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Abstract

In this work, we study the problem pfrtial key exposureStandard cryptographic definitions and
constructions do not guarantee any security even if a tiagtiion of the secret key is compromised.
We show how to build cryptographic primitives, in the stamtd@odel (without random oracles), that
remain secure even when an adversary is able to Earost allof the secret key. We accomplish this
by giving constructions for the All-Or-Nothing Transforda@NT), introduced by Rivest. AAONT
is an efficiently computable transforifon strings such that:

e For any stringe, givenall of T'(z), one can efficiently recovaer.

e There exists some threshdlduch that any polynomial-time adversary that (adaptivielgins
all but? bits of T'(z) obtains no information about (in a computational sense).

By applying anAONT to the secret key of any cryptographic system, we can ob&giurgy against
partial key exposure. The only previous construction oRA@NT with provable security was based
on random oracles.

The key to our approach is a new notion, which may be of indéeeninterest, which we call an
Exposure-Resilient FunctiofERF) — a deterministic function whose output appears random eve
if almost allthe bits of the input are known. We show how to constiieRF's and AONT’s with
nearly optimal parameters from any one-way function. We alstain several related results about
these notions.
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1 Introduction

A great deal of cryptography can be seen as finding ways todgedahe possession of a small but totally
secret piece of knowledge (a key) into the ability to perfarmany useful and complex actions: from
encryption and decryption to identification and messaghesntication. But what happens if our most
basicassumption breaks down — that is, if the secrecy of our keypines partially compromised?

It has been noted that key exposure is one of the greatesttshesecurity in practice [1]. Indeed,
at the recent Rump session of CRYPTO '98, Nicko van Somerghil[@strated a breathtakingly simple
attack by which keys stored in the memory of a computer coalitibntified and extracted, by looking
for regions of memory showing high entropy. Within weekslwf aippearance of the followup paper [24],
a new generation of computer viruses emerged that triedetthese ideas to steal secret keys [9]. Shamir
and van Someren gave some heuristic suggestions on preye¢nhése kinds of attacks, such as having
software “spread a key among different memory locationstrger to avoid being found. While such
measures help to ensure that attackers will not recovemtire secret key, they do not solve the problem
of partial exposure.

Unfortunately, standard cryptographic definitions andstarctions cannot guarantee secuetyen if
a tiny fraction of the secret key is exposéathis work, we show how to build cryptographic primitives
the standard model (without random oracles) and using genemputational assumptions, that remain
provably secure even when the adversary is able to lanost allof the secret key. Our techniques also
have several applications in other settings.

Previous approaches and our goals. The most widely considered solutions to the problem of key
exposure are distribution of keys across multiple serviexsecret sharing [23, 4], and protection using
specialized hardware. Instantiations of the key distidsuparadigm include threshold cryptosystems [8]
and proactive cryptosystems [14]. Distribution across yreystems, however, is quite costly. Such an
option may be available to large organizations, but is naliséc for the average user. Another widely
considered proposal is the use of specially protected temehwuch as smartcards, which can also be
costly, inconvenient, or inapplicable to many contextsug,ithe cost or inconvenience of such solutions
may make them prohibitive for many applications; some usienply may not have the luxury to afford
the investment such solutions would require.

Instead, we seek to enable a single user to protect itselhstgpartial key exposure on a single
machine. A natural idea would be to use a secret sharing schesplit the key into shares, and then
attempt to provide protection by storing these sharesadsté storing the secret key directly. However,
secret sharing schemes only guarantee security if the salyemisses at least one shardts entirety
Unfortunately, each share must be fairly large (about ag &mthe security parameter). Thus, in essence
we return to our original problemeven if an adversary only learns a small fraction of all ths, lit could
be that it learns a few bits fromachof the shares, and hence the safety of the secret can no Ibager
guaranteed. We would like to do befter

The All-Or-Nothing Transform.  Recently Rivest [22], motivated by different security cerns arising
in the context of block ciphers, introduced an intriguingptive called theAll-Or-Nothing Transform
(AONT). An AONT?Z is an efficiently computable transformati@hon strings such that:

e For any stringe, givenall of 7'(x), one can efficiently recover.

Indeed, our techniques can be seen as yielding, for certampeters, highly efficient “gap” analogues of computation
secret sharing schemes [17], where the share size can beasraiit! See Remark 5.5.
2Here we informally present a refinement of the definition duBayko [5].



e There exists some threshdldsuch that any polynomial-time adversary that (adaptiviggjns all
but ¢ bits of T'(x) obtainsno information about: (in a computational sense).

The AONT solves the problem of partial key exposure: Rather thannsta secret key directly, we
store theAONT applied to the secret key. If we can build AONT where the threshold valugis very
small compared to the size of the output of k@NT, we obtain security against almost total exposure.
Notice that this methodology applies to secret keys withteaty structure, and thus protects all kinds
of cryptographic systems. One can also consi@®NT’s that have a two-part output: a public output
that doesn’t need to be protected, and a secret output tisathbaexposure-resilience property stated
above. Such a notion would also provide the kind of protectie seek to achieve. THEONT has many
other applications, as well, such as enhancing the seafrityock-ciphers and making fixed-blocksize
encryption schemes more efficient [16]. For an excellenbsitipn on these and other applications of the
AONT, see [5].

Our Results:  Until now, the only known construction of ahONT 2 with provable security was given
by Boyko [5] in the random oracle model, who showed that Belnd Rogaway’s Optimal Asymmetric
Encryption Padding (OAEP) [2] yields &ONT . In this work, we give the first constructions {8ONT’s
with essentially optimal resilience in the standard molated only on computational assumptions.

The key to our approach and our main conceptual contribugidime notion of arExposure-Resilient
Function(ERF) — a deterministic function whose output appears random dvalmost allthe bits of
the input are revealed. We believe this notion is both veefuignd interesting in its own right. Consider
for example arERF with an output that is longer than its input — this can be separtcularly strong
kind of pseudorandom generator, where the generator'sibrgmains pseudorandom even if most of the
seed is known. We show th&RF's provide a solution to the partial key exposure problemrfamy
settings in private-key cryptography, where the secretrie®d only be a pseudorandom string.

More specifically, our results are:

e We show how to construct, from any one-way function, for any 0, anERF mapping an input of
n bits to an output oiny sizepolynomial inn, such that as long amnyn® bits of the input remain
unknown, the output will be pseudorandom. We give exampldww to useERF’s directly to
address key exposure problems in private key cryptograpiogt notably we show how to solve
what we call thegradual key exposurgroblem, where an adversary is able to learn more and more
bits of a shared secret key over time.

e We give a simple construction of &ONT based on anRF. For anye > 0, we show how to
achieve a resilience thresholdofE N¢, whereN is the size of the output of th®ONT . If viewed
as anAONT with separate public and secret outputs, then the size afutput of theAONT can
be made optimal, as well.

e We also show that the existence of AONT with £ < k — 1, wherek is the size of the input,
implies the existence of one-way functions. We show thatrsult is tight up to a constant factor
by constructing an unconditionally seclk®NT with £ = ©(k) using no assumptions.

e \We also give another construction of AONT based on any functioji such that botfz — f(z)]
and[z — f(x)®z] areERF’s. This construction is similar to the OAEP, and so our asiglynakes
a step towards abstracting the properties of the randonteanaeded to make the OAEP work as an

3Though for a much weaker definition of security than the onestuely here, Stinson [27] has given a simple elegant
construction foAONT with provable security in the unconditional setting. As@t®d by [5], however, this construction does
not achieve the kind of security considered here.



