Solvers, Synthesis, and Learning

Sanjit A. Seshia
EECS Department
UC Berkeley

Acknowledgments to several Ph.D. students, postdoctoral researchers, and collaborators, and to the students of EECS 219C, Spring 2015, UC Berkeley

SAT/SMT Summer School
July 17, 2015
Connections in this Lecture

SMT Solving

Formal Synthesis

Machine Learning (Theory)
Outline

- Formal Synthesis & Applications
- Syntax-Guided Synthesis (SyGuS)
- Inductive Synthesis
 - Counterexample-Guided Inductive Synthesis (CEGIS)
- Conclusion
Formal Methods ≈ Computational Proof Methods

- Formal Methods is about Provable Guarantees
 - Specification/Modeling ≈ Statement of Conjecture/Theorem
 - Verification ≈ Proving/Disproving the Conjecture
 - Synthesis ≈ Generating (parts of) Conjecture/Proof
Formal Synthesis

- Given:
 - Class of Artifacts C
 - Formal (mathematical) Specification ϕ

- Find $f \in C$ that satisfies ϕ

- Example:
 - C: all affine functions f of $x \in \mathbb{R}$
 - ϕ: $\forall x. f(x) \geq x + 42$
Artifacts Synthesized in Verification

- Inductive invariants
- Abstraction functions / abstract models
- Auxiliary specifications (e.g., pre/post-conditions, function summaries)
- Environment assumptions / Env model / interface specifications
- Interpolants
- Ranking functions
- Intermediate lemmas for compositional proofs
- Theory lemma instances in SMT solving
- Patterns for Quantifier Instantiation
- …
Example Verification Problem

- **Transition System**
 - **Init:** \(I \)
 \[
 x = 1 \land y = 1
 \]
 - **Transition Relation:** \(\delta \)
 \[
 x' = x + y \land y' = y + x
 \]

- **Property:** \(\Psi = \mathbf{G} (y \geq 1) \)

- **Attempted Proof by Induction:**
 \[
 y \geq 1 \land x' = x + y \land y' = y + x \implies y' \geq 1
 \]

 Fails. Need to Strengthen Invariant: Find \(\phi \) s.t.
 \[
 x = 1 \land y = 1 \Rightarrow \phi \land y \geq 1
 \]
 \[
 \phi \land y \geq 1 \land x' = x + y \land y' = y + x \Rightarrow \phi' \land y' \geq 1
 \]
Example Verification Problem

- Transition System
 - Init: \(I \)
 \[x = 1 \land y = 1 \]
 - Transition Relation: \(\delta \)
 \[x' = x + y \land y' = y + x \]

- Property: \(\Psi = \mathbf{G} (y \geq 1) \)

- Attempted Proof by Induction:
 \[y \geq 1 \land x' = x + y \land y' = y + x \implies y' \geq 1 \]
 Fails. Need to Strengthen Invariant: Find \(\phi \) s.t.
 \[x \geq 1 \land y \geq 1 \land x' = x + y \land y' = y + x \implies x' \geq 1 \land y' \geq 1 \]

- Safety Verification \(\rightarrow \) Invariant Synthesis
One Reduction from Verification to Synthesis

NOTATION

Transition system $M = (I, \delta)$
Safety property $\Psi = G(\psi)$

VERIFICATION PROBLEM

Does M satisfy Ψ?

SYNTHESIS PROBLEM

Synthesize ϕ s.t.

$\begin{align*}
I & \Rightarrow \phi \land \psi \\
\phi \land \psi \land \delta & \Rightarrow \phi' \land \psi'
\end{align*}$
Two Reductions from Verification to Synthesis

NOTATION
Transition system $M = (I, \delta)$, $S =$ set of states
Safety property $\Psi = G(\psi)$

VERIFICATION PROBLEM
Does M satisfy Ψ?

