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     This thesis presents a qualitative calculus for three-dimensional directions and 
rotations. A direction is characterized in terms of the signs of its components relative to 
a fixed coordinate system. A rotation is characterized in terms of the signs of the 

components of the associated 3 × 3 rotation matrix. A system has been implemented 
that can solve the following problems: 

1. Given the signs of direction ���and rotation �, find the possible signs of the image of ��� 

under �, ��� ⋅ 	�.  Moreover, for each possible sign vector 	�	for ��� ⋅ 	�, generate an exact 

instantiation of ��� and � for which the sign of ��� ⋅ 	� is 	�. 
2. Given the signs of rotations � and 
, find the possible signs of the composition � ⋅

. Moreover for each possible sign 		of � ⋅ 
, generate an exact instantiation of � and 

 for which the sign of � ⋅ 
 is 	. 
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Introduction 

The field of Qualitative Spatial Reasoning (QSR) develops methods for carrying out 

geometric computations using qualitative information about spatial properties and 

relations, rather than numerically precise information [8]. The majority of the QSR 

literature has addressed reasoning about topological constraints between regions; the best 

known theory is the RCC-8 system of relations [10]. However, other work in the area has 

addressed other geometric properties such as convexity, relative position, and relative 

size. A qualitative calculus is a theory that describes how an inference engine can use a 

constraint network of qualitative geometric relations to draw conclusions that are implicit 

but not explicit in the network. 

The research described in this thesis develops the first qualitative calculus for three-

dimensional directions and rotations. Our calculus is based on the well-known sign 

calculus over the three values +,−, and 0. A standard reference rectangular coordinate 
system is fixed. A direction �� is then characterized in terms of the signs of the 

components of �� in the �, � and � direction. 
There are thus 27 possible combinations of signs; however, since < 0, 0, 0 > is not a 
direction, there are 26 possible sign vectors for directions. A rotation � is characterized 
in terms of the signs of the elements of the rotation matrix. As we will discuss below, we 

have determined that there are 336 sign matrices that correspond to possible rotation 

matrices, which we will call base rotations. A system has been implemented that can 

solve the following problems: 

1. Given the signs of  direction 
 and rotation �, what are the possible  signs of the image 
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of 
 under �? 
2. Given the signs of two rotations � and �, what are the possible signs of the 
composition of � and �? 

Moreover, for each of these problems, the program outputs an exact instantiation 

demonstrating the feasibility of the solution. That is, for each sign equation �� ⋅ � = ��� or � ⋅ � = �, where �� and ��� are sign vectors and �, �, and �	are sign matrices, the program 

generates values �′����, �′, �′���� or �′, �′, �′ that satisfy the equations and have the specified 
sign. 

A number of qualitative calculi, including the Star Calculus and ��ℛ�� [2, 4] have 
been developed for two-dimensional directions and rotations. However, that is a much 

simpler theory, for three reasons: 

 1. The space of two-dimensional rotations is isomorphic to the space of two-dimensional 

directions. 

 2. Two-dimensional rotations commute. 

 3. In two dimensions, both applying a rotation to a direction and composing two 

rotations correspond to the simple operation of adding angles mod 2�. In three 
dimensions, (1) and (2) are false and no simple formula analogous to (3) exists. 

As implied above, a qualitative calculus is basically a constraint satisfaction problem; 

Arc-consistency methods were first applied to qualitative reasoning in Allen's [1] 

temporal interval calculus, and thereafter it became a common approach in temporal and 

spatial reasoning. In our project there are two different categories of constraint networks:  

 1. Each node is a set of sign directions and each arc is a rotation. 

 2. Each node is a set of sign rotations and each arc is a rotation as well. 

Each one of these categories was divided into independent constraint networks. To 

determine the consistency of each one of these networks we used path-consistency to rule 
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out the inconsistent cases as much as possible and then used Waltz propagation [7] to 

instantiate the remaining with reals.  

By taking advantage of symmetries among the base rotations, we were able to 

categorize them into 14 distinct categories. Likewise the 26 sign directions can be divided 

into 3 categories. In this way, the number of the CSPs we need to solve for the vector 

rotation problem is reduced to 3 × 14 from 27 × 336 and the number of rotation 

composition problems is reduces to 14 × 14 from 336 × 336.  
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Chapter 1 

Background 

In this chapter we first provide a review of the mathematics notations used and then 

present a definition of the qualitative calculus for three-dimensional rotations. In continue 

we give a review of the relevant background on two-dimensional calculi. 