AONT. It also has the advantage of meeting the standard defimfian AONT (without separate
public and secret outputs) while retaining a relativelyrsbatput length.

e Finally, we show that a weaker “average-case” definitiodONT is equivalent to the standard
“worst-case” definition oAONT, by giving an efficient transformation that achieves thialgo

Previous Work: Chor et al. [7] considered a notion called-gesilient function, which are related to
our notion of an Exposure-Resilient FunctideRF). A ¢-resilient function is a function whose output
is truly random even if an adversary can fix ahpf the inputs to the function. This turns out to be
equivalent to the strongest formulation of unconditioredigity for anERF. We give constructions for
statistical unconditionally secufeRF’s that beat the impossibility results given in [7], by aching an
output distribution that is not truly random, but rather ementially close in statistical deviation from
truly random. Work on privacy amplification in unconditidiyasecure key agreement protocols is also
related to our work (see e.g. [3, 6]).

Bellare and Miner [1] consider the notion of forward-setufor signature schemes, which is a differ-
ent attempt to address the key exposure problem. The kinecofisy they achieve prevents an adversary
that gains a current secret key from being able to forge sigas on messages “dated” in the past. A
similar notion of security can be defined for encryption, veh@ compromised current secret key would
not enable an adversary to decrypt messages sent in thdpasntrast, our work deals with providing
security for both the future as well as the past, but assuthigignotall of the secret key is compromised.
In Section 4.4, we also address the problem of gradual kegsexp, where na priori bound on the
amount of information the adversary obtains is assumeberate assume only a bound on tfade at
which that the adversary gains information.

Organization: In Section 2 we briefly define some preliminaries. Sectionfihde our main notions
of Exposure-Resilient Functions and All-Or-Nothing TriEnmns. Section 4 talks in detail about con-
structions and application &RF'’s, while Section 5 is concentrated with constructing anahexing the
properties oAONT'’s. Due to space limitations, some of the proofs and disousaie left to Appendices.

2 Preliminaries

For a randomized algorithrd” and an inputz, we denote byF'(z) the output distribution of" on z,
and by F'(z;r) we denote the output string when using the randomned§one of the inputs taF is
considered a “key”, then we write it as a subscript (e£§(;r)). In this paper we will not optimize certain
constant factors which are not of conceptual importanceled¢notherwise specified, we will consider
security against nonuniform adversaries. Note that allptioefs of security can be made to work with
uniform adversaries as well, with appropriate standardifivations to the definitions and proofs.

Let {};} denote the set of element subsets ¢f] = {1...n}, and forL € {}},y € {0,1}", let[y],,
denotey restricted to it§n — ¢) bitsnotin L. We denote byp the bit-wise exclusive OR operator.

We recall that thastatistical differencéalso calledstatistical distancgbetween two random variables
X andY on a finite setD is defined to be

gncag‘Pr[XES]—Pr[YGS]‘:%-Z‘Pr[X:a]—Pr[Y:a]‘.



2.1 Indistinguishability

Given two distributionsA and B, we denote byd =. B (A =, B, A = B) the fact that they are
computationally (statistically withim, perfectly) indistinguishable. For the case of statistidaseness,
we will always have that is negligible in an appropriate security parameter. Wherstatement can hold
for any of the above choices (or the choice is clear from thaed), we will simply writeA ~ B.

We need the following lemma whose proof can be found in AppeAd

Lemma 2.1 Let A and B be any two random variables. Lét be chosen uniformly at random and
C be chosen according to a distributign both independently from and B. Then the following are
equivalent:

(1) (A,B) = (A, R).
(2) (A,B,C) = (A,B @ C, (), for any polynomial time sampleable (PTS) distributjon
(3) (A,B,C) = (A,B o C,C), for uniformp.
The proof of the next simple lemma is straightforward andstizd.
Lemma 2.2 Letg be polynomial time computable function a’d X', Y, Y’ be random variables. Then
a) (X,Y) = (X,Y') = (X,Y @ g(X)) ~ (XY & g(X")).
b) assumeX is independent from both andY”’, andh is some function. Then
(X, h(Y,g(X))) = (X, h(Y',g(X))) <= (9(X), h(Y,9(X))) = (g(X), h(Y",9(X)))

We callg(X) sufficient statistics

3 Definitions

In this section, we define the central concepts in our paprpo&ure-Resilient Function€ERF’s) and
All-Or-Nothing Transforms AONT's). An ERF is a function such that if its input is chosen at random,
and an adversary learmadl but ¢ bits of the input, for some threshold valdethen the output of the
function will still appear pseudorandom to the adversaoynially,

Definition 3.1 A (deterministic) polynomial time computable functipr) : {0,1}" — {0,1}*, is ¢-
ERF (exposure-resilient functionf for any L € {Z} and for a randomly chosen € {0,1}", R €
{0,1}*, the following distributions are indistinguishable:

<[T]L7 f(T)> ~ ([T]L7R> (1)
Here= can refer to perfect, statistical or computational indngiuishability.

Remark 3.2 Note that this definition is a “non-adaptive” version of thefihition. One may also consider
an adaptive version of the definition, where the adversary ataptively choose one-bit-at-a-time which
n — £ positions of the input to examine. Owing only to the messinésuch a definition, we do not give
a formal definition here, but we stress that all our constiarts satisfy this adaptive definitioras well.



The definition states that &RF transformsn random bits intd: (pseudo-)random bits, such that even
learning all but/ bits of the input leaves the output indistinguishable fromaadom value. There are
several parameters of interest hefen, andk. We see that the smalléris, the harder is to satisfy the
condition above, since fewer bits are left unknown to thesaglry. Howevelr, is not the only parameter
of interest, it is bot and/ that tell us how “exposure-resilient” is ti€RF for a givenk. For example,
saying that? = k¢ does not mean much on its own. It could be that ¢, and the function in this case
has no exposure-resilience properties. Generally, threrena measures of interest: the fractior?afith
respect tan, which we would like to be as small as possible (this showsrglience”); and the size of
k with respect tZ, which we want to be as large as possible (this shows how mseydorandom bits
we obtain compared to the number of random bits the advecsamyot see).

We now define the notion of aAONT :

Definition 3.3 A randomizedpolynomial time computable functidf(z) : {0,1}* — {0,1}" is ¢-
AONT (all-or-nothing transformif

1. T is efficiently invertible, i.e. there is a polynomial timechime I such that for any: € {0, 1}¥
and anyy € T'(z), we havel (y) = z.

2. ForanyL € {)}, anyzo, z1 € {0, 1} we have

(zo, 21, [T'(20)]L) = (w0, 21, [T(21)]L) )

In other words, the random variables {i7'(z)]., | = € {0,1}*} are all indistinguishable from
each other. Herex can refer to perfect, statistical or computational indigfuishability.

Remark 3.4 Note again, as in Remark 3.2, that the definition given heee“ison-adaptive” definition.
We stress that all our constructions satisfy the correspupddaptive definition, as well.