SYNTHESIS PROBLEM #1
Synthesize ϕ s.t.
$I \Rightarrow \phi \land \psi$
$\phi \land \psi \land \delta \Rightarrow \phi' \land \psi'$

SYNTHESIS PROBLEM #2
Synthesize $\alpha : S \rightarrow \hat{S}$ where $\alpha(M) = (\hat{I}, \hat{\delta})$
s.t.
$\alpha(M)$ satisfies Ψ iff M satisfies Ψ
Reducing Specification to Synthesis

- Formal Specifications difficult for non-experts
- Tricky for even experts to get right!
- Yet we need them!

“A design without specification cannot be right or wrong, it can only be surprising!”
- paraphrased from [Young et al., 1985]

- Specifications are crucial for effective testing, verification, synthesis, …
VERIFICATION: Given (closed) system M, and specification ϕ, does M satisfy ϕ?

SYNTHESIS PROBLEM: Given (closed) system M and class of specifications C, find “tightest” specification ϕ in C such that M satisfies ϕ.

 http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jin-tcad15.html

- Implemented in Breach toolbox by A. Donze
Recent Efforts in Program Synthesis

Common theme to many recent efforts:

- Sketch (Solar-Lezama et al)
- Implicit Programming (Kuncak et al)
- Oracle-guided program synthesis (Jha et al)
- FlashFill (Gulwani et al)
- Super-optimization (Schkufza et al)
- Invariant generation (Many recent efforts…)
- TRANSIT for protocol synthesis (Udupa et al)
- Auto-grader (Singh et al)

[Slide content from A. Solar-Lezama]
Further Reading for this Tutorial

 http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-alur-fmcad13.html

 http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-dac12.html

 http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jha-arxiv15.html

- Lecture notes of EECS 219C: “Computer-Aided Verification” class at UC Berkeley, available at:
 http://www.eecs.berkeley.edu/~sseshia/219c/
Two Central Questions

- Is there a core computational problem for formal synthesis?
 - Shared by many different synthesis problems

SYNTAX-GUIDED SYNTHESIS

- Is there a common theory of formal synthesis techniques?

ORACLE-GUIDED INDUCTIVE SYNTHESIS (Counterexample-Guided Inductive Synthesis – CEGIS)
Syntax-Guided Synthesis
Formal Synthesis (recap)

- Given:
 - Formal Specification ϕ
 - Class of Artifacts C

- Find $f \in C$ that satisfies ϕ
Syntax-Guided Synthesis (SyGuS)

- Given:
 - An SMT formula ϕ in $\text{UF} + T$ (where T is some combination of theories)
 - Typed uninterpreted function symbols f_1, \ldots, f_k in ϕ
 - Grammars G, one for each function symbol f_i

- Generate expressions e_1, \ldots, e_k from G s.t.

 $\phi [f_1, \ldots, f_k \leftarrow e_1, \ldots, e_k]$ is valid in T
SyGuS ≠ ∃ ∀ SMT

- Exists-Forall SMT
 \[\exists f \ \forall x \ \phi(f,x) \]

- SyGuS (abusing notation slightly)
 \[\exists f \in G \ \forall x \ \phi(f,x) \]

- Sometimes SyGuS is solved by reduction to EF-SMT
SyGuS Example 1

- **Theory QF-LIA**
 - Types: Integers and Booleans
 - Logical connectives, Conditionals, and Linear arithmetic
 - Quantifier-free formulas

- **Function to be synthesized** \(f(\text{int } x, \text{int } y): \text{int} \)

- **Specification:**
 \[
 x \leq f(x, y) \land y \leq f(x, y) \land (f(x, y) = x \lor f(x, y) = y)
 \]

- **Grammar**
 \[
 \text{LinExp} \ := \ x | y | \text{Const} | \text{LinExp} + \text{LinExp} | \text{LinExp} - \text{LinExp}
 \]

Is there a solution?
SyGuS Example 2

- Theory QF-LIA
 - Types: Integers and Booleans
 - Logical connectives, Conditionals, and Linear arithmetic
 - Quantifier-free formulas

