakage resilient hard relatiagh

« For any (sk, pk) « KeyGen(1*), we have(sk, pk) € R.
* There is a poly-time algorithm that decides ik, pk) € R.
» For all PPT adversariesd%: () with access to the leakage orad}’(-), we have that
Pr |R(sk*,pk) =1 | (pk,sk) «— KeyGen(1) , sk* « Aoiée(')(pk;) < negl(N)
Notice that without loss of generality, we can assume,tétheriesOi,f(-) only once with a function

whose output i€ bits.

Definition 2.2 (Leakage Resilient Signatureg) signature schem& = (KeyGen, Sign, SigVer) is ¢-leakage
resilientif V PPT .4 we havePr[.A wing < negl(\) in the following game:

1. Key Generation: The challenger rungvk, sk) « KeyGen(1*) and givesvk to A.

2. Signing and leakage queries: A% ():S++() is given access to the leakage orac®;’(-) and the
signing oracleSgx (). A query to the signing oraclé,(-) consists of a message, to which the oracle
responds witlr = Sign_, (m).

3. A outputs(m*,o*) and wins ifSigVer, ;. (m*,c*) = 1 andm* was not given taSy(-) as a signing
query.



Definition 2.3 (Leakage Resilient CCA-Secure Encryptioi)e say that an encryption scheée- (KeyGen, Enc, Dec)
is (-leakage resilient CCA-secuife¥ PPT.A we havePr[.A wing < % + negl(A) in the following game:

1. Key Generation: The challenger rungpk, sk) < KeyGen(1*) and givegpk to A.

2. Decryption and leakage queries: AN (D) s given access to the leakage ora(ﬂé;f(-) and the
decryption oracleDg(-). A query to the decryption oraciB,y(-) consists of a ciphertext to which the
oracle responds withn = Decg(c).

3. Challenge generation: .4 sends plaintextsng, m; to the challenger. The challenger choodes™
{0,1}, and sends™* « Enc,(my) to A.

4. Decryption queries: AP=+() is given access to the decryption oraélg, (-) with the restriction that4
cannot send* as a decryption query. Notice also thdP=+(") is notgiven access to the leakage oracle
05 0).

5. A outputst/, and wins ifo = b/.

If an encryption scheme Gsleakage-resilient CCA-secunae simply refer to it as beinGCA secure

Recall that we can define labeled CCA encryption in which a message igéeatiand decrypted according
to a public labelL. If an encryption schemé = (KeyGen, Enc,Dec) supports labels, we use the syntax
Enc’(m) to denote the encryption of messageunder labelL. Similarly, we useDec”(c) to denote the
decryption of ciphertext under the labeL. In this case, we extend the correctness of encryption/decryption
to requiring thaDec” (Enc*(m)) = m. The security definition described in Definitibn2.3 can also be easily
modified as follows. A query to the decryption oracle now consists of a digitte: and a labell, to which
the oracle responds withh = Dec’; (c). In the challenge generation stagé submits a labeL* as well as

messagesy, m; and the challenger compute’s « Enczf,:(mb) for b < {0,1}. Finally, in the second stage
of decryption queries we require that the adversary is allowed to aglefyptions of any ciphertextunder
label L only subject toL, ¢) # (L*, c*).

Definition 2.4 (Leakage Resilient CPA-Secure Encryptioe say that an encryption scheée- (KeyGen, Enc, Dec)
is (-leakage resilient CPA-secuifey PPT.A we havePr[A wing < 3 + negl()) in the game described above
with the modification thatd does not have access to the decryption ordelg(-). If an encryption scheme is
0-leakage-resilient CPA-secune simply refer to it as beinGPA secure

3 Simulation Extractability

We start by briefly recalling the notion abn-interactive zero-knowledge (NIZK9]. For our purposes, it will
be slightly more convenient to use the notion(eime-string) NIZK argumeritom [57]. Note, however, that
the definitions and constructions given in this section can be extended tagh®tNIZK proofs.

Let R be an NP relation on pairg;, y) with corresponding languager = {y | Jzs.t.(z,y) € R}. A
non-interactive zero-knowledge (NI1ZK) argumennta relationR consists of three algorithniSetup, Prove, Verify)
with syntax:

* (CRS TK) « Setup(1*): Creates a common reference string (CRS) and a trapdoor key to the CRS.
e T« Provecgs(z,y): Creates an argument th&{z, y) = 1.

* 0/1 «— Verify.,4(y, m): Verifies whether or not the argumenis correct.



For the sake of clarity, we writerove andVerify without thecRrsin the subscript when thers can be
inferred from the context. We require that the following three properiéd: h

Completeness:For any(z,y) € R, if (CRS TK) « Setup(1), 7 « Prove(z,y), thenVerify(y, 7) = 1.
Soundness:For any PPT adversary,

. Verify(y,7*) =1 | (CRS TK) « Setup(1*)

P y ¢ Lr (y,7*) — A(CRY

< negl(N).

Composable Zero-Knowledge: There exists PPT simulatStim such that, for any PPT adversadywe have
|Pr[Awins] — 3| < negl(\) in the following game:

* The challenger samplégRs TK) « Setup(1*) and givegCRS TK) to A.

» The adv.A choosesz, y) € R and gives these to the challenger.

 The challenger samples < Prove(z,y),m < Sim(y, TK),b < {0, 1} and givesr, to A.
« The adv.A outputs a bib and wins ifb = b.

We revisit the notion of simulation extractable NIZK arguments [58. 16, 52353 and define a new prim-
itive calledtrue-simulation extractabl&llZK arguments. Apart from satisfying the three properties described
above, an NIZK argument is simulation extractable if there exists a &@actor Ext which (when given
an additional extraction trapdoor to tikes) extracts a witness’ from any proofr produced by a malicious
prover P*, evenif P* has previously seen sorsenulated proofgor other statements. We make an important
distinction between our new definition trie-simulation extractability, where all simulated proofs seertiy
are only oftrue statements, and the stronger notionaofsimulation extractability, wheré* can also see
proofs offalsestatements. As we will see, the former notion is often simpler to construct #ficdent in our
applications.

We extend our definition tg'-extractability whereExt only needs to output some functigi{z’) of a
valid witnessz’. We further extend this definition to suppdabels so that theProve, Verify, Sim, and
Ext algorithms now also take a public labklas input, and the correctness, soundness, and zero-knowlegde
properties are updated accordingly. IIf = (Setup, Prove, Verify) is an NIZK argument with simulator
Sim and extractoExt, we writeProve”, Verify”, Sim”, Ext’ to denote proof, verification, simulation, and
extraction under labdl, respectively.

We start by defining a simulation orac# M (-). A query to the simulation oracle consists of a pair
(z,y) and a labelL. The oracle checks ifz,y) € R. If true, it ignoresz and outputs a simulated argument
sim”(TK,y), and otherwise outputs. We now give a formal definition of true-simulation extractability.

Definition 3.1 (True-Simulationf-Extractability) Let f be a fixed efficiently computable function andllet
(Setup, Prove, Verify) be an NIZK argument for a relatioft, satisfying the completeness, soundness and
zero-knowledge properties above. We say that true-simulationf-extractabld f-tSE) with labels if:

 Apart from outputting a CRS and a trapdoor kegtup also outputs an extraction key:
(CRS, TK, EK) « Setup(1*).

» There exists a PPT algorithBExt(y, ¢, EK) such that for allP* we havePr[P* wins] < negl()) in the
following game:

1. Key Generation: The challenger run§crs, TK, EK) « Setup(1*) and givescrsto P*.

2. Simulation queries: P*STM«()

adaptively access.

is given access to the simulation orad& M (-), which it can



3. Adversary Output: P* outputs a tupléy™*, L*, ©*).
4. Extraction: The challenger runs* « Ext™ (y*, p*, EK).

5. P* wins if (a) the pair(y*, L*) was not part of a simulator query, (Werify” (v*, ¢*) = 1, and
(c) for all 2’ such thatf(2’) = z* we haveR(z',y*) = 0

In the case wherf is the identity function, we simply say tHats true-simulation extractable (tSE)

We give several variations of this new primitive. First, we defime-timesimulation extractability, in
which the adversary* is only givena singlequery to the simulation oracl8Z M- (-). Second, we define
the notion ofstrongsimulation extractability by changing the winning condition so tRéatis now required to
output a new statement/argument pair instead of a new statement. More fonalijtion[5& becomes: the
tuple (y*, L*, ¢*) is new, that is, eithefy™, L*) was not part of a simulator query, or if it was, the argument
©* is different from the one(s) given t8* by SZ M« (-). We observe that we can generically construct strong
f-tSE NIZK arguments from (standarditSE NIZK arguments if we additionally use a strongly-secure one-
time signature. In particular, the prover now computes the stand&&dE argument, signs it, and attaches the
verification keyvk to the public label. To verify, we first check that the signature is valid and eefy the
f-tSE argument.

Finally, we say that an NIZK argumefitis any-simultationf-extractable {-aSE)(similar to the notion of
simulation-sound extractability of [34]) if the adversapy instead has access to a modified simulation oracle
gf/\//lm(-) that responds to all simulation queries without checking fh@t,y) = 1 (and hence might also
give simulated arguments of false statements). In this work we do not mald tige variation, but state it
here because as we will see, this notion has been implicitly used in prior wdokgever, f-aSE is a stronger
notion thanf-tSE and isnot needegdas we will show thaff-tSE is sufficient in constructing leakage-resilient
signatures and CCA-encryption.

4 Generic Constructions

In this section we give generic constructions of leakage-resilient leéations (Section 4l1) , leakage-resilient
signatures (Sectidn 4.2), leakage-resilient CCA-secure encryptamii¢8[4.8). In the latter two we use the
f-tSE NIZK primitive that we defined in Sectidn 3. Finally, in Section 4.4 we giwastruction off-tSE
NIZK arguments.