The definition given above is the natural analogue of the &ihefinition of AONT given by Boyko [5]
(refining an earlier definition of Rivest [22]) in a settingtiwvia random oracfe We also consider a
generalization of this notion, which we call ZONT with secret and public outputdn this case, we
consider arAONT where the outpuy is divided in two sections: a secret pgitand a public parfs.
The public part of the output is such that it requinegrotection — that is, it can revealed to the adversary
in full. It is only secret party; that requires some protection. The security guarantee ta@ssthat
as long a¥ bits of the secret outpuj; remain hidden (while all the bits af, can be revealed), the
adversary should have no information about the message. thitt clearly, this generalized notion solves
the problem of partial key exposure as well (and also remadpslly applicable to all the other known
uses of theAONT). This generalized form allows us to characterize the $gycaf our constructions
more precisely. For a more detailed discussion of this npgee Appendix B.

Formally, the definition o?-AONT remains as above with the following simple modification: Now
we haveN = s + p, andT'(x) outputs a paiy = (yi,y2) wherey; € {0,1}° andy, € {0,1}”. Finally,
the security holds for all. € {;} rather than € {ZZ} (observe that notationallyy];, = ([y1]z,y2))-
Everything else remains the same. The standard definitivagmonds to the case where the public output
is of size0 (i.e. p = 0, s = N). We call suchAONT s secret-only

The above definition is “indistinguishability” based. Asia§ one can make the equivalent “semantic
security” based definition, where the adversary, givena [T'(x)]. (wherez is picked according to some
distribution M), cannot computg satisfying some relatio® (x, 5) “significantly better” than without

“Boyko’s definition looks somewhat more complicated on théese, since he allows the adversary to choose, sagnd
z1 based on the random oracle. In our case, there are no randaesrso the definition simplifies.



at all. The proof of equivalence is standard and is omittduisT the all-or-nothing transforms allow one
to “encode” anyz in such a form that the encoding is easily invertible, and getadversary learning all
but Z bits of the (secret part of the) encoding “cannot extractwssful” information about.

Boyko [5] showed that assuming the existence of a randomegrétee following so called “opti-
mal asymmetric encryption padding” (OAEP) constructioang-AONT (where/ can be chosen to be
logarithmic in the security parameter). L@t: {0,1}" — {0,1}* andH : {0,1}* — {0,1}" be ran-
dom oracles (where is any number greater thaf). The randomness & is » < {0,1}". Define
T(z) = (u,t), where

u = G(r)dx (3)
t = Hu) ®r 4)

We note that/ (u,t) = G(H (u) @ t) @ u. No constructions oAONT based on standard assumptions
were previously known.

Remark 3.5 The notions oERF andAONT are closely related with the following crucial differenda.

an ERF, the “secret” is a (pseudo-)random valygr). ERF allows one to represent this random secret
in an “exposure-resilient” way by storing instead. INAONT, the secret is a@rbitraryz, which can be
represented in an “exposure-resilient” way by storifiz) instead. ThusERF allows one to represent
a random secret in an exposure-resilient way, WA@NT allows this for any secret.

4 Exposure-Resilient Functions (ERF)

In this section we give constructions and some applicaiddesposure-resilient functionERF’s). First,

we describe perfedERF’s and their limitations. Then, on our way to building comgtidnal ERF’s
with very strong parameters, we first build statistiE®F’'s, and achieve essentially the best possible
parameters. Finally we show how to combine this constractitth standard pseudorandom generators
(PRG) to construct computation&RF's based on any one-way functio®\{F) that achieve any =
(n®) and anyk = poly(n) (in fact, SuChERF’s are equivalent to the existence of one-way functions).
We conclude by giving several applicationsERF’s.

4.1 Perfect ERF

Here we require tha{[r|., f(r)) = ([r]L, R). Since the distributions are identical, this is equivakent
saying that no matter how one sets dny— ¢) bits of r (i.e. setsr|z), as long as the remainingbits
are set at random, the outpfitr) is still perfectly uniform over0, 1}*. This turns out to be exactly the
notion of so calledn — ¢)-resilientfunctions considered in [7]. As an examplekit= 1, exclusive OR
of n input bits is a trivial perfect-ERF (or a(n — 1)-resilient function).

We observe that perfeétERF can potentially exist only fof > k. Optimistically, we might expect
to indeed achievé = O(k). However, already fok = 2 Chor et al [7] show that we must have> n/3,
i.e. at least third of the input should remain secret in otdeyet just2 random bits! On the positive side,
for ¢ > n/2, usingbinary linear error correcting codesne can construct perfeétERF.For a sketch of
the proof of the following theorem and discussion of its ifogtions (along with some background on
error correcting codes), see Appendix C.

Theorem 4.1 ([7]) Let M be ak x n matrix. Definef(r) = M - r, wherer € {0,1}". Thenf is perfect
¢-ERF if and only if M is the generator matrix for a code of distance- ¢ + 1.



4.2 Statistical ERF

We saw that perfedERF cannot achievé < n/3. Breaking this barrier will be crucial in achieving
the level of security we ultimately desire from (computatit) ERF's. In this section, we show that by
relaxing the requirement only slightly to allow negligitfle factexponentially smallstatistical deviation,
we are able to obtaiBRF's for essentially any value df(with respect ta:) such that we obtain an output
sizek = ©(¢). Note that this is the best we can hope for up to constantrfgcionce it is not possible to
havek > ¢ for any ERF with statistical deviation < % (proof is obvious, and omitted).

The key ingredient in our construction will be a combinabobject called atrong extractor An ex-
tractor is a family of hash functiong{ such that when a functioh is chosen at random frorit, and

is applied to a random variabl& that has “enough randomness” in it, the resulting randonakb

Y = h(X) is statistically close to the uniform distribution. In otheords, by investing enough true
randomness, namely the amount needed to select a randomemefi#ly, one can “extract” fromX a
distribution statistically close to the uniform distribrt. A strongextractor has an extra property that
Y is close to the uniform distribution even when the randoncfiam / is revealed. (Perhaps the best
known example of a strong extractor is given in the LeftovasklLemma of [15], where standard 2-
universal hash families are shown to be strong extractdisigh work has been done in developing this
area (e.g. [12, 26, 28, 21]). In particular, it turns out thia¢ can extract almost all the randomnesXin
by investing very few truly random bits (i.e. having sn#l). For more information on these topics, see
the excellent survey article of Nisan [20].

The intuition behind our construction is as follows: Notibat after the adversary observes— ¢)
bits of the input (no matter how it chose those bits), the irgau still be any of th&t completions of the
input with equal probability. In other words, conditioned any observation made by the adversary, the
probability of any particular string being the input is atsh2—¢. Thus, if we apply a sufficiently good
extractor to the input, we have a chance to extf¥@) bits statistically close to uniform — exactly what
we need. The problem is that we need some small amount ofdngmmness to select the hash function
in the extractor family. However, if this randomness is dreabugh (say, at mogy/2 bits), we can take it
from the input itself. Hence, we view the fi&t2 bits of » (which we will call ) as the randomness used
to select the hash function, and the rest of we callv. The output of our function will bé(v). Then
even observing, and(n — ¢) other bits ofr leaves at least’/? equally likely possible values af (since
|u| = ¢/2). Now, provided our extractor is good enough, we indeediol§¥é/) bits statistically close to
uniform.