- Function to be synthesized: \(f(\text{int } x, \text{int } y) : \text{int} \)

- Specification:
 \[x \leq f(x, y) \land y \leq f(x, y) \land (f(x, y) = x \lor f(x, y) = y) \]

- Grammar
 \[
 \text{Term} := x | y | \text{Const} | \text{If-Then-Else} (\text{Cond}, \text{Term}, \text{Term})
 \]
 \[
 \text{Cond} := \text{Term} \leq \text{Term} | \text{Cond} \& \text{Cond} | \neg \text{Cond} | (\text{Cond})
 \]

Is there a solution?
(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int
 ((Start Int (x y 0 1 (+ Start Start)(- Start Start)
 (ite StartBool Start Start)))
 (StartBool Bool ((and StartBool StartBool)
 (or StartBool StartBool)
 (not StartBool)
 (<= Start Start))))

(declare-var x Int)
(declare-var y Int)
(constraint (>= (max2 x y) x))
(constraint (>= (max2 x y) y))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))
(check-synth)
Invariant Synthesis via SyGuS

- Find ϕ s.t.
 \[x = 1 \land y = 1 \Rightarrow \phi \land y \geq 1 \]
 \[\phi \land y \geq 1 \land x' = x+y \land y' = y+x \Rightarrow \phi' \land y' \geq 1 \]

- Syntax-Guidance: Grammar expressing simple linear predicates of the form $S \geq 0$ where S is an expression defined as:
 \[S ::= 0 \mid 1 \mid x \mid y \mid S + S \mid S - S \]

- Demo
More Demos (time permitting)

- Impact of Grammar definition
 - Expression size
 - Symmetries

- Visit http://www.sygus.org for publications, benchmarks and sample solvers
Other Considerations

- Let-Expressions (for common sub-expressions)
 - Example:
 \[S ::= \text{let } [t := T] \text{ in } t \times t \]
 \[T ::= x | y | 0 | 1 | T + T | T - T \]

- Cost constraints/functions (for “optimality” of synthesized function)
Inductive Synthesis
- **Induction**: Inferring general rules (functions) from specific examples (observations)
 - Generalization

- **Deduction**: Applying general rules to derive conclusions about specific instances
 - (generally) Specialization

- **Learning/Synthesis** can be Inductive or Deductive or a combination of the two
"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

- Tom Mitchell [1998]
Machine Learning: Typical Setup

Given:
- Domain of Examples D
- Concept class C
 - Concept is a subset of D
 - C is set of all concepts
- Criterion Ψ (“performance measure”)

Find using only examples from D, $f \in C$ meeting Ψ
Formal Inductive Synthesis

Given:
- Class of Artifacts C
- Formal specification ϕ
- Set of (labeled) examples E (or source of E)

Find using only E an $f \in C$ that satisfies ϕ

Example:
- C: all affine functions f of $x \in \mathbb{R}$
- $E = \{(0,42), (1, 43), (2, 44)\}$
- ϕ: $\forall x. \ f(x) \geq x + 42$

For brevity we will often use “Inductive Synthesis” to mean “Formal Inductive Synthesis
Counterexample-Guided Inductive Synthesis (CEGIS)

[Solar-Lezama, Tancau, Bodik, Seshia, Saraswat, ASPLOS ‘06]

INITIALIZE

SYNTHESIZE

Verify

Structure Hypothesis (“Syntax-Guidance”), Initial Examples

Candidate Artifact

Counterexample

Verification Succeeds

Synthesis Fails
CEGIS vs. SyGuS

- SyGuS is a family of PROBLEMS
- CEGIS is a family of SOLUTIONS
- All SyGuS solvers (available today) use some form of CEGIS
Counterexample-Guided Abstraction Refinement is CEGIS (for abstractions)

Let's break it down into its components:

SYNTHESIS
- **System + Property**
- **Initial Abstraction Function**
- **Generate Abstraction**
- **New Abstraction Function**