4.1 Leakage-Resilient Hard Relations

We begin by showing how to generically construct leakage-resilient tedatilons from SPR relations. Infor-
mally, we say that a relatioR is second-preimage resistant (SPRgiven a random(z,y) € R itis difficult
to find 2’ # z such thatz’, y) € R. We formalize this in the following definition.

Definition 4.1 (Second-Preimage Resistant (SPR) Relatign)elation R with a randomized PPT sampling
algorithmXeyGen is second-preimage resistant
« Forany(z,y) « KeyGen(1*), we have(z,y) € R.

* There is a poly-time algorithm that decidegif, y) € R.

(2,9) «— KeyGen(l/\)

. i / /
For any PPT algorithmA, we havePr |(z/,y) € RAx' # x ¥ — Az, y)

< negl(A).

8In other words, the adversary wins if the extractor fails to extract a gabee z* which corresponds to at least one valid witness
x';i.e. f(z') = 2*. For the identity functionf (z) = =, this corresponds to the statemeR{(:z*, y) = 0.



We define thaverage-case pre-image entragythe SPR relation to b#l,,,(R) = H. (X | Y), where the
random variableg X, Y') are distributed according téleyGen(1*). (We refer the reader to AppendixA.1 for
the definition oH (X | Y).)

Theorem 4.2. If R(z,y) is an SPR relation, then it is also afdleakage resilient hard relation fof =
H,,,(R) — w(log \), where\ is the security parameter.

The proof of Theorem 412 is given in AppendixA.1.

4.2 Leakage-Resilient Signatures

In this section, we give a generic construction of leakage-resilient sigggabased on leakage-resilient hard
relations and tSE-NIZK arguments. LBtx, y) be an/-leakage resilient hard relation with sampling algorithm
KeyGenp(11). LetIl = (Setup, Prove, Verify) be a tSE-NIZK argument for relatioR supporting labels.
Consider the following signature scheme:

* KeyGen(1?) : Outputsk = 2 andvk = (CRS,y) where
(z,y) « KeyGeng(1*) , (CRS TK, EK) « Setup(1?).

 Signg (m) : Outputoc = ¢ wherep «— Prove™(z,y). (Note thatm is thelabelin the argument.)
* SigVer, ;. (m,o): OutputVerify™(y, o).

Theorem 4.3. If R(z,y) is an/-leakage resilient hard relation and is a labeled tSE-NIZK argument fat,
then the above signature scheme idaakage resilient signature scheme.

The proof of Theorem 413 is given in AppendixA.2.

4.3 Leakage-Resilient CCA-Secure Encryption

In this section, we give a generic construction of leakage-resilient €&Awe encryption from leakage-
resilient CPA-secure encryption and strofgSE NIZK arguments. LeE = (KeyGen,Enc,Dec) be an/-
LR-CPA secure encryption scheme andIlet= (Setup, Prove, Verify) be a one-time, strong-tSE NIZK
argument for the relation

Rene ={ ((m,7), (pk,c)) | c=Encpy(m;r) }.

where f(m,r) = m (i.e. the extractor only needs to extract the messagdut not the randomnessof
encryption). We show how to ugg I to construct a-LR-CCA encryption schemé&*.
DefineE* = (KeyGen*, Enc*, Dec*) by:

KeyGen*(11): Outputpk = (pko, CRS), sk = sko where
(pko, sko) « KeyGen(1?) , (CRS, TK, EK) « Setup(1?).

Ency (msir): OutputC = (¢, 7) wherec « Encpy, (m; 1) , m < Provecrs((pko, ¢), (m,1)).
Dec’, (C): ParseC' = (c, ). If the argumentr verifies outpuDec,(c), else outputL.

Theorem 4.4. Assume thaf is ¢-LR-CPA secure, antl is a strong one-timg-tSE NIZK argument for the
relation R.,. where, for any witnesén, ), we definef (m,r) = m. Then the schem&"* defined above is
(-LR-CCA secure.

The proof of Theorerm 414 is given in Appendix A.3. We also note that, if tReN&K construction allows
labels, than we can naturally extend our construction above to yiéldR:CCA encryptionwith labels by
simply putting the encryption labels into the NIZK proofs (and using them toy#ré proofs).
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4.4 True-Simulation f-Extractable (f-tSE) NIZK

Let f be any efficiently computable function, and IB{z,y) be an NP relation. We show how to con-
struct anf-tSE NIZK argument¥ from any labeled CCA-secure encryption scheme, and (standardy NIZ
arguments. Lef = (KeyGen,Enc,Dec) be a CCA-secure encryption scheme supporting labels, and let
IT = (Setupyy, Proveryy, Verifyy;) be an NIZK argument for the relation

Rn = { ( ((L‘,T) ) (y,c,pk,L) ) ’ R((L‘,y) =1Ac= EnCﬁk(f((L‘);T') }
We definef-tSE NIZK argumentl (supporting labels) as follows:

* Setup(1?) : OutputCRS = (CRS, pk), TK = TKy1, EK = sk where
(pk, sk) < KeyGen(1"), (CRST, TKy1) «— Setupp(1?).

* Provel(x,y;r): Outputy = (c, 7) wherec « Enclfk(f(a;); r), m < Proven((z,r), (y,c, pk, L)).
* VerifyX(y,¢): Parsep = (c,7) and runVerifyy((y, c, pk, L), ).

Theorem 4.5.If £ is a labeled CCA-secure encryption scheme Hnd an NIZK argument for relatioRy,
thenV is a f-tSE NIZK argument for relatiof.

The proof of Theorern 415 is given in Appendix A.4.

4.5 Comparison of Our Generic Constructions to Prior Work

The idea of using an SPR relation to construct a leakage-resilient Hatibmewas implicit in [4,[44], and
explicitly described in[[5] for the case of leakage-resilient one-wagtions.

Our constructions of leakage-resilient CCA encryption and signatuoes fSE NIZKs bear significant
resemblance to prior constructions. In particular, we observe that ana#econstruction of tSE NIZK to
that of Sectiom 4J4, could be achieved by using a CPA-secure encrgafimme instead of a CCA-secure one,
and a ss-NIZK argument system [56] instead of a standard one. tirtHaaesulting construction would yield
an any-simulation extractable (aSE) NIZK argument. This instantiation of aSE NIZKmpdicitly used by
[44], in their construction of leakage-resilient signature schemes. Isdswsed implicitly in the Naor-Yung
“double-decryption” paradigm [50, 56, 47] for CCA security, whichsnalso later used in_[49] to construct
leakage-resilient CCA-encryption. However, as we have seen, tSHisent for constructingoth leakage-
resilient signatures and CCA-encryption and thus, the stronger note®kofs not needed. Furthermore, given
the current state of efficient encryption schemes and NIZK, the diféerén efficiency between ss-NIZK and
standard NIZK issignificantlygreater than the difference between CCA and CPA-secure enc&ptims
making tSE superior in both simplicity and efficiency.

We note that our construction of tSE NIZKs (based on CCA encryptiorstamtiard NIZKs) was implicitly
used by([34] to construct signatures of group elements. It was also implisiélgt by[[13] to construct efficient
CCA-secure encryption scheme with key-dependent message (KDiujityeout of a CPA version of such
scheme. Still, the abstraction of tSE has not been explicitly defined in pridraespite its apparent usefulness.

5 Instantiations

ASSUMPTIONS We review several standard hardness assumptions on which we velbbasonstructions.

"Informally, the difference between CCA and CPA-secure encryptionlis2 group elements, whereas the size of a ss-NIZK proof
is more than twicehe size of a standard NIZK proof.
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Decisional Diffie-Hellman (DDH). Let G be a group of primer order. Let g1, g2 Se andr; rq, o & Ly.
The decisional Diffie-Hellman (DDH) assumption states that the following twivilolisions are computation-
ally indistinguishable(G, g1, g2, 97", g5°) and(G, g1, g2, 97, g5)-

Let Gy, Go, G be groups of prime ordey and lete : G; x Go — G be a non-degenerate efficiently
computable bilinear map.

Symmetric External Diffie-Hellman (SXDH) [59, 10[6] 29, 61T.he symmetric external Diffie-Hellman as-
sumption (SXDH) is that the DDH problem is hard loth groupsG; and G,. The assumption is clearly
invalid for symmetric pairings (whe@; = G2), but is believed to hold when there is no efficiently computable
mapping betweefr; andGs.

K-Linear [40,[60] and DLIN [10]. Let G be a group of primer ordey and letK > 1 be constant. Let

90,91, - -+ K Ll andzg, zs, ..., Tk & Z4. The K-Linear assumption states that the following two distribu-
tions are computationally indistinguishabl&, go, g1, . . ., 9x. 91", - - -, 95, 95°), and(G, go, 91, - - -, g 91" - -

K
935, 985), whereX = Y0 ;.

Note that forK' = 1, the K-Linear is the same as DDH, and that it does not hold when working with
symmetric pairings. In that setting, tReLinear assumption is usually assumed to hold, and is often referred
to as the Decisional Linear (DLIN) assumptiofihroughout this paper we assume theLinear assumption
holds in bothG, andG-, which is the case when working with symmetric pairings, and slightly alnts¢éion
whenK = 1 and assume SXDH holds in that case.

OUR INSTANTIATIONS. We show efficient instantiations of the leakage-resilient signature afdgeCure
encryption constructions described in Section$ 4.2add 4.3, respecBeelgach scheme, we give two instan-
tiations based on bilinear maps: one secure under the symmetric externadHEffiman (SXDH) assumption,
and a second, secure under the Decision Linear (DLIN) assumptioa firBh can be used with asymmetric
pairings, while the second applies to the case of symmetric pairings. We giagsdbf all instantiations in
Appendix @ but give a high-level idea below.