A few important remarks are in place before we give precigarpaters. First, the adversary may
choose to learn the entiie(i.e. it knowsh). This is not a problem since we are usingteongextractor,
i.e. the output is random even if one knows the true randomnesk &exondly, unlike the perfeBiRF
setting, where it was equivalent to let the adversary(set /) input bits in any manner it wants, here
the entire input (including:) mustbe chosen uniformly at random (and then possibly observethdoy
adversary).

Our most important requirement is that the hash functiorhengtrong extractor be describable by
a very short random string. This requirement is met by thengtrextractor of Srinivasan and Zucker-
man [26] using the hash families of Naor and Naor [19]. Thegutts can be interpreted as giving the
following lemma:

Lemma 4.2 ([26]) For any/ andt < ¢/2, there exists a famil§{ of hash functions mapping, 1}" to a
range{0, 1}k, wherek = ¢ — 2t, such that the following holds: A random membefHofan be described
by and efficiently computed usid¢f — t) + O (log n) truly random bits (we will identify the hash function
h with these random bits). Furthermore, for any distributi&non {0, 1}" such thatPr [X = z] < 2¢
for all z € {0,1}", we have that the statistical difference between the fatiguwo distributions is at



moste = 2 - 27
(A) Chooser uniformly from? andz according toX. Output(h, h(z)).
(B) Choosé: uniformly from# andy uniformly from{0, 1}k. Output(h, y).
We are now ready to describe our statistical construction.

Theorem 4.3 There exist statistica-ERF f : {0,1}" — {0, 1}* with k = O(¢) and statistical deviation
2= for anyk andn satisfyingw(logn) < k < n.

Proof: Note that we will not optimize constant factors in this probét ¢’ = ¢/5 and¢ = £/20. We
let the output size of OUERF bek = ¢ — 2t = £/10 and the statistical deviation le= 2-2 = 2%,
Suppose the (random) input to our functiom idNow, we will consider the firsf = 4(¢' —t)+O(logn) <
4¢/5 bits of r to beh, which describes some hash functiorfinmapping{0, 1}" to {0, 1}’“ as given in
Lemma 4.2. Let’ be r with the firstd bits replaced by)’s. Note thatr’ is independent of,, and the
length ofr’ is n. Definef(r) = h(r').

We now analyze this function. Observe that for dng {};}, conditioned on the values of bofH,
andh, there are still at leag/5 bit positions (among the last— d bit positions) ofr that are unspecified.
Hence, for allL € {}}, for all z € {0,1}"~*, and for ally € {0,1}", we have that

Pr [r':y ‘ L, [T]L:Z] <27t =9t

Thus, by Lemma 4.2, we have thdt]|z, b, f(r)) = ([r]z,h, h(r")) =Zc {[r]z,h, R), whereR is the
uniform distribution on{0, 1}k. This is a stronger condition than required by the definitbERF, so
the theorem is establishesl.

We make a few remarks about the security of this construction

Remark 4.4 The constant factors in this construction can be furtherrowpd to achievés = (1 — 9)¢,
for any 6 > 0, by using the strong extractors of [21], under the slightlsosger assumption that =
w(log?n). Recall thatk must be smaller thad, so this is nearly optimal. Note that the statistical
deviation obtained is also exponentially smallaii’).

Remark 4.5 Note that, in particular, we can choogdo ben® for anye > 0, providing excellent security
against partial key exposure. Seen another way, we can ehotisbe any size larger tha# to provide
as much security against partial key exposure as we desfkre.ohly drawback is that the output size is
only©(¢).

4.3 Computational ERF

In the statistical construction given in the previous sattiwe were able to achieve essentially all the
security against partial key exposure we wanted. The oimgtlmiting the applicability of the statistical
construction is that the output size is limitedio< ¢. We would like to be able to achieve an arbitrary
output size. By finally relaxing our requirementdomputationalecurity, we can easily accomplish this
goal by using a pseudorandom generator as the final outefayestof our construction. We also show
that anyERF with & > ¢ implies the existence of pseudoranom generators, closatpop.

Lemma 4.6 Letn, £, m be any polynomially related quantities. Lgbe any statistical-ERF mapping
{0,1}" to {0, 1}'C with negligible statistical deviation, for somek polynomially related ton. LetG be
a pseudorandom generator stretchifig 1}* to {0, 1}™. Then the functiom : {0,1}" — {0,1}™ which
sendsr — G(f(x)) is a computational-ERF.



Proof: Let L € {};}. Suppose there was distinguishiedistinguishing betweed = ([r|., G(f(r)))
andB = ([r]., R) with advantage’, whereR is the uniform distribution 00, 1}". By the properties
of f as a statistical-ERF, and the fact that statistical difference can only decrégsgpplying a function
(G in our case), we have that = ([r]., G(f(r))) andC = ([r]L, G(K)) are within statistical distance
¢ of one another, wher& is the uniform distribution o0, 1}*. Thus, D distinguishesC from B with
advantage) — ¢, as well. Note that in botlB and C, the second component is independent of the first.
Thus, we can us® to distinguishG(K) from R (with advantagel — ¢€), by simply picking a random
r € {0,1}", and providingD with [r]; as the first component. This contradicts the security of the
generatoiG, completing the proom

Theorem 4.7 Assume one-way functions exist. Then forgmanyn = ¢©(1) andk = n°(), there exists
a computational-ERF mapping{0, 1}" to {0, 1}*.

Proof: We use Theorem 4.3 to build a statistidaERFf mapping{0,1}" to {0, 1}”10, with s-
tatistical deviatior2=*(), Since is polynomially related td:, by [13], one-way functions imply the
existence of a pseudorandom generatomapping{0, 1}”10 to {0, 1}k. Applying Lemma 4.6, we see
thatg(r) = G(f(r)) is a computationad-ERF, as desirecm

Finally, we show a “converse”, i.e. that computatiofRF’s with k¥ > ¢ imply the existence of
pseudorandom generators (and hence, one-way functions).

Lemma 4.8 If there exists af-ERF f mapping{0, 1}" to {0, 1}'“, for k > /¢ (for infinitely many different
values of?, n, k), then one-way functions exist.

Proof: We simply observe that the hypothesis implies the existefitike ensemble of distributions
(we hide the obvious parametrizationt = ([r]., f(r)) and B = ([r]z, R), whereR is uniform on
{0, 1}'“. By assumptionA and B are computationally indistinguishable ensembles. NaeAlcan have
at mostn bits of entropy (since the only source of randomnes$,iwhile B hasn — £+ k > n + 1 bits of
entropy. Thus, the statistical difference betwekand B is at leastl /2. By the result of Goldreich [11],
the existence of a pair of efficiently samplable distribogidhat are computationally indistinguishable but
statistically far apart implies the existence of pseuddoam generators, and hence one-way functiens.

As an immediate corollary, we get

Theorem 4.9 For any (infinite sequence of), ¢, k satisfyingQ(k¢) < ¢ < k, n = ¢°(), the following
are equivalent:

1. The existence @fERF f : {0,1}" — {0, 1}*.
2. The existence of one-way functions.

A particularly useful kind of-ERF will be alength-preserving : {0, 1}* — {0, 1}*, which is impossi-
ble to achieve in the statistical or perfect sense. Thus,ate g

Corollary 4.10 If one-way-functions exist, length-preservie@ERF f : {0,1}F — {0,1}* exists, for
any? = Q(k°).

4.4 Applications of ERF

As we said,(-ERF f : {0,1}* — {0,1}* allows one to represent a random secret in an “exposure-
resilient” way. In Section 5 we show how to constréédNT'’s usingERF’s. Here we give some other
examples.