VERIFICATION
- **Invoke Model Checker**
- **Check Counterexample: Spurious?**
- **Valid** → **Done**
- **Counterexample**
- **Spurious Counterexample**
- **Yes** → **Refine Abstraction Function**
- **No** → **FAIL**

The process starts with defining the system and property, then generating an initial abstraction. The abstraction is then checked for validity, and if a counterexample is found, it's refined. This cycle continues until a valid abstraction is found or the process fails.
Lazy SMT Solving performs CEGIS (of Lemmas)

SYNTHESIS

- SMT Formula
- Initial Boolean Abstraction
 - Generate SAT Formula
 - Blocking Clause/Lemma
 - Proof Analysis
 - “Spurious Model”

VERICATION

- Invoke SAT Solver
 - SAT (model) (“Counter-example”)
 - UNSAT
 - Done
- Invoke Theory Solver
 - SAT
 - Done
Example: CEGIS for SyGuS

- Specification:
 \[x \leq f(x, y) \land y \leq f(x, y) \land (f(x, y) = x \lor f(x, y) = y) \]
- Grammar
 \[
 \text{Term} := x \mid y \mid 0 \mid 1 \mid \text{If-Then-Else (Cond, Term, Term)} \\
 \text{Cond} := \text{Term} \leq \text{Term} \mid \text{Cond} \& \text{Cond} \mid \neg \text{Cond} \mid (\text{Cond})
 \]

Examples: \{\}

SYNTHESIZE

Candidate
\(f(x,y) = x \)

VERIFY

Counterexample
(x=0, y=1)
Example: CEGIS for SyGuS

- Specification:
 \[x \leq f(x, y) \land y \leq f(x, y) \land (f(x, y) = x \lor f(x, y) = y) \]

- Grammar
 \[\text{Term} := x \mid y \mid 0 \mid 1 \mid \text{If-Then-Else} (\text{Cond}, \text{Term}, \text{Term}) \]
 \[\text{Cond} := \text{Term} \leq \text{Term} \mid \text{Cond} \& \text{Cond} \mid \neg \text{Cond} \mid (\text{Cond}) \]

Examples: \{(0,1)\}

SYNTHESIZE

Candidate
\[f(x,y) = y \]

VERIFY

Counterexample
\[(x=1, y=0)\]
Example: CEGIS for SyGuS

- **Specification:**
 \[x \leq f(x, y) \land y \leq f(x, y) \land (f(x, y) = x \lor f(x, y) = y) \]

- **Grammar**

 Term:

 \[x \mid y \mid 0 \mid 1 \mid \text{If-Then-Else} (\text{Cond}, \text{Term}, \text{Term}) \]

 Cond:

 \[\text{Term} \leq \text{Term} \mid \text{Cond} \land \text{Cond} \mid \neg \text{Cond} \mid (\text{Cond}) \]

Examples:
{(0,1),(1,0)}

Candidate:
\[f(x,y) = 1 \]

Counterexample:
(x=0, y=0)
Example: CEGIS for SyGuS

- Specification:
 \[x \leq f(x,y) \land y \leq f(x,y) \land (f(x,y) = x \lor f(x,y) = y) \]

- Grammar
 \[
 \text{Term} := x \mid y \mid 0 \mid 1 \mid \text{If-Then-Else (Cond, Term, Term)}
 \]
 \[
 \text{Cond} := \text{Term} \leq \text{Term} \mid \text{Cond} \& \text{Cond} \mid \neg \text{Cond} \mid (\text{Cond})
 \]

Examples:
\{(0,1),(1,0),(0,0)\}

Candidate
\[f(x,y) = \text{ITE}(x \leq y, y, x) \]