Signatures. Recall that in order to instantiate the signature scheme from Sdctibn 4.2, adeanleakage-
resilient hard relatior? (which we will derive from an SPR relation) and a true-simulation extractdBIE)
NIZK argument, which we build from CCA-secure encryption and a stahN&éZK argument for the relation
{((x,r), (y,¢,pk,L) ) | R(z,y) =1Ac= Enclfk(f(a:); r) }. We show our choice of instantiations for these
components:

e CCA-Secure Encryption: Under both the SXDH and DLIN assumptions, we use efficient encryption
schemes in the style of Cramer-Shoup [17, 60].

» NIZK Argument: We use the Groth-Sahai proof systém|[36], which can be instantiatedibdén SXDH
and DLIN. See AppendixIB for a brief description of the proof system.

» SPR Relation:Previous constructions of leakage-resilient primitives use the SPR fangtig)? . . . gi».
However, this function has the problem that the witness lies in the exponeastmiBans that we cannot
combine it with an encryption scheme for element&ifunless each witness component is committed
bit by bit which, among other things, results in proofs growing linearly withstheurity parameter), and
unfortunately encryption schemes for messages,inannot be combined with the Groth-Sahai system.
We therefore construct two new SPR relations based on pairing-greduations. For our SXDH in-
stantiation, we use the relatieh, x1) e(ha, x2) ... e(hy, zn) = e(y, §), Whereg is a generator ofs,.

We prove that this relation is SPR under the SXDH assumption. In the DLI&| easuse the relation:
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e(hi,z1) e(hg,x2) . ..e(hn,zn) = e(y1,9) , e(h1,z1) e(ho, x2) ...e(h,, z,) = e(y2, g), Whereg is a
generator ofz. We prove that this relation is SPR under the DLIN assumption.

To achieve(1 — ¢)|sk| leakage resilience, we let(the number of witness components) in the SPR relation
be inversely proportional te.

Theorem 5.1. Let Gy, G, be groups of primer ordey. For anye > 0, there exists d1 — ¢)|sk|-leakage
resilient signature scheme, secure under the SXDH assumption, ugmatses consisting of9/¢)(1 +
w(log A)/logq) + 24 group elements and 2 elementsZy. Similarly, for anye > 0, there exists g1 —
€)|sk|-leakage resilient signature scheme, secure under the DLIN assumpsing signatures consisting of
(19/€)(2 + w(log A)/ log ¢) + 70 group elements and 6 elementZipn

CCA-Secure Encryption. Recall that for leakage-resilient encryption, we need leakage-rasiliei-secure
encryption, standard CCA-secure encryption and strong tSE NIZkGhwke can get from combining regular
tSE NIZK with a strong one-time signature. We build regular tSE NIZK from G&&&ure encryption and
regular NIZK. We describe our choices for each of these below.

» LR-CPA-Secure Encryption:We construct a new leakage-resilient CPA-secure encryption sctame f
our purpose in the style of EIGamal (similar to ones usef in[[49, 13] but matkmngre efficient).

» CCA-Secure Encryption: Under both the SXDH and DLIN assumptions, we use efficient encryption
schemes in the style of Cramer-Shoupl [17, 60].

« NIZK Argument: We use the Groth-Sahai proof systém|[36], which can be instantiatedibdén SXDH
and DLIN. See AppendikxIB for a brief description of the proof system.

» One-Time Signature\We observe thainystrong one-time signature secure under these assumptions can
be used. Here, we opt for the scheme of [34], secure under theeRidarg assumption (implied by both
SDXH and DLIN), because its signature size is small, namely 2 elemefts in

The leakage that our new CCA-secure encryption tolerates is the sane laakhge for the CPA-secure
scheme. Informally, we achieg — ¢)|sk| leakage resilience in the CPA-secure scheme by increasing the
number of generators used in the public key and ciphertext. This numbédreniiversely proportional te.

Theorem 5.2.LetGy, G2 be groups of primer ordey. For anye > 0, there exists &1 —¢)|sk|-leakage resilient
encryption scheme, secure under the SXDH assumption, using ciithexeasisting of2/¢)(2+ A/ log ¢) + 15
group elements and 2 elementsZp. Similarly, for anye > 0, there exists g1 — ¢€)|sk|-leakage resilient
encryption scheme, secure under the DLIN assumption, using ciptsectensisting of3/¢)(3+ A/ log q) + 34
group elements and 2 elementszin

6 Other Applications
6.1 Leakage-Resilient ID Schemes

Recall that, in an identification scheme, an honest prover chooses apedlet key paifpk, sk) and publishes
pk. An identification scheme is a protocol in which thverusessk to identify herself to averifier that only
knowspk. The security property of an identification scheme considers an adyefgaat acts in two stages: a
learning stage and an impersonation stage. In the learning stagpeatedly interacts with the honest prover
while taking the role of analiciousverifier in an attempt to learn some non-trivial information abgutin the
impersonation stage, the honest prover “goes away” Amttempts to impersonate the prover’s identity to an
honest verifier. We say such a scheme is secure if the adversarpliiasreegligible probability of succeeding
in the impersonation stage.
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Leakage-resilient identification schemes were first studied and cotestrinc[4]. Two distinct notions of
leakage-resilience were considergpde-impersonatioleakage an@nytimeleakage. In the former notion, the
attacker can only get leakage on the secret key during the learningstatgein the latter notion, the adversary
might also get some additional leakage during the impersonation stage lpafsibseing some “challenges”
from the verifier (se€ J4] for formal definitions). It was shownlin [4athhe Okamoto identification scheme
[51]], and in fact any:-Protocol for an SPR hard-relation, is leakage-resilient. Moreowgeariye > 0, there
is a generalization of the Okamoto ID scheme whiclilis- ¢)|sk|-leakage-resilient fopre-impersonation
leakage Unfortunately, due to the rewinding nature of the security proof, theraehwas only shown to be
(1/2 — €)|sk|-leakage-resilient for anytime leakage.

We recall that a simple, well-known, identification-scheme based on sigsatwnsists of the verifier

choosing a random messageand the prover replying witBign ;. (m) which the verifier validates usingk.
It is easy to see that this scheme is leakage-resilient iratlyeime leakagesetting as long as the signature
scheme is leakage-resilient (with the same bof)ndrherefore, using oufl — €)|sk|-LR signature schemes
from Sectiori b we get an efficient identification scheme with optimal leakasjéence in the anytime leakage
model.

Theorem 6.1. There exists a construction 61LR identification schemes w.r.t. anytime leakage from/abiR
signature scheme, preserving the public-key size, secret-keyizeffeciency of the underlying signature.

Interestingly, another well-known identification-scheme based on C@Ayption, consists of the verifier
encrypting a random messageand sending: = Enc,(m) to the prover who decrypts and replies with
Although this scheme seems secure w.r.t. pre-impersonation leakage if tiyptencscheme is LR-CCA
secure, it does not seem secure w.r.t. anytime leakage, since, in this,sittingakage on the encryption
secret-keycandepend on the ciphertext.

6.2 Leakage-Resilient Authenticated Key Agreement

Using our leakage-resilient signature scheme from Selction 4.2 and kagkeaesilient CCA-secure encryption
scheme from Sectidn 4.3 (and instantiating them as described in Apfendie@pnstruct twq1 — €)|sk|-
leakage resilient authenticated key agreement (AKA) schemes. We psofect forward security in the
unauthenticated-links model. We refer the readef t6 [[15, 4] for a detadlscrigtion of the model and def-
initions of security, but give a high level idea of the problem and solutidovbe

MODEL AND SECURITY DEFINITIONS. We consider the problem of two parties, Alice and Bob, who need
to establish a shared cryptographic key in the presence of an agyersdrwant to have the guarantee that
the privacy of such key is conserved. At the same time, Alice wants to leeteat she has exchanged a
key with Bob, and similarly, Bob wants to be sure that he has indeed exetiangey with Alice (and not
an adversarial third party). In the leakage setting, the adversary is a-ifithe-middle” attacker that has
the power to learn arbitrary information about Alice’s and Bob’s long-tseretssk 4, skz. We model this

by giving the adversary access to leakage ora@lgé , Oj,;fg , which he can accedseforethe key-agreement
execution but not during. The adversary is also able to observe @sgibly intervene in) key exchanges
between Alice and/or Bob, and other parties. Our constructions satisfyotian of perfect forward security
which guarantees that the privacy of a key is conserved even if trexsaty learns thentirelong-term secret

keyssk 4, skp after the exchange had been completed and the key has been deletedeinoony.

OuUR CONSTRUCTIONS Our first construction follows from directly applying the general resfi[d], who
show that any leakage-resilient signature scheme is sufficient to adbakage-resilient AKA. The protocol
eSig-DH of [4] is simply the (passive) Diffie-Hellman key agreement, authenticatedanitignature scheme:
a party authenticates to his peer by signing the message he receivedifmon®br second construction of
leakage-resilient AKA (shown ip Figuré 1) is based on leakage-resii@#A-secure encryption. This new
protocol, which we refer to &nc-DH, is a modification of the Diffie-Hellman key agreement protocol, in which
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both parties authenticate to each other by correctly decrypting a ciphentextpted with their corresponding
public key. Intuitively, this achieves authentication since given a cipheeiexrypted under a certain public
key, only the party in possession of the corresponding secret keleiscatorrectly decrypt the ciphertext.