As an immediate example, especially whien> =, it allows us to obtain a much stronger form of
pseudorandom generator, which not only stretehégs to £ bits, but remains pseudorandom when any
(n — ¢) bits of the seed are revealed. As a natural extension of theeagxample, we can apply it to
private-key cryptography. A classical one-time privatg kecryption scheme ovei0, 1}* chooses a
random shared secret keyc {0,1}" and encrypts: € {0,1}* by the pseudorandom “one-time pad”
G(r) (whereG is aPRG), i.e. E(z; r) = = ® G(r). We can make it resilient to the partial key exposure
by replacingPRG G with ERF f.

For the next few examples, we assume for convenienceBR&: f : {0,1}* — {0,1}* is length-
preserving. Using sucli, we show how to obtaiexposure-resilient form of a pseudorandom function
family (PRF). A PRF family F = {F; | s € {0,1}*} has the property that, is indistinguishable from
a random function when the seeds chosen at random froff0, 1}*, but the pseudorandomness is only
guaranteed if is completely hidden. Defining, = Fy5), we get a new pseudorandom function family

F = {F, | s € {0,1}*}, which remains pseudorandom even when all4hits of the seed are known.
We call such family arexposure-resilienPRF. We appply this again to private-key cryptography. The
classical private-key encryption scheme selects a randwares keys € {0,1}* and encrypts: by a
pair (z ® Fy(R), R), whereF = {F, : {0,1}) — {0,1}* | s € {0,1}*} is aPRF, andR is chosen
at random. Again, replacing by an exposure-resilier®RF, we obtain resilience against partial key
exposure. Here, our secret keyig {0, 1}*, but f(s) is used as the index to a reguRIRF.

In fact, we can achieve security even against what we calythdual key exposurproblem in the
setting with random private keys. Namely, consider a sinaivhere the adversary is able to learn more
and more bits of the secret key over time. Here, we do not mageupper bound on the amount of
information that the adversary can learn about the secrettke instead assume only that the rate at
which the adversary can gain information is bounded. Famga, suppose that every week the adversary
somehow learns at moksbits of our secret. We know that as long as the adversary migdeits of -, the
system is secupe However, if our key is relatively short, pretty soon thesaidanger that the adversary
knows more thark — ¢ bits of , so the system is no longer secure. We argue that we can disjd t
provided the raté the adversary learns our secret is not too large. Namelj paities periodically
(say with period slightly less thafk — ¢)/b weeks), update our key by setting.,, = f(rq.q). Since at
the time of each update, the adversary missed at febiss of our current key-, the valuef (r) is still
pseudorandom, and thus secure. Hence, we can agree on tbieksyconlyonce even if the adversary
continuously learns more and more of our secret!

5 All-Or-Nothing Transform (AONT)

As we pointed out, nAONT constructions without random oracles are known. We giversgwsuch
constructions. One of our constructions implies that fer ititeresting settings of parameters, the exis-
tence of-AONT’s, /-ERF’s and one-way functions are equivalent. The other contitrucan be viewed
as the special case of the OAEP contruction of Bellare anda®Rayg [2]. Thus, our result can be viewed
as the first step towards abstracting the properties of thidora oracle that suffice for this construction to
work. Finally, we give a “worst-case/average-case” reidadior AONT s that shows that one only needs
to check the definition cAONT for randomzx, z1.

Here we assume that ofERF is secure even against adaptive key exposure, where thesadyenay choose which next
bits to learn based on his current information. However,ammstructions achieve this.
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5.1 Simple Construction using ERF

We view the process of creatifyAONT as that ofone-time private-key encryptipsimilarly to the
application in Section 4.4. Namely, we look at the simplestgible one-time private key encryption
scheme — the one-time pad, which is unconditionally seddege the secret key is a random striRgof
lengthk, and the encryption af € {0, 1}* is justz ® R. We simply replacer by f(r) wheref is /-ERF
andr is our new secret. We get

Theorem 5.1 Let f : {0,1}" — {0,1}* be computational (statistical, perfecERF. DefineT :
{0,1}* — {0,1}" x {0,1}* (that uses: random bitsr) as follows:T'(z; r) = (r, f(r) ® z). ThenT is
computational (statistical, perfecf)AONT with secret part- and public partf(r) & z.

Proof: Take anyL € {j}, andz, z1 € {0, 1}*. We have to show that

(xo,x1, [r]L, f(r) ® o) = (xo,z1,[r]L, f(r) & z1)

LetC' = zy & 1. Adding z to the last component of both distributions and noticing thas sufficient
statistics, we get (using both parts of Lemma 2.2) that fices to show

(CIr]e, f(r)) = (G, [r]L, f(r) © C)

But this follows immediately from the definition &RF and Lemma 2.1, sinc€' is independent of. m
As an immediate corollary of Theorems 4.7 and 5.1, we have:

Theorem 5.2 Let/, s, k be any settings of parameters such that ¢°() andk = ¢°(1). Then there
exists ar/-AONT for messages of leng#h with secret output sizeand public output sizé.

Remark 5.3 To see the power of the above construction, observe thatameecide on any value fdr
(which will essentially be a security parameter), and anlugdor s — ¢, which is the number of bits the
adversary can see without gaining any information, withyahle constraint that — ¢ be polynomially
related to/. Then, one can build ahrAONT with secret outputs of sizeand public outputs of sizk,

for messages of any lengthpolynomially related td. In particular, we can select parameters such that
¢ = s foranye > 0 ands = O(k) if we so choose.

Remark 5.4 Observe that any-AONT with public and secret outputs of lengthand s, respectively,
also gives a secret-onf-AONT with output sizeV = s+p and?’ = £+ p (since if the adversary misses
¢ + p bits of the output, that means it must miss at Iédsits of the secret output). Note that viewing our
construction as a secret-onblyAONT on messages of lengkh if one requires a security paremeter#f
we will need to picl = ¢, + k. However, we make two observations:

1. As before, for any choice of security parametgrand for any choice of the resilience in terms
of the number of bite we allow the adversary to learn (polynomially relatedétg, and for any
message length, we can build an secret-on§tAONT with output lengthV = e + £y + k.

2. Also, as before, for any security parametgrand message lengthande > 0, we can build a
secret-only/-AONT with output sizeN, such that! = N¢. Here, howeverN = (¢, + k)l/e,
whereas in the case &ONT’s with public and secret outputs,could essentially be chosen inde-
pendently of:.

We conclude with a remark about the applicabilityA®NT's as certain kinds of computational secret
sharing schemes.
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Remark 5.5 Consider an-AONT with public output of sizep and secret output of size We can
interpret this as being a kind of “gap” computational secsétaring scheme. For some secretve apply
the AONT to obtain a secret outpuf; and public outputy,. Here, we think ofj; as being a public share
that is unprotected. We interpret the bitsyefas being tiny shares that are onlybit long, with one share
given to each of parties. We are guaranteed that if all the players cooperhgethe invertability of the
AONT, they can recover the secret On the other hand, if — ¢ or fewer of the players collude, they gain
no computational information about the secret whatsoeV. call this a “gap” secret sharing scheme
because there is a gap between the number of players neededottstruct the secret and the number
of players that cannot gain any information. Note that sudap is unavoidable when the shares are
smaller than the security parameter. Using our construwionve can obtain such schemes for any value
of Z larger than the security parameter, and any value tdrger than/.