Verification Succeeds!
Three Flavors of SyGuS Solvers

- All use CEGIS, differ in implementation of “Synthesis” step
 - Enumerative [Udupa et al., PLDI 2013]
 - Enumerate expressions in increasing order of “syntactic simplicity” with heuristic optimizations
 - Symbolic [Jha et al., ICSE 2010, PLDI 2011]
 - Encode search for expressions as SMT problem
 - Similar approach used in SKETCH [Solar-Lezama’08]
 - Stochastic [Schkufza et al., ASPLOS 2013]
 - Markov Chain Monte Carlo search method over space of expressions
- See [Alur et al., FMCAD 2013] paper for more details
Theoretical Aspects of Inductive Synthesis
CEGIS = Learning from Examples & Counterexamples

INITIALIZE

“Concept Class”, Initial Examples

LEARNING ALGORITHM

Learning Fails

Candidate Concept

VERIFICATION ORACLE

Learning Succeeds

Counterexample
Comparison

[see also, Jha & Seshia, 2015]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Formal Inductive Synthesis</th>
<th>Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept/Program Classes</td>
<td>Programmable, Complex</td>
<td>Fixed, Simple</td>
</tr>
<tr>
<td>Learning Algorithms</td>
<td>General-Purpose Solvers</td>
<td>Specialized</td>
</tr>
<tr>
<td>Learning Criteria</td>
<td>Exact, w/ Formal Spec</td>
<td>Approximate, w/ Cost Function</td>
</tr>
<tr>
<td>Oracle-Guidance</td>
<td>Common (can control Oracle)</td>
<td>Rare (black-box oracles)</td>
</tr>
</tbody>
</table>

* Between typical inductive synthesizer and machine learning algo
Oracle-Guided Inductive Synthesis

- Given:
 - Domain of Examples D
 - Concept Class C
 - Formal Specification $\phi \subseteq D$
 - Oracle O that can answer queries of type Q

- Find, by only querying O, an $f \in C$ that satisfies ϕ
Common Oracle Query Types

Positive Witness
\(x \in \phi \), if one exists, else \(\perp \)

Negative Witness
\(x \not\in \phi \), if one exists, else \(\perp \)

Membership: Is \(x \in \phi \)?
Yes / No

Equivalence: Is \(f = \phi \)?
Yes / No + \(x \in \phi \oplus f \)

Subsumption/Subset: Is \(f \subseteq \phi \)?
Yes / No + \(x \in f \setminus \phi \)

Distinguishing Input: \(f, X \subseteq f \)
\(f' \text{ s.t. } f' \neq f \land X \subseteq f' \), if it exists; o.w. \(\perp \)
Examples of OGIS

- L* algorithm to learn DFAs: counterexample-guided
 - Membership + Equivalence queries

- CEGIS used in SKETCH/SyGuS solvers
 - (positive) Witness + Equivalence/Subsumption queries

- CEGIS for Hybrid Systems
 - Requirement Mining [HSCC 2013]
 - Reactive Model Predictive Control [HSCC 2015]

- Two different examples:
 - Learning Programs from Distinguishing Inputs [Jha et al., ICSE 2010]
 - Learning LTL Properties for Synthesis from Counterstrategies [Li et al., MEMOCODE 2011]
Revisiting the Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Formal Inductive Synthesis</th>
<th>Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept/Program Classes</td>
<td>Simple, general-purpose solvers</td>
<td>Exact, w/ formal spec</td>
</tr>
<tr>
<td></td>
<td>Complex, specialized solvers</td>
<td>Approximate, w/ cost function</td>
</tr>
<tr>
<td>Learning Algorithms</td>
<td>General-Purpose, Oracle-guidance</td>
<td>Common (can control Oracle)</td>
</tr>
<tr>
<td></td>
<td>Different properties of (non black-box) oracles</td>
<td>Rare (black-box oracles)</td>
</tr>
</tbody>
</table>

What can we prove about convergence/complexity of *formal* inductive synthesis for:

- General concept classes (e.g., recursive languages)
- Different properties of “general-purpose” learners
- Different properties of (non black-box) oracles
Query Types for CEGIS