Our second construction also satisfeesiability. Informally, this means that without knowing the long-
term secrets of the parties participating in an execution of the protocol, is&hde to simulate a transcript of
the execution that is computationally indistinguishable from the real transévgtio not formalize the notion
of deniability here, but it is easy to see that simulating a transcript &harDH execution can be achieved by
simply choosing all internal state variables and encrypting them using thieaublic keys. Notice that AKA
schemes that use signatures (in particularefig-DH construction of([4]) do not satisfy deniability, since we
cannot “simulate” a signature without knowing the signing key (which is thg-tenm key of the protocol).

The protocolEnc-DH can also be used in the leakage-free setting using standard (notardgdsakage-
resilient) CCA-secure encryption. To the best of our knowledge thistoaction isnewand is therefore of
independent interest.

Theorem 6.2. Let £ = (KeyGen, Enc,Dec) be an/-leakage resilient CCA-secure encryption scheme sup-
porting labels. TherbEnc-DH is an ¢-SK-secure key agreement protocol with perfect forward securityan th
unauthenticated-links model under the DDH assumption.

We notice that botkSig-DH andEnc-DH preserve the leakage-tolerance of the underlying signature and
encryption scheme, respectively. Thus, plugging in @ur- €)|sk|-leakage resilient signature scheme into
eSig-DH and our(1 — €)|sk|-leakage resilient CCA-secure encryption schemekmioDH yields two different
constructions of 1 — €)|sk|-leakage resilient AKA. As described above, the latter construction alssfies
deniability.
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A Proofs of Theorems
A.1 Hard Relations
Before proving Theorem 4.2, we write a couple of definitions and a lemmavehaiill use in the proof.

Definition A.1 (Min-Entropy). Themin-entropyof a random variableX, denoted a¥ (X)) is:
H. (X) = —log(max, Pr[X = z]).

Definition A.2 (Average-Conditional Min-Entropy [22])The average-conditional min-entromf a random
variable X conditioned orZ, denoted a#l . (X|Z) is:

H(X|2) = —log (B 7 [maxPr(X = 2|2 = 2]| ) = — log (E.._5 [28=1¥17=4]] )

Lemma A.3 ([22]). Let X,Y, Z be random variables wher# takes values in a set of size at most Then
H (X|(Y,Z2)) > Hoo((X,Y)|Z) — ¢ > Hyo(X|Z) — ¢, and in particular Ho (X |Y) > Hoo(X) — ¢

We now proceed to prove Theoréml4.2.

Proof of Theorerh 4]12: We assume, for the sake of contradiction, that there exists an advetsaay succeeds
in breaking the security of leakage-resilient hard relattbwith non-negligible probability. We construci3
that breaks the security of the SPR relation with non-negligible probability.

On input(z,y), B emulates4 on inputy, responds tod’s leakage queries using When. A eventually
outputsz™, B also outputs:*.

We know thatPr[R(z*,y) = 1] = € but we need to computBr[z* # x| sinceB only breaks the SPR
property ifx* # x. Notice that:

Pr[B succeeds= Pr[A succeeds\ = # z*] > Pr[A succeeds— Prx = z*] = ¢ — Pr[z = 27|

Notice that the only information thad has about: comes fromy and the leakage queries. L&Y be the
random variables for, y respectively, and lef’ be the random variable for the total leakage learneddby
ThenH(X|(Y,Z)) > Hoo(X]Y) — ¢and

Prlz = 2] < 9 Hoo (X|Y)+ _ o—Haug(R)+C,

Assuming that < H,,,(R)—w(log()\)) we have thaPr[B succeeds> e—2~+°8()) which is non-neglibible.
]

A.2 Signatures

Proof of Theoreri 4]13: Consider the following series of games.

Game 0: This is the leakage-resilient game in Definition|2.2. et o* = ¢*) be the message/signature pair
that.4 outputs.

Game 1: We change the signing oracle in the way it answé&ssqueries. Instead of giving a valid argument
it answers queryn with a simulated proo$im(TK,y,m). Game 0 and Game 1 are indistinguishable by
the zero-knowledgef I1. Notice that the simulated arguments givend@s answers to leakage queries
are always of true statements. As in the previous game, the winning condittat j$ produces a valid
forgery (m*, o*), i.e. Verify™ (y,o*) = 1 andm* was not part of a signature query.

Game 2: We change the winning condition: we say tbéwins iff it produces a valid forgerym™*, o*) and
R(z*,y) = 1 wherez* «— Ext™ (y,¢*,EK). Game 1 and Game 2 are indistinguishable bytthe-
simulation extractabilityof II.
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We have proven thgtPra[ A wins| — Pro[ A wins]| < negl()\). We need to show thdtrs[A wins| <
negl()A). But notice that ifPrs[.A wins| is non-negligible then this violates the security of the leakage-resilient
hard relationR. In other words, we can create an adversarthat on inputy, generate§CRS, TK, EK) «
Setup(1*) and emulatesd on inputpk — (CRS y). B answersA’s leakage queries using the leakage oracle
O?,f(-) and answers signing queries; by creating simulated argumergsm(TK, y, m;). Eventually,.A will
output a forgery(m*, o* = ¢*). B runsExt™ (y, ¢*, EK) — z* and outputs:*. Notice that the probability
that B outputsz* such thatkR(z*,y) = 1 (thus breaking the hardnessBj is exactlyPr;[.A wins]. Therefore,
we must have thd®ra[A wins| < negl(\). O

A.3 CCA-Secure Encryption

Proof of Theoreni 414: We do a series of games argument to prove the above theorem. The ganadls ar

variants of the¢-LR-CCA game, and in all of the games, the adversary gets correctlyaedgk = (pk*, CRS)

and adversarial leakage queries are answered using the correntlyatgal secret keyk. The games will

differ in how the challenge ciphertext is generated, and how the challenger answers decryption queries of

ciphertextsC; = (&, 7;).

Game 1: This is the original-LR-CCA attack game (in definitidn_2.3) against the scherahere the chal-
lenge ciphertext and the decryption queries are generated/answerectly. In other words:

Challengeic < Encpy(mp; ), ™ < Provecrs( (pk,c), (m,r)). DecryptusingDec(¢&;).

wherem,, is one of the messages,, m; chosen by the adversary, ahds chosen randomly by the
challenger.

Game 2: In this game thersfor IT is generated together with a simulation trapdoworand the arguments
are simulated usin8im (pk, ¢) so that:

Challengeic < Encp(mp; ), ™ < Simrc (pk,c). Decrypt usingDecy(&;).
Games 1 and 2 are indistinguishable by &K property of the argumenl.

Game 3: In this game theRrsfor I1 is generated together with a simulation trapdowiand an extraction trap-
doorek. The decryption querie§; = (¢;, 7;) are answered by running the extractor on the arguments
7; to extractf (my, ;) = m;.

Challengeic < Encpy(mp; ), ™ < Simr (pk,c). Decrypt usingExt((pk,¢;), 7, EK).

Games 2 and 3 are indistinguishable by the strong one-time true-simufa@rtractability ofII. This
is because the adversary only gets a single simulated argumetruefstatementpk, c), and therefore
cannot produce any new statement, argument(paifr;) # (c, ) for which the argumeng; verifies but
the extractor fails to extract the corregt.

Game 4: In this game, the challenge ciphertexs generated by encrypting the messaaeso that:
Challenge < Encp(0;7), 7 « Simrg(pk, c). Decrypt usingExt((pk, &), 7;, EK).

Games 3 and 4 are indistinguishable by theR CPAsecurity of£. Recall that leakage queries are
always answered using: and so we need to rely on leakage-resilience here. However, CPAitgecu
now suffices since the decryption secret-k&yis never used otherwise in Games 3,4.

Notice that Game 4 is completely independent of the challenger’ bihd hence the advantage of any ad-
versary in Game 4 is exactly (the probability of guessing is exactly%). Therefore, the advantage of any
adversary in Game 0 must be at masyi()), since the games are indistinguishable, which concludes the
proof. O

8. ..or any fixed message in the message domain
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A.4 True-Simulation f-Extractable (f-tSE) NIZK

Proof of Theorerfi 415: Correctness and soundness follow from the correctness and smshoperties dil.
We show that the zero-knowledge and true-simulation extractability hold ks we

Zero-Knowledge. We construcSim as follows: On inputTK,y) and labelL, Sim letsc « Enc*(0) and

7 « Simy(y, ¢, pk, L), and outputsy = (¢, 7). By the CCA-securityof £ and thezero-knowledgef 11, we
have that the distribution of a simulated argumg@ni’” (TK, y) is computationally indistinguishable from a real
argumenProve’(x,y; 7).

True-Simulation Extractability. We construcxt as follows: On inputy, ¢ = (¢, 7), EK = sk) and label
L,Ext letsz «— DecSLk(c) and outputs:. Consider the following sequence of games:

Game 0: This is the game described in Definitibn13.1. Let,y1),..., (x4, y,) be P*’s simulation queries,
and let(y*, L*, ¢* = (c*, 7)) be the output ofP*. Note that the challenger uses only to check
R(xzj,y;); in other words, the answer; = (c;, ;) to query(x;,y;, L;) is a simulated argument and
therefore contains an encryption of 0 (notfdf:;)).

Gamel.i(fori =1,...,q): We change the simulation oracle so that in Ganigfor j < i the oracle answers
query(z;,y;, L;) as follows: if R(z;,y;) = 0 the challenger returns as before, but iR(z;,y;) = 1
it lets ¢; « Encli(x;) andr; < Simp(y;, ¢j, pk, L;), and outputsp; = (c;,7;). Games 0 and.1,
and Games.; andl.(i+ 1) fori =1,...,q — 1 are indistinguishable by theCA-securityof £. This is
because if adversant can distinguish between them, we could construct adveis#ngat givenpk runs
(CRS, TK1, EKp1) +— Setupy;(1?) and emulatest on cRs = (pk, CRsy). Notice that we need to rely
on the stronger notion of CCA-security (instead of CPA-security) sthoeeds to decrypt the ciphertext
c* from A’s output in order to extract a valug and check the-tSE winning condition.