1.1 ROTATION IN THREE-DIMENSIONAL SPACE 

Three-dimensional rotations Γ can be characterized in terms of systems of three 

angles such as the Euler angles or Yaw-pitch-roll. However, none of these angular 

systems are at all convenient to use for computing compositions of rotations. Instead, we 

use a rotation matrix $	as defined; Let �% = &1 0 0', �% = &0 1 0' and �̂ =&0 0 1' be the unit coordinate vectors in a fixed coordinate system and let Γ be a 
rotation. If )* = Γ+	�%,, -* = Γ+	�%, and ./ = Γ+	�̂,, then the corresponding rotation matrix $ 

is the 3 × 3 matrix:   

$ = 0)*-*./1. 
In general, for arbitrary row vectors �� and ���, if the equation ��� = Γ+��, holds, one can 
rewrite it as  ��� = 	�� ⋅ $. Some useful properties of $ are as follows: 

1. The domain of rotation matrices is closed under composition and inverse. 

2. $ is an orthogonal matrix. That is $2 ⋅ $ = 3, which implies that $45 = $2 . 
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3. $&7, : ' ⋅ $&7, : ' = 1. Using (1) and (2) we have $&: , 7' ⋅ $&: , 7' = 1. 
4. If 7 ≠ :, $&7, : ' ⋅ $&:, : ' = 0. Using (1) and (2) we have $&: , 7' ⋅ $&: , :' = 0 
5. For any two rows (columns) of $; $&7, : ' = 	 &�; �; �;' and $&:, : ' =

	&�< �< �<', the third row is the plus or minus the cross-product:  $&=, : ' =
	&�;�< − �;�< �;�< − �;�< �;�< − �;�<'. 

6. The determinant of a rotation matrix without reflection is 1. The determinant of a 

rotation matrix with reflection is -1. In this project, we have excluded reflections. 

7. The number of zeros in a rotation matrix is zero, one, four or six. 

1.2 SIGN CALCULATION 

A sign is the arithmetic sign: –, 0 or +. The table of sign negation, addition and 

multiplication in sign calculus are shown below. Subtraction and division are symmetric 

to addition and multiplication respectively. Within the tables, I means indefinite. 

 
~ – 0 + I 

 + 0 – I 

Table 1- Negation 

+ – 0 + I 

– – – I I 

+ I + + I 

0 – 0 + I 

I I I I I 

Table 2-Addition 

× – 0 + I 

– + 0 – I 

+ – 0 + I 

0 0 0 0 0 

I I 0 I I 

Table 3- Multiplication 
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1.3 SIGN VECTOR 

The �%, �% and �̂ coordinate axes divide three-dimensional space into 27 distinct parts. 

These parts can be perfectly represented by a triple of signs;	< 0, 0, 0 >, represents the 
single-point origin in the coordinate system. The positive �-axis could be represented by < +, 0, 0 >, the negative �-axis could be represented by < −, 0, 0 >. Similarly <	0, +, 0 >,	< 	0, −, 0 >, < 	0, 0, +> and < 	0, 0, −> represent the positive �-axis, 
negative �-axis, positive �-axis and negative �-axis respectively. Any of the 12 one-zero 
sign triples represent the corresponding plane in the coordinate system and finally any of 

the 8 non-zero sign triples corresponding three-dimensional region of space. The same 

representation of the partition can be applied for any sign vector which lies within the 

partition.  

1.4 PROBLEM DEFINITION 

     Our formulation of qualitative inference for three-dimensional rotations, which we call 

the signed matrix rotation problem can be stated as follows: Given 

• A collection of variables over three-dimensional vectors ��; , 7 = 0…?. 
• A collection of variables over three-dimensional rotation matrices $@, A = 1…B. 

(i.e. orthonormal matrices with determinant 1). 

• For some subset (possibly null) of the vector variables, a specification of the 

signs. 

• A collection of equations of the form ��; = ��< ⋅ $@ 
• For each matrix $@, a specification of the signs of its elements. 

Determine whether the specification is consistent; that is, whether there exist vectors and 

matrices over the reals that satisfy both the equations and the sign constraints. 
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For example, given the equations ��C = &1, 0, 0'        ��D =	��5 ⋅ $5         ��C =	��D ⋅ $5        ��C =	��5 ⋅ $D 
and the constraints 

EF+$5, = 	 0+ + ++ − −− + −1 
 

EF+$D, = 	 0+ + ++ − ++ − −1 
One solution is: ��5 = GHI , JI , JIK         ��D = GDL , DL , − 5LK 

 

$5 = 	 0 2/3 2/3 1/32/3 −1/3 −2/3−1/3 2/3 −2/31 
 

$D =	
NOO
OO
P79 2845 44549 −2945 284549 −49 −79TU

UUU
V
 

1.5 A CALCULUS FOR THREE-DIMENSIONAL ROTATIONS 

A common AI technique for solving systems of constraints, particularly in qualitative 

reasoning, is to use a combinations of label propagation (also known as Waltz 

propagation) and arc propagation [11].  A constraint network is a directed graph, where 

each node is labeled with a set of possible qualitative values and each arc is labeled with 

a set of possible qualitative relations. To implement label propagation, a constraint 

satisfaction engine uses a module that can solve the following problem: 

“Given that variable � has qualitative value 
 and � and � are related by qualitative 
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relation �, what are the possible values of �?” 
To implement arc propagation, a constraint satisfaction engine uses a module that solve 

this problem: 

“Given that � and � are related by qualitative relation � and that � and � are related  by �, what are the possible qualitative relations between � and �?” 
On our particular application, the nodes are the directions, and the qualitative labels are 

the sign vectors. The relations between nodes are rotations, and the qualitative relations 

are the sign matrices. We have developed modules that solve these two problems for this 

domain. Having implemented these subroutines, the incorporation of these in a full 

constraint-propagation engine that does label and arc propagation is a standard 

programming exercise; we have not implemented these.  