5.2 AONT implies OWFs

Theorem 5.6 Assume we have a computatiodahONT 7" : {0,1}* — {0,1}* x {0,1}? = {0,1}V
wherel < k — 1. Then one-way functions exist.

Proof: To show thalOWF's exist it is sufficient to show thateakOWF's exist [10]. FixL = [¢] C
[s]. Defineg(zg,z1,b,7) = (xo,21,y]r), Wherey = T'(zp; r). We claim thatg is a weakOWF.
Assume not. Then there is an invertéisuch that whem, x1, b, r are chosen at random,= T'(zy; ),

z = [ylL, (b,7) = A(wo,21,2), § = T(xg; 7), 2 = [§], we havePr(z = 2) > 3.

To show that there exiaty, z1 breaking the indistinguishability property @f, we construct a distin-
guisherF for T that has non-negligible advantage fandomz, z; € {0, 1}*. This would show that the
requiredxg, z; exist. Hence, the job aF is the following. zq, 21, b, r are chosen at random, and we set
y =T (zp; 1), z = [y]. ThenF is given the challenge together withzy andz;. Now, F' has to predict
b correctly with probability non-negligibly more than'2. We letF run A(zg, z1, z) to getb, 7. Now, F
setsy = T'(zj; 7), 2 = [§]1. Ifindeedz = z (i.e. A succedeed)” outputsb as its guess, else it flips a
coin.

Let B be the event thatl succeeds inverting. From the way we set up the experimenknow that
Pr(B) > 3. CallU the event that whemy, z1, b, r are chosen at randof¥ (z,; 7)]r, € [T'(z1-p)]L, i.€.
there exists some such tha{7'(z, »; ')], = z or g(zo,z1,1 — b,") = g(z0,z1,b,7). If U does not
happen and! succeeded inverting, we know that b, as itisl — b is an impossible answer. Thus, using
Pr(X AY) > Pr(X) — Pr(Y), we get:

Pr(b=b) > ~Pr(B)+Pr(BAT) >+ Pr(B) + Pr(B) — Pr(U)
2 2
= L4 5PH(B) ~Pr(U) > 5 (% - Pr(U))

To get a contradiction, we show that(U) < 2¢*, which is at most < 2 since/ < k — 1. To show
this, we observe thdf measures the probability of the event that when we cheosk r at random and
setz = [T'(z; )], what is the probability that there i$ such that: = [T'(z'; r’)].. However, for any
fixed setting ofz, there are onl2* possible completiong € {0,1}". And for each such completiop
invertability of 7' implies that there could be at most omec T~!(y). Hence, for any setting of, at
most2¢ out of 2% possiblez’ have a chance to have the correspondinghus,Pr(U) < 2¢* indeed.m

Up to a constant factor, the result is optimal, since one chiege statistical (even secret-onlg)
AONT with £ = O(k). Indeed, we use statisticélERF f : {0,1}" — {0, 1}* with £ = O(k) (and any
n > £ we like) as achieved in Theorem 4.3, and then apply Theoréno5t. This yields unconditional
¢-AONT with N = n + k and? = O(k). Merging secret and public parts together gives secrst-onl
¢'-AONT with ¢/ = ¢ + k = O(k) still.
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5.3 Towards secret-only AONT

We also give another construction of A@NT based on any length-preserving functipsuch that both
[r — f(r)] and[r — f(r) @ r] areERF's. This construction can be viewed as a special case of the
OAEP construction as defined by Equations (3)-(4) (but withmndom oracles). Thus, our analysis
makes a step towards abstracting the properties of the mandacle needed to make the OAEP work as
an AONT. It also has the advantage of meeting the standard defirofiam AONT (without separate
public and secret outputs), while retaining a relativelgrsloutput length.

Recall that the OAEP construction s@tée; r) = (u,t), whereu = G(r) ® z, t = H(u) & r, and
G :{0,1}" — {0,1}¥ andH : {0,1}* — {0, 1}" are some functions (e.g., random oracles). We analyze
the following construction, which is a special case of theEPAconstruction witlhh = k, and H being
the identity function.

u = f(r)ow (5)
t = sébr (6)

wheref : {0,1}F — {0,1}*. Thus, T (x; r) = (f(r) ® =, (f(r) ®r) ® ), and the inverse i§(u,t) =
ud f(udt).

Theorem 5.7 Assumef is such that bothf(r) and (f(r) & r) are length-preserving computationél
ERFs. Therl" above is computational secret-ordy-AONT .

The proof and the related discussion can be found in Appdndi¥e note, though, that random oracle
f clearly satisfies the conditions of the Theorem. Thus, wainbt a simple proof that even removing
random oracled leaves the OAEP construction secure foe= k. We believe that the assumption of
the theorem is quite reasonable, even though we leave opejudstion of constructing sughbased on
standard assumptions.

5.4 Worst-case / Average-case Equivalence of AONT

In the definition ofAONT we require that Equation (2) holds for amy, ;. This implies (and is equiv-
alent) to saying that it holds if one is to choosg =, according to any distributiop(xo, z1). A natural
such distribution is the uniform distribution, which sdafecandomz, z; uniformly and independently
from {0, 1}*. We call anAONT secure against (possibly only) the uniform distributionaaerage-case
AONT. A natural question to ask is whether average-ds@&T implies (regular)AONT with compa-
rable parameters, which can be viewed as the worst-casagmvease equivalence. We show that up to
a constant factor, the notions are indeed identical in thessital or computational settings. Below we
assume without loss of generality that our domain is a finétl fle.g. GF(2*)), so that addition and
multiplication are defined.

Lemma5.8 LetT : {0,1}¥ — {0,1}* x {0,1}” be an average-case (statistical or computational)
¢-AONT. Then the followingl™ : {0,1}* — {0,1}* x {0,1}*" is a (statistical or computationab¢-
AONT, wherea, as, b are chosen uniformly at random subjecttot+ a2 # 0 (as part of the randomness
of T"):

T'(z) = (T'(a1),T(a2), T(b), T((a1 + az) - = + b))

In the above output, we separately concatenate secret aplccarts of1”'s output.

Proof: See Appendix b
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6 Conclusions

We have studied the problem of partial key exposure andeei@iestions. We have proposed solutions to
these problems based on new constructions of the All-OhiNgtTransform in the standard model based
on any one-way function, without random oracles.

The key ingredient in our approach is an interesting new iiienwhich we call an Exposure-
Resilient Function. This primitive has natural applicaidn combatting key exposure, and we believe
it is also interesting in its own right. We showed how to buelssentially optimaERF's based on any
one-way function. We also explored many other interestingp@rties oERF's andAONT'’s.
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A Proof of Lemma 2.1

Lemma A.1 Letq, 5 be two (possibly dependent) random variables taking vaiy®,i1}. LetD be the
following experiment: obserwe and 5. If a = 3, then flip a coin, else output (= 1 — 3). Let~y be the
output ofD. Then

- [Pr(a =1) = Pr(p =1)]

DN | =

_l’_

Pr(y=1) = Pr(azl/\ﬁzO)—l—%-[Pr(a:1/\B:1)+Pr(a:0/\ﬂ:0)]
APr(a=1AB=0)+Prla=1A=1)]+Prla=1A3E=0)+Pr(a=0A[=0)]}
‘[Pr(a=1)+Pr(f=0)] =

+ = [Pr(a=1) - Pr(f =1)]

N = DN =
N | =

1
2
[ ]

We now prove Lemma 2.1, which stated the following: l4&tnd B be any two random variables.
Let R be chosen uniformly at random attbe chosen according to a distributipnboth independently
from A andB. Then the following are equivalent:

(1) (A,B) = (A, R).
(2) (A,B,C) = (A,B e C, (), for any polynomial time sampleable (PTS) distributjan
(3) (A,B,C) = (A,B e C,C), for uniformp.