Game2: We change the simulator oracle so that the challenger answers (ueny;, L;) as follows: if
R(x;,y;) = 0 the challenger returns as before, but if?(z;,y;) = 1itletsc; « Enci(f(x;)) and
mj < Prover(zj, (y5, ¢j, pk, L;)), and outputsy; = (c;, 7;). Games 2 and.q are indistinguishable by
the zero-knowledgef II.

Notice that if adversaryl wins Game 2, then it must be the case thatify’ (y*,¢*) = 1. But if this
is the case then byoundnessf IT we have that with high probability®(z*, y*) = 1. Otherwise, we could
construct an adversady that on inputcrRsy, computes sk, pk) < KeyGen(1*) and emulatesd on CRS =
(pk, CRs), answering simulation queries by encryptifig:;) and runningProver(z;, (y;, ¢;, pk, L;)) on its
own. WhenA eventually output$y™, L*, o* = (¢*, 7*)), B outputsy™*. Since we assume thhtis sound, we
must have thaPry[A wins|] < negl(A) and it follows thatPry[A wins] < negl(\). This concludes the proof
of the theorem. O

A.5 Authenticated Key Agreement

We prove that the AKA protocdinc-DH in has perfect forward security in the unauthenticated-links
model. We refer the reader {0 [15, 4] for a detailed description of the nawdktiefinitions of security, but give
a high level idea of the problem and solution below.

MODEL AND SECURITY DEFINITIONS. We prove security in the unauthenticated-links model with erasures
of [15] (with the modifications of[[4]), where we consider a “man-in-the-ated adversary that plays against
concurrent sessions of the protocol betwegrayersp, .. ., P,. We allow the adversary to schedule the start
of each session and determine its participants. We also give the advitis@iwer to corrupt players, perform
leakage queries on their long-term secrets {viaakage oracleé)?k’f), and learn their ephemeral states. The
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Public Parameterss be a DDH group with generatgrand order.
Common Input: public keyépk;, pk;) for encryption

Initiator P; (sk;) RespondeP; (sk;)

a S ZLg, a0 = g*
Pi
C; = Encp (o)

. : O
registersession (P;, «) PG
b i Z(p ﬁ = gb
& = Dec} (Cy)
1,73] A
Pi, Pjv Oi Cj = EnCPki (04, ﬁ)
registersession (P;, &, 3)
(&,8) =Decy 7 (Cy)
outputpeer = P;, sid = (a, (),
output session key; = 5*
deletea P, B
marksession complete outputpeer =P;, sid =(&, 3)
output session key; = a*
deleteb

marksession complete

Sanity Checks:
* If P; receives a round-2 messa@e;, P;, C;) WhereDecfki’P”'(Cj) = (&, 3) but has not registeredsassion

(P;, &) thenP; ignores the message. Similarly/f receives a round-3 messa@®, #) but has not registered

asession (P;, ) thenP; ignores the message.

* If P; receives a round-1 messa@®;, C;) and the decryption of’; fails thenP; ignores the message. Simi
larly, if P; receives a round-2 messa@®, P;, C;) and the decryption af; fails then?; ignores the messag

[

Figure 1: ProtocoEnc-DH

goal of the adversary is to learn thession key for a test session of its choice, performed between players
P; andP;, also chosen by the adversary. We do not allow the adversary topt@yuP; or to learn their
ephemeral states during thest session, as this compromises the underlying Diffie-Hellman key agreement
protocol. In terms of leakage, we require that beforettse session, the adversary learns at masbits of
information from leakage queries, and does not perform any leaksgyeeg during theest session.

Enc-DH also satisfieperfect forward securitywhich guarantees that the privacy ofaasion key is con-
served even if the adversary learns the entire long-term secret kthes participating parties after thsession
is complete and thesession key has been deleted from their memory.

Proof of Theoren 6]2: To prove that the construction 1 is &ieakage resilient authenticated key
agreement scheme, we prove that it satisfies the completeness ang prijaerties.

Completeness:Consider twauncorrupted partiesP;, P;. If their two sessions an@atching, we have that
(&, ) = (a, 3) and soi = o and 3 = 3. Thereforey; = 3* = ¢g°* andy; = o’ = g*.

Privacy: We follow the approach of [4]. Letd be an adversary attackirenc-DH and consider the
following two cases:

1. There is a non-negligible probability that ilfméanning test session .4 produces a round-2 or round-3
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message that passes the sanity check performed wwilee (thus allowing.A to impersonate thpeer
and learn thewner’s session key).

2. There is a negligible probability that insdnning test session A produces a round-2 or round-3 message
that passes the sanity check performed byotieer.

In the first case, we prove that the privacyfmfk-DH reduces to the CCA-security &f In the second case,
we prove that the privacy dinc-DH, reduces to the DDH assumption.

Claim A.4. Let.A be an adversary attackingnc-DH. If there is a non-negligible probabilitythat in awinning
test session .4 produces a round-2 or round-3 message that passes the sanity pagormed by thewner
(therefore breaking the privacy &hc-DH), then there exists an attackBy that breaks the CCA-security &f
with probability polynomial ire.

Proof. Let ) be an upper bound on the number of sessions started;byWe construci3; breaking the
CCA-security of€.

» 3 receivespk from the CCA challenger, chooses™ [1,Q] andP S {P1,...,Pn} (itguesses that the
rth session will be theest session and thatP will be the peer).

* By runs A; against{P,,...,P,} with the modification that it publishgsk for P and uses the CCA
decryption oracle to decrypt incoming messages, and the CCA leakade twranswer leakage queries
aboutsk.

« If the rth session is not theest session or P is not thepeer, then3; halts. Otherwise, we consider two
cases:

— If P is theresponder: B; choosesy, o & Z4 and sends them to the CCA challenger along with
label P;, and receives the challenge cipherteéxt= Enc” (). It sendsc* as the round-1 message
and receiveg as part of the round-2 message. (Notice faknowssk; so it is able to decrypt the
ciphertext sent in round-2)3; outputsb such thati = ;-

— If P is theinitiator: B; receives round-1 message containd@nd chooses, 61 & Zg. It
sends(&, fy), (&, 51) to the CCA challenger along with lab&P;, P;), and receives the challenge
ciphertextc* = Enc” i (&, 3,). It sendsc* as the ciphertext in round-2, and receiyeas part of
the round-3 messag#; outputsh such that3 = ;.

We now analyze the probability th#; succeeds in guessirdgthe probability thab = b). Let E be the
event that in avinning test session A produces a round-2 or round-3 message that passes the sanity check
performed by thewner. By assumptionPr[E]| = €. Let E; be the event thaE' occurs, the'th session is the
test session andP is thepeer. ThenPr[E;| = ¢/Qn.

Conditioning onE; gives that the message sent Hyis the correct decryption of the ciphertext sent by
the owner (sinceE; implies that theowner’s sanity check passed). In other wordsPifis the responder then
& = Dec(c*) and if P is the initiator then? = Dec(c*). Therefore, ifE; occurs thenB, breaks the CCA-
security of€. This happens with probability/ Qn which is polynomial ire.

O

Claim A.5. Let A be an adversary attackingnc-DH. If there is a negligible probability that in &inning
test session A produces a round-2 or round-3 message that passes the sanity pedormed by thewner,
and A breaks the privacy dinc-DH with probability ¢, then there exists an attack8p that breaks the DDH
assumption with probability polynomial in

Proof. We construci3,, which on input(a*, 5*,~*) determines whether or not it's a DDH tuple.
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* B, chooses & [1, Q] (it guesses that theth session will be theest session).

* If the rth session is not theest session then3; halts. Otherwise, it sendslcf;,(a*) as the round-3
J
message, anﬂncf;fj (&, %) as the round-2 message.
* B, gives~y* to A as the challengsession key, and outputs according td’s output.

Let F be the event that in @inning test session A produces a round-2 or round-3 message that passes
the sanity check performed by tbener. By assumptionPr[E] < negl()). Let E; be the event that thest
session is therth session and the execution iwinning. ThenPr[E;] = ¢/Q. We have thaPr[E; A —E] =
Pr[Ey] — Pr[Ey A E] > €/Q — Pr[E] > €/Q — negl(\).

Conditioning on the evenfty, = £ A —F, gives thasid = (a*, 5*) and so if(a*, 5*,~*) is a DDH tuple,
then the challenge key presented4as the reakession key. Otherwise, the challenge key is a random element
in G. Therefore, ifE, occurs thenB, breaks DDH (sincdy; implies that the execution isinning), and this
happens with probability at least@ — negl(\), which is polynomial ire.

O

To prove perfect forward security, notice that if an adversérgarns the decryption keys of one or both
parties at some poirdfter the session is complete, then the only information it can learn is the decryption of
the ciphertexts interchanged during dession. In particular, the only “new” information thatl learns is«,
and soA only knowsa and . By the DDH assumption, we know that given only this informatidicannot
learn thesession key . This concludes the proof of Theoréml6.2.