LEARNER

- Finite memory vs Infinite memory

ORACLE

- Type of counterexample given

Concept class: Any set of recursive languages

Positive Witness

\(x \in \phi, \text{ if one exists, else } \perp \)

Equivalence: Is \(f = \phi? \)

Yes / No + \(x \in \phi \oplus f \)

Subsumption: Is \(f \subseteq \phi? \)

Yes / No + \(x \in f \setminus \phi \)
Questions

- **Convergence**: How do properties of the learner and oracle impact convergence of CEGIS? (learning in the limit for infinite-sized concept classes)

- **Sample Complexity**: For finite-sized concept classes, what upper/lower bounds can we derive on the number of oracle queries, for various CEGIS variants?
Problem 1: Bounds on Sample Complexity
Teaching Dimension

[Goldman & Kearns, ‘90, ‘95]

- The *minimum* number of (labeled) examples a teacher must reveal to *uniquely* identify any concept from a concept class
Teaching a 2-dimensional Box

What about N dimensions?
Teaching Dimension

- The *minimum* number of (labeled) examples a teacher must reveal to *uniquely* identify any concept from a concept class

\[TD(C) = \max_{c \in C} \min_{\sigma \in \Sigma(c)} |\sigma| \]

where

- \(C \) is a concept class
- \(c \) is a concept
- \(\sigma \) is a teaching sequence (uniquely identifies concept \(c \))
- \(\Sigma \) is the set of all teaching sequences
Theorem: \(TD(C) \) is lower bound on Sample Complexity

- CEGIS: TD gives a lower bound on the number of counterexamples needed to learn any concept.
- Finite TD is necessary for termination:
 - If \(C \) is finite, \(TD(C) \leq |C| - 1 \)
- Finding Optimal Teaching Sequence is NP-hard (in size of concept class):
 - But heuristic approach works well ("learning from distinguishing inputs")
- Open Problems: Compute TD for common classes of SyGuS problems

[see Jha & Seshia, 2015]
Problem 2: Convergence of Counterexample-guided loop with positive witness and membership/subsumption queries
Learning $-1 \leq x \leq 1 \land -1 \leq y \leq 1$

($C =$ Boxes around origin)

Arbitrary Counterexamples may not work for Arbitrary Learners
Learning $-1 \leq x, y \leq 1$ from Minimum Counterexamples (dist from origin)
Assume there is a function $\text{size}: D \rightarrow \mathbb{N}$
- Maps each example x to a natural number
- Imposes total order amongst examples

- **CEGIS**: Arbitrary counterexamples
 - Any element of $f \oplus \phi$

- **MinCEGIS**: Minimal counterexamples
 - A least element of $f \oplus \phi$ according to size
 - Motivated by debugging methods that seek to find small counterexamples to explain errors & repair
Types of Counterexamples

Assume there is a function $size: D \rightarrow N$

- **CBCEGIS**: Constant-bounded counterexamples (bound B)
 - An element x of $f \oplus \phi$ s.t. $size(x) < B$
 - Motivation: Bounded Model Checking, Input Bounding, Context bounded testing, etc.

- **PBCEGIS**: Positive-bounded counterexamples
 - An element x of $f \oplus \phi$ s.t. $size(x)$ is no larger than that of any positive example seen so far
 - Motivation: bug-finding methods that mutate a correct execution in order to find buggy behaviors
Summary of Results

[Jha & Seshia, SYNT’14; TR’15]
Open Problems

- For Finite Domains: What is the impact of type of counterexample and buffer size to store counterexamples on the speed of termination of CEGIS?

- For Specific Infinite Domains (e.g., Boolean combinations of linear real arithmetic): Can we prove termination of CEGIS loop?
Summary

- Formal Synthesis and its Applications
- Syntax-Guided Synthesis
 - Problem Definition
 - Demo
- Inductive Synthesis
 - Counterexample-guided inductive synthesis
 - General framework: Oracle-Guided Inductive Synthesis
 - Theoretical analysis
- Lots of potential for future work!