We concentrate on the computational case, which is the sianfighe above.

(1) = (2). Assume(2) is false for some PTS, so there is an adversafydistinguishing(4, B, C') from
(A, B & C,C) with advantage. We construct a distinguishdp that distinguishesA, B) from (A, R).
D gets as inpufA, X'). It generate€”’ according t, setsoe = F(A, X, C), 8 = F(A, X & C,C). Then
D proceeds as in Lemma A.1. Thus,

+ - [Pr(a=1) - Pr(f =1)]

[Pr(F(A,X,C) = 1) — Pr(F(A, X & C,C) = 1)]

N =N =
N — N =

WhenX = B, the difference above is at leastby assumption of". Thus,Pr(y =1) > £ + &.
WhenX = R, bothR andR @ C are uniform and independent 6f Thus,Pr(F(A4,X,C) =1) =
Pr(F(A,X @ C,C) = 1), and soPr(y = 1) = 5. Hence,D is a good distinguisher indeed.

(2) = (3) is trivial.

(3) = (1). LetR = B @ C. If Cis uniform and independent from and B, then so isR. If there is
an adversary that can distingui§, B) from (A, R), then there is an adversary distinguishiag B, C')
from (A,B® C,C) = (A, R,C), that simply ignores the extra informatiari and runs the original
adversary on the first two components.

B Discussion of AONT with Secret and Public Outputs

We now discuss the generalized definitionA®NT. Recall that the standard definition requires that
security should hold foany /-element subset of [IV]. The interpretation is that we wish to protect the
secretr, we encode secrat into a new secrey = 7'(z) such thatz: is protected against the adversary
learning all but/ bits of y. Thus, it is implicitly assumed that all parts of the tramsicare “equally
important” and should have the same protection against tthekar. In reality, different parts of the
transform serve different purposes for the decoding psoc&ome of them could be used just for the
decoding process (so that the mapping is invertible), batrextt important to keep secret against the
attacker, while others are really the ones that do all thetographic work, and thus, should be kept
secret.

For example, we could have a transform of output lerxgthwhere, as long as the adversary does not
learn/k bits from the second half of the transform, we are completeyure, but are totally insecure if
it learns the entire second half. This seems like a very redde solution to the key leakage problem;
we will simply protect as hard as we can the second half of rdmestform, while the first part we might
as well publish. However, in the standard setting we must setk + vk to ensure that the adversary
misses at least/k bits of the second half. This seems to be an artificial sefting, indicating that more
than half of the transform should be kept hidden. Commonestils us that the real answerfis= VE,
because first and second half serve different purposes, amdaxsecure as long &% bits of the second
half remain hidden.

This leads us to the following more general notionPA@NT. Here we can encode into a “secret”
party; and a “public” partys, such that the public part might as well be published, whikedecret part
has our standard resilience property. Namely, the adwetearning all but/ bits of ¢, (and the entire
public 4») cannot learn anything useful abatit Thus, public part is only used to decodeback (in
conjunction with the secret part), but we really do not cdreuh protecting it. It is the secret payt that
is important to protect.



We argue that this generalized notion allow us more flegjbilnan before. First of all, it allows
reasonableAONT constructions, as in the example above, to have sfat they should. Secondly,
while without the public part, the size of the secret part tmble at least the size of the message, now
it can be much smaller (at the expense of the public part).s;Tthe public part may be stored on some
insecure device with fast access time (like public cachéjlensecret part may be stored further away in
some publically read-protected memory (and still give argoee that small accidental leakage will not
compromise the security). In addition, we will see that mpeaeralAONT s (with the public part) seem
to be more efficient and much easier to construct than thegeondingAONT's with secret part only.
We also point out that this generalized notionA@NT naturally suffices for all applications &ONT
we are aware of.

C Error Correcting Codes and Perfect ERF

A binary linear [n, k, d] error-correcting codecan be seen as a linear transformation frotn1}* to
{0,1}" (where these are viewed as vector spaces 6\f2)). Thus, such a code can be described by an
k x n generating matrix}/ over GF(2). For any vectow € {0, 1}'“, the codeword corresponding to
isvM. A code is said to haveinimum distancé if for every two distinct vectors, v € {0, 1}’“, uM
andvM differ on at least! coordinates. Note that by linearity, this is equivalentaquiring that every
non-zero codeword has at led@ston-zero components. For further information on errorexiing codes,

as well as for proofs of the results on error correcting cadaswe use, see [18].

Theorem C.1 ([7]) Let M be ak x n matrix. Definef(r) = M - r, wherer € {0,1}". Thenf is perfect
¢-ERF if and only if M is the generator matrix for a code of distance- ¢ + 1.

The proof of this theorem follows by observing that everyamdrd is a linear combination of the
rows of M (since codewords are of the formM for v € {0,1}¥). The distance properties of the
code imply that the rows o are linearly independent, and furthermore that every nioiat linear
combination of the rows creates a codeword of Hamming weighdastd. Hence, even after removing
any(d — 1) = (n — ¢) columns ofM, the resulting rows oMM are still linearly independent, which gives
the desired result.

We apply this result to a special kind of code. A code is saidetasymptotically good n = O(k)
andd = Q(n) (i.e., the three parameters k, andd differ by multiplicative constants). Many explicit
constructions for asymptotically good codes (e.g. theedest code) also exist. Using such a code, we
can get botl{/n andk/n to be (very small) constants.

Note that for any codek < n — d + 1 (this is called thesingleton bound Thus, we have: <
n—(n—¢+1)+1=1/ as expected. Also, it is known that< n/2 for k£ > 2logn. This implies that
we are limited to havé > n /2. However, at the expense of making= poly(k), using a Reed-Solomon
code concatenated with a Hadamard code, we can achieve — d + 1 to be arbitrarily close ta./2,
but can never cross it.

D Discussion and Proofs for Section 5.3

Recall that the OAEP construction sé&t$z; r) = (u,t), whereu = G(r) ® 2, t = H(u) & r, and

G :{0,1}"* — {0,1}* andH : {0,1}* — {0,1}" are some functions (e.g., random oracles). Let's try to
develop some informal intuition of why this constructionnkg in particular, to separate the properties
of G and H that are essential (and hopefully sufficient) for this cnngton to be arAONT. We look at
the two extreme cases.



First, assume we know and mis< bits of t. Then we misg bits ofr, sincer = H(u) & t. Note that
x = G(r) @ u, so in order to “miss: completely”, G must have the property that missiadits of G's
random input- makes the output pseudorandom (random oracle clearlyisatikis). But this isxactly
the notion of/-ERF! Thus, G must be arERF, and this suffices to handle the case when we hists
of t.