O

B The Groth-Sahai (GS) Proof System

In this section, we review the NIZK proof system of Groth and Sahaifi@gyroving that a system of equations
is satisfiable. We give details for the type of equations used in this paperairerg-product (one-sided in the
DLIN case) and one-sided multi-exponentiation. For full details and manergéform of these types refer to
[36]. In fact, we use the system as a NIZK argument system, achieviggomputational soundness. This can
be done by running all the algorithms with a simulated CRS. Note that in the GEgystem, there are two
types of CRS and those are computationally indistinguishable: one (callgdires perfectly sounds proofs
and another (called simulated) yields perfect witness indistinguishablésprbich could in many cases be
transformed into zero-knowledge proofs.
When working under thé& -Linear assumption{ = 1 for the SXDH assumption and = 2 for the DLIN

assumption), the common reference strings for the proof syBtewnsists ofiy, i1, . .., ik, 1. Regardless
of whether the CRS is real or simulated,= (ug, 1,...,1,u;,1,...,1),i = 1,..., K, whereuy, ..., u; are
randomly chosen group elementsd#. Let’'s denote withil thespan(uy, .. ., ik ); note that(g, 1,...,1) & 4L

For the real CRS, which yields perfectly sound proﬁf;s;E slandd < Gf“\u. When the CRS is simulated,

i S G{<+1\u and@ < $1. In the case of asymmetric pairings, i.e. in the SXDH setting, another set of
vectorsvy, U1, ...,Uk, U € Gf“ is defined analogously for randomly chosen. . ., v, € G3. Although for
symmetric pairings we use only one-sided equations and a second seta®vie not needed, we sét= «
andv; = 4;, 1 = 0,..., K, and use the two sets of vectors interchangeably for consistent notatitre two
settings).

To commit to a withess member € G4, choose a randorsi = (sg, s1, ..., SKk) & Zf*l and compute

5y — Comp(z:3) = (z,1,...,1) HJK:O ﬁj‘sj, where vector multiplication is defined component-wise. To
commit to a withessy € Z,, for equations inGo, selectt’ = (t1,...,tx) & 7K and computey, <«

q 1
Lt
Com(x; t) = X Hszl ;.

24



The GS proof system gives a proof for a set of equations being shkisbg committing to each witness
component separately and computing corresponding proof elementadioroé the equations. Next we de-
scribed how those proof elements are computed for each type of equatidriisow the satisfiability of the
equations is verified; some of the notation is borrowed friom [13].

One-sided Multi-exponentiation Equations

For an equation of the following type:

90 =911 95" - gX"
wheregy, ..., g, € Gy are constants (one could view an equation being described by thogardshsnd
X1:---,Xn € Zg4 are variables (the witness for which the equation is satisfiable), the plewieats are

p17"‘7pK:
n
tis .
:Hgijﬂ .]:17"'7[(7
=1

wheret; is the randomness used to committgi.e.¥,, = Comm(xi; ;).
When verifying a proof, for each equatign = g1 g5* ... ga™ the verifier checks that the proof elements
corresponding to the equation and the commitments satisfy

n K
i=1 j=1
whereE : GET! x Gy — GE T, sending((ag, - . ., ax), 8) to (e(ap, 8), . . ., e(ax, B)), is a bilinear map.
The proofs for multi-exponentiation equations are zero knowledge (ZKg.size of a proof for set of

such equations being satisfiable with a witness of 8izs (K + 1) N + K S group elements. Note again that
K =1 when working under the SXDH anl = 2 under DLIN.

(One-sided) Pairing Product Equations

For an equation
n
H e(hi, xz) =T
=1

wherehy,...,h, € Gy andT € Gp are constants and,,...,x, € Gy are variables, the proof elements
Po,- - PK-
n
pi=][n" i=0,.. K,
i=1

wheres; is the randomness used to commitidgi.e. 5%, = Comp(z;; $;). When verifying a proof, for each
equation[ ", e(h;, z;) = T the verifier checks that the proof elements corresponding to the equatichey
commitments satisfy

n

K
HE(hi,g) (T,1,1,. H (pj, 5),
i=1 §=0
whereE : G; x GE™ — GET, sending(, (B, - - ., Br)) 1o (e(a, Bo), - - -, e(ev, Br)), is @ bilinear map.
These proofs are only witness indistinguishable (WI), and for a se&pafiring product equations satisfiable
with a witness of sizeV, the proof size iSK + 1)(N + ).
When representation @ as a pairing product is know it could be transformed into [36] butltEsy
in somewhat larger proofs. However, in our cd5e' = e(hg, zo) Where bothh, andx, are constants. So,
we could transform the above equation into an equéafigh, e(h;, z;) = 1 and give a WI proof accordingly
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treatingz as a part of the witness. Then, we produce a second commitr‘r@qtﬁf(}omn(xo; s%), include its

randomness% and a NIZK proof thaﬁ’z0 andg’xo are commitment to the same message using a set of one-sided
multi-exponentiation equations. This way, when the simulator has to produkepaadf for the equation, it
samples anyz’, ...,z ) along with the appropriate],, and gives a simulated proof tt‘[%g0 = Comiy(z(; 50)
and&o = (wo; 3_’(;) are commitments to the same message. That results in addiigiial 1)? group elements
and(K + 1) Z,-elements per equation to achieve ZK. (The count is as follg#S:+ 1) group elements for
5}0, (K + 1) Z,;-elements for;{), (K + 1) group elements for the commitments to each componest, @nd
K (K + 1) group elements for the NIZK proof o, andd, being commitments of the same value (using
(K + 1) one-sided multi-exponentiation equations).

So, under DLIN we get ZK proofs of siz&V + 215 elements iz and3S elements irZ, for a set ofS
equations being satisfiable with a withess which has Bize

In the SXDH setting, the equation is no longer one-sided’as ¢(y, g) andy € G; whereasr; € Go.
However, we could still apply the idea of treating@s a part of the witness and computing a second commitment
7; = Com(y; s7y), and then showing that the commitmeﬁg,sand% are commitments of the same message.
According to [36], the WI GS proofs under SXDH are of s2z€ + 85 for a set ofS equations being satisfiable
and the witness being of siz&. Combining this with the extra group elements we need per equations to
achieve ZK, we get proofs of siz&V + 165 elements in either group arglS elements irZ, when working
under SXDH.

C Instantiations

C.1 Preliminaries

ANOTE ONNOTATION. We follow the notation of [13]: fof = (g1, 92, - -, 9n) € G™and? = (x1,x9,...,2,) €
Z4 We define:

Tn

(G,%) :=gi" - gn

When we write[[?"_, g; € G™ for vectorsg; € G", we mean the component-wise product of each ofrthe
terms.

CCA-SECURE ENCRYPTION BASED ON K-LINEAR. In our instantiations of both leakage-resilient signa-
tures and CCA-secure encryption, we will need to use a (standard}geCdre encryption scheme. Since our
instantiations are based on theLinear assumption, we will use the Linear Cramer-Shoup encryptionmsehe
from [6Q], modified to support labels as [n[13]. We review it here. Wethe paradigm of 7] to transform it
into a multi-message randomness-reuse encryption scheme, which we aptineize by reusing the consis-
tency ciphertext element. L& be a group of prime ordey, and letH : {0,1} — Z, be a collision resistant
hash function. The label space{ig, 1}*.

* KeyGen(1?) :

1. Choosey, g1, .-, 9K & G and chooser, ... ,a:?v,gj,z’ﬁ ZE+L
2. Define vectorgi, . .., gic € GK+1 as follows:

—

g1 = (90,91,1,...,1,1),95 = (g0, 1,92, 1,...,1,1),..., 9%k = (g0, 1,...,1,9K)

3. Fori=1,...,Kandj =1,...,N:letd; «— (G, %}), e; < (G, i), [i «— (G, %)
4. Ouputsk = (73, ..., 2%, 4, 7) andpk = ({g:}/o, {dsi}ioy . {ed S { M)
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. Encpk(m = (my,...,mp)): Pick 7 <& ZE. Fori=1,..., K: defineg; as inKeyGen. Output

¢=(g,a1,...,an,b) (ng ,myq - Hdw“ LN - Hle,H (e fH)" >
=1

wheret = H(g,a1,...,an, L)

e Decl (¢ = (§,a1,...,an,b,)) : Lett «— H(G,a1,...,an,L). If b # (g, + tZ), output L. Else, for
j=1,...,N,letm; «— a;/(q,2}).

Notice that forK' = 1, the encryption scheme described above is the Cramer-Shoup (multi-messag
randomness-reuse) encryption scheme.

C.2 Leakage-Resilient Signatures

In order to efficiently instantiate the construction in Secfion 4.2, we need &agiVSPR relatio®, a CCA-
secure encryption scheme, and an efficient NIZK argument for reldign We will use the CCA-secure
scheme described in the preliminaries and the NIZK argument system frapenéip{B. We now discuss our
choice of SPR relation. Henceforth, we (&t, G2, Gy be groups of prime orderande : G; x G, — G be a
non-degenerate bilinear map that is efficiently computable. Weteta random generator 6f; and letg be
a random generator @¥-.

C.2.1 SPR Relations

Previous constructions of leakage-resilient primitives often use théiéimg™ ¢52 . . . g*», but this does not al-
low an efficient extraction of the witnegs,,, . . ., z,,) when using GS proofs (unless each witness in committed
bit by bit which, among other things, results in proofs growing linearly withsteurity parameter). To over-
come this problem, we use SPR functions based on bilinear maps. For ot BXtantiation, we use the SPR
relatione(hy,z1) e(ha, x2) ...e(hn, z,) = e(y,g), whereg is a generator ofs5. In the DLIN case, we use
the relationie(hy, z1) e(ha, z2) ... e(hn, zn) = e(y1,9) A e(h1,z1) e(h,x2) ... e(hn, xn) = e(y2,g). Both
cases allow for easy extraction of the witnéss, ..., z,) and a seamless combination with the encryption
scheme. As a side note, we use an SPR relation instead of afuS§&t®nin order to achieve zero-knowledge
in the Groth-Sahai arguments. In general, GS proofs are witness indistiadple for pairing product equations
but can be made zero-knowledge if we can represent the equationcpits®lf as a product of one or more
pairings.

