The Fibonacci Sequence

The Fibonacci numbers are:

\[1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots\]

We can calculate the \(n\)th Fibonacci number \((n \geq 2)\) using the formula:

\[F_n = F_{n-1} + F_{n-2}\]

Recession

- Defining a function in terms of itself is called recursion. We call a method that calls itself a recursive method.
- We don’t have to do anything special to write a recursive method in Java; any method can call itself.
- Each recursive call has its own distinct set of parameters and local variables. A recursive call is a separate entry on the execution stack.

The Basis Case

- In order for recursion to work correctly, every recursive method must have a basis case.
- The basis case is an input for which the method does not make a recursive call. The basis case prevents infinite recursion.
- It’s not enough for there to simply be a basis case; the values of the input must reliably approach the basis value.

The Fibonacci Sequence Redux

In the Fibonacci sequence, the basis cases are \(n = 0\) and \(n = 1\). Since the sequence is only defined for nonnegative integers \(n\), the recursive definition will always approach 0.

Basis cases:

\[F_0 = 1\]
\[F_1 = 1\]

Recursive case \((n \geq 2)\):

\[F_n = F_{n-1} + F_{n-2}\]

The Factorial Function

The factorial function is:

\[n! = n(n - 1) \cdots 1\]

We can define the factorial function recursively as:

Basis case:

\[1! = 1\]

Recursive case \((n > 1)\):

\[n! = n \cdot (n - 1)!\]

The Towers of Hanoi

The Towers of Hanoi problem is to move a stack of plates from the first post to the third. You may only move one plate at a time and a larger plate cannot be stacked on top of a smaller one.

The Towers of Hanoi

Step 1:

Step 2:

Step 3:

Step 4:
The Towers of Hanoi

Step 5:

Step 6:

The Towers of Hanoi

Step 7:

The Towers of Hanoi is a classic example of a recursive problem. To solve it for \(n \) plates:
1. Move \(n - 1 \) plates from the first post to the extra post.
2. Move the largest plate to the destination post.
3. Move \(n - 1 \) plates from the extra post to the destination.

The basis case (1 plate) is trivial.

Merge Sort

Input: A list of numbers \(X_1, X_2, \ldots, X_n \) and a range \(i..j \) to sort. (\(i \) and \(j \) are initially 1 and \(n \), respectively).
Output: A list in ascending order.

1. If \(i = j \), goto Step 6.
2. \(k := (i + j) \div 2 \).
3. \(Y := \text{sort} X_i..k \).
4. \(Z := \text{sort} X_{k+1}..j \).
5. Merge \(Y \) with \(Z \) into \(X' \).
6. Return sorted list \(X' \).

Merge Sort: Example

Merge Sort: Efficiency

From the top down, a merge sort of a list of length \(n \) will:
- Merge two lists of length \(n/2 \): approximately \(n \) operations.
- Merge four lists of length \(n/4 \): \(n \) operations.
- Merge eight lists of length \(n/8 \): \(n \) operations.
- And so on, until we have \(n \) lists of length one: \(n \) operations.

If each step takes \(n \) operations, the question is: how many steps until we reach the basis case?

Binary Search

Input: A sorted list \(X_1, X_2, \ldots, X_n \) and a number to find \(a \).
Output: A boolean value \(\text{Found} \) indicating whether \(a \) is contained in \(X \).

1. \(\text{Found} := 0, i := 1, j := n \).
2. \(k := (i + j) \div 2 \).
3. If \(j \leq i \), go to Step 6.
4. If \(X_k > a \), \(j := k - 1 \), go to Step 2.
5. If \(X_k < a \), \(i := k + 1 \), go to Step 2.
6. If \(X_k = a \), \(\text{Found} := 1 \).

Binary Search: Efficiency

- Each step of the binary search divides the list in 2.
 The number of steps it will take to find a number in a list of length \(n \) is:
 \[
 T(n) \approx \log_2 n
 \]
- The log function grows quite slowly:
 \[
 \log_{10} 100 \approx 5 \\
 \log_{10} 1,000 \approx 10 \\
 \log_{10} 1,000,000 \approx 20
 \]
Calculating Fibonacci Numbers

Consider a recursive method for calculating the nth Fibonacci number:

```java
int fibo(int n) {
    if( n==0 || n==1 )
        return 1 ;
    else
        return fibo(n-1) + fibo(n-2) ;
}
```

What is the running time of `fibo` on an input n?

Calculating Fibonacci Numbers, 2

From the top down, a call to `fibo` will:

- Add the result of two recursive method calls: 1 operation.
- Each recursive call will add the value of two further recursive calls (4 in all): 2 operations.
- Each of those calls will add the value of two further recursive calls (8 in all): 4 operations.
- And so on, until we reach `fibo(1)` and `fibo(0)`.

It will take $n - 1$ steps to reach the basis case.

Calculating Fibonacci Numbers, 3

The running time of `fibo` grows exponentially with n:

$$T(n) = 1 + 2 + 4 + \ldots + 2^{n-2}$$
$$= \sum_{i=0}^{n-2} 2^i$$
$$= 2^{n-1} - 1$$
$$\approx 2^n$$

This is bad. Exponential growth is worse than n^2. In fact, it's worse than n^c for any c.

Iteration vs. Recursion

Consider an iterative method for calculating Fibonacci numbers:

```java
int fibo2(int n) {
    int n = 1, n2 = 1 ;
    for( int i=2 ; i < n ; i++ ) {
        int tmp = n2 ;
        n2 = n ;
        n = tmp + n2 ;
    }
    return n ;
}
```

Iteration vs. Recursion: 2

- `fibo2` performs one addition for each number in the sequence, from 2 to n. Thus, it is linear in n.
- Recursion is not always the best solution to a problem. Even when the problem itself is defined recursively.
- We can usually solve a problem iteratively (i.e., using loops) or recursively. Which one we choose depends on the particular problem and personal taste.

Orders of Magnitude

- When we say the running time of an algorithm is approximately $f(n)$, what we really mean is it is on the same order of magnitude as $f(n)$.
- We express orders of magnitude using the notation $\Theta(f(n))$. $T(n) = \Theta(f(n))$ means that an algorithm grows neither faster nor slower than $f(n)$.
- The orders of magnitude are related as follows:

$$c \ll \lg n \ll n \ll n \lg n \ll n^c$$

where c is a constant.

Orders of Magnitude, 2

- Constant-time algorithms ($\Theta(1)$) are as good as it gets. That means we can calculate the result in a fixed number of steps, regardless of the input.
- Exponential algorithms ($\Theta(c^n)$) are just about as bad as it gets. We call exponential algorithms intractable—it is not practical to solve them for anything but very small inputs.
- Quadratic and higher polynomial algorithms ($\Theta(n^c)$) are tractable but slow. Linear ($\Theta(n)$), logarithmic ($\Theta(\lg n)$) and linear-logarithmic ($\Theta(n \lg n)$) algorithms are what we shoot for.