Now assume that we knowand are missing bits of u. Assume for a second th&f is a random
oracle. Then, since = H(u) & t, we are essentially missing completely. But from the previous
argument abou€’, we know that even missingbits of » leavesz completely unknown. Thus, random
oracleH achieves even more than we need. In some sense, as |ldihglass not “unhide” information
we miss about:, we will miss at least bits of r. In other words, assum# satisfies the property that
missing/ of its input bits implies “missing” at leagtof its output bits. Then missingbits of u implies
missing/ bits of r, which implies missing entiré(r), which implies missingc completely. So we ask
the question of whicl satisfy this property? Clearly, the easiest one is the ijefuinction (assuming
n = k). This has led us to analyze the following construction, cihis a special case of the OAEP
construction withn = k, and H being the identity function.

u = f(r®zx (7)
t = sébr (8)

wheref : {0,1}F — {0,1}*. Thus, T (x; r) = (f(r) ® =, (f(r) ) ® ), and the inverse i§(u,t) =
ud f(udt).

Theorem D.1 Assumef is such that bothy (r) and (f(r) & r) are length-preserving computationé
ERFs. Therl" above is computational secret-ordy-AONT .

Proof: Let N = 2k be the size of the outpuk;; = {1...¢}, Ly = {¢+1...2¢}. Asin Equations (7)-
8), letu = f(r)® z, t = (f(r) ®r) ® x). Note thatu & ¢t = r.

Take anyL € {2]\2} and anyzg, 71 € {0, 1}*. It must be the case that eithdrn L;| > £ or |L N Ly| > .
Thus, it suffices to show security when we either knoeompletely and misg bits of u, or when we
know u completely and misg bits of ¢. Hence, it suffices to assume tha{ = ¢ and consider the two
cases separately.

1) L C L;. Then we must show that

(2o, 21, [f () ® oL, (f(r) ® 1) & 0) = (20,21, [f (1) ® 1L, (f(r) B 1) B 21)

Sincefu]r, @ [t]r = [r]z, by Lemma 2.2 the above is the same as

(2o, 21, [rlL, (f(r) @1) ® 20) = (20, 21, [r|L, (f(r) B T) © 21)

Adding z to the last component and lettifg = zy @ =, using both parts of Lemma 2.2, above is the
same as

(C,lrle, (f(r) @ 7)) = (C[rle, (f(r) @) ®C)
The result now follows from the fact théf (r) & r) is -ERF and Lemma 2.1.

2) L C L. The proof is identical to above with the roles pfr) and (f(r) @ r) interchanged. In
particular, security follows from the fact thitr) is /-ERF. m

We remark that non-trivial length-preservilgRF’s can exist only in the computational sense, since
¢ > k for any statisticaERF.



E Proof of Lemma5.8

First, sinceT is invertible anda; + a2 # 0, we have thafl” is invertible (invert all four components
and recoverr). Assume now thaf” is not an/-AONT, that is for somel’ € {ffg}, oy, 7} € {0,1}*
(obviously,z;, # z!) we have

(*736? xllv [T,(xg)]L’> 56 <$6v xllv [T,(xg)]L’>

Call z the last input tdl’, i.e. either(ag + a1) - z( + b or (ap + a1) - | + b. Letxzy, 2, be selected
at random form{0, 1}*, and we are givettwy, =1, [T'(z;)]L.), wherei is either0 or 1. We need to choose
L allowing us to “blindly transform”T'(z;)], into [T”(x})].. Then, since the latter distribution is not
indistinguishable foi = 0 and: = 1, the so is the former distribution. Thus, the quadruplg a2, b, z)
resulting from our “blind” transformation should satisfy

(a1 +az) o, +b==z 9

Moreover, (a1, a9, b, z) should be (statistically close togndomsatisfying the corresponding equation
above (subject ta; + a2 # 0).

We constructL by looking at which part of the output &f’ has the most bits i.’. Namely, let
Lj={m € [{] | m+j¢e L'}. Since|L’| > 4¢, some|L;| > ¢. We letL be any/-element subset of
this LL;. We now conside# cases depending on the identity of thisin all the cases, one afi, a2, b, z
(depending o) will have to be implicitly set tor; (for unknowns). The remaining parameters must
be then set in theame way independent ofbut stay otherwise random), such that irrespective 6f0
or: = 1, Equation (9) is satisfied. We now illustrate how this can beeadfor eacly = 1,2, 3, 4.

e |L;| > ¢. Hence, we know that

(20, 7, [T(a1)]L, T(az), T(b), T((a1 + az2) - 7o + b)) #
(20, 7, [T(a1)]L, T(az), T(b), T((a1 + az) - 2} + b))

Clearly, we should (implicitly) make; = x; (which is random since; is random). In order to set
as, b, z in an identical manner independentipfve solve the linear system iy andd (d is to be
interpreted ag — b)

(:Jc0+a2)-a;6 = d
(:Jc1+a2)-a;'1 = d

This system is always solvable singg # . Moreover,as andd are random and independent
of each other for a random choice @&f andx,. We then pick random, z such that: — b = d.
We note thatzy + a2 or 1 + a2 are0 with only negligibly small probability (since resulting, is
random), so we can ignore this case happening for the &tatist computational setting. Then we
immediately observe thdt!, as, b, z) satisfy (z; + a2) - z; + b = z. Moreover, this is aandom
quadruple of inputs t@" used for computing” (z}) (technically, statistically close to it). Hence, by
the argument above, we obtain a contradiction to the fattitha /-AONT .

e |Lo| > ¢. This is symmetric to the above with anday interchanged.

e |L3| > ¢. Hence, we know that

Vi



(0,21, T(ar), T(az), [T'(0)]r, T((a1 + az) - 75 + b)) #
(20,21, T(a1), T(az), [T'(b)]z, T((ar + az) - ' + b))

Clearly, we should (implicitly) maké = z; (which is random since; is random). In order to set
a1, a9,z in an identical manner independentipfve solve the linear system inandz (a is to be
interpreted ag; + as)

a-ThtTy) = 2

a-h+m = =z

This system is always solvable singg # ;. Moreover,a andz are random and independent of
each other for a random choicef andx. Also, unlessey = z; (which happens with exponen-
tially small probability),a # 0. Pick randomu, a, such thata; + as = a. Then(ay,as, z;, z)
satisfy (a1 + a2) - =} + z; = z. Moreover, this is aandomquadruple of inputs td” used for
computing?”(x}) (technically, statistically close to it). Hence, we obtainontradiction to the fact
that7" is /-AONT.

|L4| > ¢. Hence, we know that

(@0, 21, T(a1), T(az), T(b), [T'((a1 + az)zy + 0)]L) #
(z0, 21, T(a1), T(az), T(b), [T((a1 + az)w| +0)]L)

Clearly, we should (implicitly) make = z; (which is random since; is random). In order to set
a1, a9,b in an identical manner independentipfve solve the linear system inandb (a is to be
interpreted ag; + a-)

a-zy+b =

a-h+b = x1

This system is always solvable singg # z). Moreover,a andb are random and independent of
each other for a random choicenf andz,. Also, unlesscy = z; (which happens with exponen-
tially small probability),a # 0. Pick randomay, as such thata; + as = a. Then(ay,as,b, z;)
satisfy (a; + a2) - «} + b = z;. Moreover, this is aandomquadruple of inputs t@’ used in com-
putingT”(z}) (technically, statistically close to it). Hence, we obtainontradiction to the fact that
T is /-AONT.
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