We show the details of our SPR constructions below, but first we revievassomptions that we will use
in our SPR proofs.

Double Pairing [1/38]. The double pairing assumption states that given two random elementse G,
it is hard to find a non-trivial couplézy, z2) € G% such thak(g, z1)e(g2, 22) = 1. Itis easy to check that the
Double Pairing assumption is implied by SXDH (se€ [1, 33] for detalils).

Simultaneous Triple Pairing (STP)I[L, 33].The simultaneous triple pairing assumption states that given six
random elementsi, g2, g3, 9;, g5, 95 € Gy, it is hard to find a non-trivial triplez1, 20, 23) € G3 such that
e(g1, 21)e(ga, 22)e(gs, 23) = 1 ande(g}, 21)e(gh, z2)e(g5, 23) = 1. It was shown in[[38] that the STP assump-
tion is implied by the DLIN assumption.
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Based on SXDH. Letn > 2 andhq, ho, ..., h, be random elements i@, and letg be a generator df-.
We construct the SPR relation:
. KeyGen(lA) OutputZ = (zy,...,x,) andy where:

rl,...,rn<—Zq, {wi — gm0y, y— T hi.
* R(z,y) : Output 1 if[ ]}, e(hs, z;) = e(y, g). Otherwise output 0.

Claim C.1. Under the SXDH assumption, the relatiGhdescribed above is SPR with average-case preimage
entropyH,,(R) = (n — 1) log(q).

Proof. For any fixed choice of;, the conditional distribution of’ is uniform over some:. — 1 dimensional
subspace ofs%, which gives us the worst-case preimage entropynof 1) log(q).

We prove thatR is SPR under the double-pairing assumption. Since the SXDH assumption imglies th
double-pairing assumption, the claim holds.

Consider an adversany that givenhy, ..., h,, Z,y such that[[?"_; e(h;, z;) = T, whereT = e(y, ),
findsz* # & such thaf[ [\, e(h;, z}) = T, with probabilitys > negl()\). We construct adversar that
breaks the double pairing assumption.

B takes as inpuyi, g2, choosesuy, By, ..., an, By — Z4, and setsh; = g g2 , fori = 1,.

B then samples,y) and giveshy,...,h,,Z,y to A. With probability ¢, A returnsz* 7é for WhICh
[T, e(hi,z}) = T. Dividing the two pairing product equations:

[ ehi,zi/a}) = e(gr, [J(xi/2)*)e(ga, [ [(@i/27)") = e(g1, 21)e(ga, 22) = 1.

=1 i=1 =1
It remains to prove thatz, 20) = ([10, (zi/z), [T, (x:/27)P) # (1,1). There existg € [1,...,n] for
which z; /2% # 1 anda; is information theoretically hidden. Thereforg, # 1 with probability (1 — 1/g).
B outputs(z, z2) and with probability=(1 — 1/q) > negl(\), e(g1, z1)e(ge, z2) = 1 and(z1, z2) # (1,1) .
Thus, B breaks the double pairing assumption with non-negligible probability. O

Based on DLIN. Letn > 3 andhy,...,hy, hy,..., ", be2n elements inG and letg be a generator df.
We construct the SPR relation:

* KeyGen(1?) : Outputi = (1, ...,2,) andij = (y1,y2) Where:
T1y.-.3Tn ﬁ Zq ’ {J:Z — g”}?:l y Y1 — H?:l hm y Y2 — Hz 1 h:Z
* R(z,y) : Output 1if[ ", e(hs, z;) = e(y1,g9) and[ [\, e(hi, z;) = e(y2, g). Otherwise output 0.

Claim C.2. Under the DLIN assumption, the relatioR described above is SPR with worst-case preimage
entropyH,,(R) = (n — 2) log(q).

Proof. For any fixed choice of;, the conditional distribution of is uniform over some:, — 2 dimensional
subspace o&", which gives us the worst-case preimage entropfnof 2) log(q).

We prove thaf? is SPR under the simultaneous triple pairing assumption (STP). Since the B&uhation
implies the STP assumption, we have tRas SPR under the DLIN assumption.

The proof is analogous to that of Claim €.1glf, g2, g3, 91, g5, g5 is the instance for whicl tries to break
the STP, it computes; = g‘f’iggiggi andh; = (g})% (gh)"% (g4), fori = 1,...,n, whereay, 1,71, .-,
Qs By Y — Zg. Then,B samplest, i and runsA with the appropriate input. With probability> negl()),
Areturnse* # 7 such thaf [}, e(hi, 2;) = e(y1,9) and[ [}, e(hi, z;) = e(ya, g). But notice that

elor. [T(eo/)) eloo. [Twi/a0)™) elos. [T wi/a0)) = 1. and
elgh [ e/ elgp, [[wsfad)™) elgh [Lwifai)) = 1.
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Boutputs(z1, 22, 23) = ([[;(zi/x)%, [1;(zi/x)%, 11, (x:/xF)7). Since there exists € [1, ..., n] such that

T # T} (becauser* # ) ando; is information theoretically hidden (which is easily observed and is fully
explained in[[38]), then with non-negligible probability;, 2o, z3) # (1,1, 1), e(g1, 21)e(g2, 22)e(gs, z3) = 1
ande(g4, z1)e(gh, z2)e(g5, z3) = 1. Hence, with non-negligible probabili#§ breaks the STP assumptionl]

We now show instantiations of the construction described in Seciibn 4.2, méetipgrameters of Theo-

rem5.1.

C.2.2 Instantiation 1: Based on SXDH
Our first instantiation is based on SXDH when working with asymmetric bilinezuzs.
SPR Relation. We use the SPR relation described in Sediion C.2.1.
* KeyGen(1?) : Outputz = (x1,...,x,) andy where:
TlyeesTh & Zq, {xi— g}, y—TI h
* R(z,y) : Output 1if[[", e(hs, z;) = e(y, §). Otherwise output 0.

Recall that this relation has average-case preimage entrdpy-ofl) log(q).

CCA-Secure Encryption. We use the Cramer-Shoup encryption scheme described in Section Ckingvor
in the groupG,. We encryptt = (x4, ..., x,) under the same randomnessMore formally, for a public key
pk = (90, 91,d1,-..,dn, €, ), we encryptd with labelm as
C= (617 C2,C3,...,Cnt2, Cn+3) — Encg};’('wl’ €23 T) = (967 g{’ l‘ld;, v 7xnd:u (eft)r)7
wheret = H(cy, ..., cpia,m).
The total size of the ciphertextis+ 3.

NIZK Argument.  We use the NIZK proofs described in Appen(ix B to prove thay,; (z,y) = 1 andC' =
Encyy (z;7)". First we show that?(#,y) = 1 by creating a commitmer®; = Com(z;; (si0, si1)) for each

component; of ¥ = (z1, ..., x,) and producing proof elements which show that the committed values satisfy
the pairing product equatiof[;" , e(g;, z;) = e(y, ). Then, we show that' = Encyy (7 7) using a system
of one-sided multi-exponentiation equations with witn€ss o, s11, - - -, Sno, Sp1) t0 show that the plaintext
encrypted inC' is equal to the committed values in thés. Details follow. Let
01 = (w1, DTEOT, ., by = (wn, DTS,
and, as defined abov€, = (cy, ..., cn43). Proving equality of the plaintext and the committed values reduces
to proving the satisfiability of the following system @# + 3 equations:
g - 5 - gn 3 Sn0 7 Sn —
(0311) = vOsmvlsu(dl 17 1)7‘ L N () = ’UOS OUIS l(dnl, 1)T s

1 = 96 5 C2 = g71" y Cn43 = er(ft)r .

The total size of the argument8s + 21 group elements and2,-elements.

Combining the ciphertext and the NIZK argument makes the size of the sigfatur 24 group elements
and 2 elements iZ,. By Theoren{ 4R and Theorelm #.3, we know that the above instantiaties g a
((n —1)log g — 1)-leakage resilient signature scheme. To translate thigintec)|sk| leakage tolerance, we

need 1 log A 1 log A
n> Ly wlogd) .<1+W<0g>>
log ¢

“ € e-logq €
This gives us signatures of siz@/e)(1 + w(log \)/log q) + 24 group elements and 2 element<Zin
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C.2.3 Instantiation 2: Based on DLIN
In the case ofs; = Gy = G, we give an instantiation under the DLIN assumption.
SPR Relation. We use the SPR relation described in Sedtion €.2.1.
* KeyGen(1?) : Outputz = (w1, ...,2,) andy = (y1,y2) Where:
Pt & Ly fw o gV sy =TI A v =TI, A
* R(z,y) : Output Lif[ 1", e(hs, z;) = e(y1,9) and] [}, e(hi, z;) = e(y2, g). Otherwise output 0.

Recall that this relation has average-case preimage entrqpy-o2) log(q).

CCA-Secure Encryption. We use the Cramer-Shoup encryption scheme described in Section C.In-We e
crypt = (z1,...,x,) under the same randomnesand labeln. More formally, for a public key

Pk = (90,91, 92, d11,d12, ..., dp1, dn2, €1, €2, f1, f2),

we compute the ciphertext

C=(ct,...,cn4a) <« Encpp(@(r1,12))
(961+T27 9?7 9527 xldqlldqév ) xndzlld:é’ (elff)m@?fé)m)?

wheret = H(cq, ..., cpis,m).
The size of the ciphertext is + 4.

NIZK Argument.  First we prove thaf?(z, y) = 1 using the pairing product equations

e(hi,z1)...e(hp,xn) = e(g,y1) and
e(hi,21) ... e(ln,zn)) = e(g,y2).

We create commitments = Comu(z;; §;) = (x4, 1, 1)v0vi™ 052, for each component; of ¥ = (1, ..., xy)
using randomness§ = (s;o, Si1, $i2). Then we prove that the plaintext 6f= Enc;'}c(xl, x9,x3;T) Is the com-
mitted values in thé;’s by proving that the following system 8h+4 one-sided multi-exponentiation equations
is satisfiable with a withess1, 9, $1, . . ., $p):

01 _ =8107S511,7512(,9—1 r(g—1 ro
e,y — Y U1 Y (dip,1,1)" (dy,1,1)"2
gn _ ,D’Sno,l—}‘snl,lj’an (d*l 1 1)7"1 (d*l 1 1)7‘2
(Cn+3,1,1) - 0 1 2 nl» > n21 )

=909y, Cc2=9g1', =05, Cnra=(erfi)(eaf)" .
The total size of the proof is 18n+66 group elements afig-&lements.
Combining the ciphertext and the NIZK argument makes the size of the sigri8tus- 70 group elements
and 6 elements iZ,. By Theoren{ 4 and Theorelm #.3, we know that the above instantiaties g a
((n — 2)log g — 1)-leakage resilient signature scheme. To translate thigintoe)|sk| leakage tolerance, we

need . |
n> 2 wlogd) 1/, wlogh)
e e-logq € log q

This gives us signature of siZé9/¢)(2 + w(log A)/log ¢) + 70 group elements and 6 elementZin
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C.3 Leakage-Resilient Encryption

In order to use the construction in Section| 4.3, we ne€d-a ¢)|sk|-leakage resilient CPA-secure encryption
schemef; = (KeyGen,, Ency,Decy) and a strongf-tSE NIZK argument (see Secti@h 3), which we can con-
struct from a CCA-secure encryption scheme supporting lahets (KeyGen,, Encg, Decy), a strongly-secure
one-time time signature scherfeand an NIZK argumeril for the relation

Reg = { ((r1,72,m), (c1,¢9,L) | ¢1 = Ency(m;r1) A ca = Encl(m;ra) }.

The same technique was usedlifi] to construct an efficient CCA-secure encryption scheme with keyrafeme
message (KDM) security from a CPA-secure version of the scheme sévha same technique in the leakage-
setting, to achieve leakage-resilient CCA-secure encryption fromdeatesilient CPA-secure encryption.

We now show an instantiation of the construction shown in Sectidn 4.3, meetipgrh@eters of Theorem
5.2.

LR-CPA-Secure Encryption (£1). We show &1 — €)|sk|-leakage resilient CPA-secure encryption scheme
based on thé(-Linear assumption. Similar versions of this scheme appearin [49] ahddaséd on the KDM
scheme of{[12]), but we modify it here to make it more efficient. In particdar public key and ciphertexts
are shorter by a factor abg g.

Let G be a group of primer order, and letJ be an integer. We define the schefijeby:

e KeyGen(1") : ChOOSEfor, . .., fos, fis- .. frc <= G andz < ZE+7 . Define vectors, . .., fx € GF*+/
as follows:

—

f1:(f()l,...,fQJ,fl,l,...,l)
fo=(fors--s fors 1, far .., 1)

f;(:(fOlv"waJaLL"'va)
Fori=1,...,K: leth; = (f;,Z). Leth = (hy, ..., hx). Outputsk = Z andpk = ({f;}X |, h).
» Encyy,(m) : Choosed < ZK. Let f' =[], ;" anda = m - (i, ). OutputC = (f, a).
* Decy,(C) : Outputm — a/(f, Z).

Theorem C.3. For anye > 0, if J > %(K + A/ log(q) + 1), then the above encryption schemé-isakage
resilient where/ = (1 — ¢)|sk|. The scheme is secure under fkidinear assumption.

The proof follows from the same technique as those used to prove leadsitience of hash-proof system
based schemes in[49]. Indeed, it is relatively simple to see that the atmstuction is based on an underlying
hash-proof system. However, for simplicity, we just prove the leakagjkerece of the scheme directly without
defining the notion of a hash-proof system formally in this work.

Proof. We do a series of games argument to show that the schefidRsCPA.

Game 0: This is the/-LR-CPA attack game. The adversary gétsts of leakage ork = Z and the challenge
ciphertext is (later) computed as:

K
C=(fa) wherew < Zf,f: l_IfZ a=my - (h, D).
=1
as an encryption of messagg, where the bib is chosen by the challenger.
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Game 1: In this game the challenge ciphertext is computed usingdoest keyr as:
K .
C = (f.aywherew & 2K, F=T[ £i"",a = my- (. 2).
=1

Games 0 and games 1 are equivalently distributed $iﬁcﬁ> = <#, w) (this is essentially the correctness
of decryption).

Game 2: In this game tthpart of the ciphertext is just chosen uniformly at random:
C = (f,a) wheref — G'*E o =my - (f, ).

The fact that games 1 and 2 are computationally indistinguishable followsth@hi-linear assumption,
which ensures that a random linear combinatiorflof . fK (used to computgzin Game 2) is com-
putationally indistinguishable from a uniformly randqﬁwThis holdsevengiven all of the secret-key,
and hence certainly in the presence of limited leakage.

Game 3: In this gameg is chosen uniformly at random so that
C = (f,a) wheref — G'*X 4 — G.

We claim that games 2 and 3 are statistically indistinguishable. This is becatman,(ﬁ Z) can
be thought of as a universal hash function of the secretikapder the hash-kef. Since, a univer-
sal hash function is a good average-case randomness extractq@Z$eethe value( ﬁ Z) is statis-
tically indistinguishable from uniform, as long as the conditional entropy gfiven everything else
the adversary sees in game 2 is at ldag{q) + A bits. But the only information that the adver-
sary sees in game 2 which is correlated withis the component. of the public-key and the leak-
age. Thereforef has at least K + J)log(q) — Klog(q) — ¢ bits of conditional entropy. Since
t=(1—¢)lskl = (1—¢)(K+J)log(q) < (J—1)log(q) — A, this means’ has at leaslibg(q) + A bits
of conditional entropy, as desired.

It is clear that Game 3 is independent of the challenger'$ bitd hence the adversary’s advantage is 0 (the
probability thatt' = b is %). Therefore, by the hybrid argument, the adversary’s advantageime@ is
negligible. O

For the instantiation, we use the LR-CPA-secure encryption schemeétmzsabove, working in the group
Go. We encryptmn under randomness = (w1, ...wg): for a public keypk = (f1,..., fx,h) with f; =
(fors - fors 1, .oy fir ..., 1), we computéV = S°X  w; and ciphertext

K
Cy = (611,...,01(J+K+1)) — Enci(m; W) = (fg}/,...,fgg,f{““..., }‘(’K,mHh;’“)
i=1

The size of the ciphertext i + K + 1.

CCA-secure Encryption (£;). We use the Linear Cramer-Shoup encryption scheme described in $edijon C
working in the groupG,. We encryptm under randomness = (rq,...,7x) and labelL: for a public key
pk = ({gi} o, {di Y eV, {fi 1K), we computeR = S°K | 7 and the ciphertext

K

K
02 - (0217 ey 62(K+3)) — Enc%(m,f’) - (gORag?L‘l .. 7gTKK7de?7 H(elfzt)n)a
i=1 i=1

wheret = Hy(cay, .. ., Co(K+2)» L) andH, is a collision-resistant hash function.
The size of the ciphertext & + 3.
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NIZK Argument System. We use the NIZK proofs described in Appendik B. l&t, C> be as described
above. To prove that there exigts:, 71, r2) such that((m,ry,72), (C1,Cs, L)) € Ry, we use a system of
multi-exponentiation equations.

K .
cy = f%vﬂzl“” forj=1,...,J
Cl(J+i) = fZ”iK fori=1,...,K
en = gt
Coit1) = Gi' fori=1,...,K
K

oorersy = | Jleif)
z]:(l

ClU+K+1)/CoK+2) = Hh?i(dfl)Ti
i1

This corresponds to a system.bf+ 2K + 3 equations with witnes&-y, ..., rx, w1, ..., wk). Using the
proofs described in appendiX B we can give a proof for the simultansatisfiability of the equations using
2K commitments and( - (J + 2K + 3) proof elements.

Based on SXDH:In this case we hav& = 1, so the size of the proof i$ + 9 group elements.

Based on DLIN: In this case we hav& = 2, so the size of the proof &/ + 26 group elements.

One-Time Signature (§). We use the strongly-secure signature of [34]. Het: {0, 1}* — Z, be a collision-
resistant hash function.

* KeyGengs(1%) : Outputvk = (g, f,b,3) andsk = (ay, as), where:
$ * $ ail a bl b2
CLl,CLQ,bl,bQHZq,gFGQ,ng 7ng 73<_f h

* Signg(m;r) : Outpute = (7, s), where

s <<a1<bl —7) + ashs — H2<m>>>

a2

« SigVers(m,o = (r,s)) : Check thag = g2(")§p*
The size of the one-time signature if 2 element&jn

Combining both ciphertexts, together with the NIZK argument and the one-timatsig, we have that the
size of the ciphertext i8.J + 15 group elements and 2 elementsZip in the SXDH case, andJ + 34 group
elements and 2 elementsZy in the DLIN case. From Theoreln @.3 we neéd- 1 (K + A/ log(q) +1). This
gives us the following ciphertext size:

Based on SXDH:The size of the ciphertext {2/¢)(2 + A/ log ¢) + 15 group elements and 2 elements in
Zy.

Based on DLIN: The size of the ciphertext ($/¢)(3 + A/ log q) + 34 group elements and 2 elements in

Zy.
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