1.6 OTHER DIRECTION CALCULI 

The two-dimensional qualitative directional calculi divide the plane into different 

parts in respect to a reference point. The semantic of this partitioning is based on human 

sense of direction; left- right, front- back and up-down. Another common terminology for 

this is in geographical usage; there they usually use North, West, East and South.  

Among the recent direction calculi there are Star Calculus (WX�ℛ�,	[2], ��ℛ�� 
[4]. Both of them are calculi with arbitrary granularity. WX�ℛ� is a generalization of a 
number of earlier calculi, including those introduced by Frank [5]. Given a global 

reference point, using B lines WX�ℛ� divides the plan into 4B + 1 disjoint zones with 
respect to reference direction: 2B half lines resulting from B lines, 2B two-dimensional 

sectors and the reference point. If you want a Star calculus with different sector angles 
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you need to mention the desired angle each line forms with reference direction in order. 

(Figure 1). 

 
Figure 1- Left: YZ[\]+^,, right :	YZ[\_+`^, a^, bc^	, bd^, 

Oriented Point Relation Algebra ��ℛ�� is a calculus consists of directional 
relations on the domain of oriented points, o-points, which can be considered as ��ℛ�5 
(Figure 2). ��ℛ�� is the generalization of ��ℛ�5; fore the given level of granularity B, it divides the space into 2B equal sectors. Figure 3 shows the existing relation 

between two o-points e and f in ��ℛ�D. 
In figure 3, m=2 results in relation A	2 <H5 	f. That is B lies in segment 7 regarding A 

and A lies in segment 1 relative to B. 

 

 
Figure 2- An o-point and its relative directions 
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Figure 3- Two o-points in relation	h	c <ib 	j.  
1.7 IMPLEMENTATION DETAILS 

The program is written in Java and is about 2000 line of code. The size of the pre-

computed real instances is about 2000. The source code can be downloaded from: 

http://cs.nyu.edu/QualitativeRotations/ 

The interface is as follows: enter 1 to run the vector rotation calculus or enter 2 to run the 

rotation composition calculus. To enter a sign vector simply enter a sequence of −, 0	or +. To enter a sign rotation matrix, first enter the first and the second rows respectively. 

The program will then display all possible third rows; choose one of them. If there is no 

matching rotation matrix, the system would exit. 
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Chapter 2 

  Three-Dimensional Sign Rotations 

In order to define the qualitative calculus for rotations we need to find the set of all 

possible three-dimensional sign rotation matrices. This chapter explains the method we 

used to identify 336 possible rotation matrices. We will show that all of these 336 

rotation matrices are distinct in their geometrical aspect and cover the entire space of 

three-dimensional rotations. That is, the set of these 336 base rotation matrices �, is a set 

of Jointly Exhaustive and Pairwise Disjoint (JEPD) binary relations.  

We came up with a categorization of rotation matrices. Each member of a category 

can be converted to the other member in the same category, by applying some 

appropriate operation. In this way, we can greatly reduce the size of the problem. The 

idea was to take advantages of the symmetries of an octahedron.  

2.1 SIGN ROTATION MATRICES 

We can map any sign triple (vector) to one of the faces/edges/vertices of a regular 

octahedron centered at the origin of the coordinate system with vertices located on unit 

distance of the origin. For example < +,+,+>, < +, – , 0 > and <– , 0, 0 > can be 
mapped to a face, edge and vertex in octahedron respectively. In this way, a sign rotation 

matrix could be defined by three features of the octahedron. 
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There are 24 rotations that map the coordinate directions to the positive or negative 

coordinate directions. To show this, one can map �% to any of the 6 coordinate directions: 
±�%,±	�% or ±�̂. Having chosen G(�%) you can map �%	to any of the 4 orthogonal directions. 
Once G(�%) and G(�%) are both determined, so is G(�̂). The other proof is that the triangle of 
the octahedron formed by the �%,	�% and �̂ axes is mapped to one of the 8 faces of the 

octahedron; and for each choice of target face, it can be aligned in any of 3 ways.  

These 24 coordinate rotations map the octahedron to itself, mapping vertices to 

vertices, edges to edges, faces to faces and preserving structure. We will call these 

“octahedral” rotations. Clearly they form a group; the composition of two octahedral 

rotations is an octahedral rotation and so is the inverse. Table 4 represents the list of 24 

octahedral rotations. If �%  and �% are directions with the same sign triple, they are located 

on the same piece of the octahedron, and therefore they will still be on the same piece 

after an octahedral rotation. Therefore, if A and B are two rotational matrices with the 

same signs, and P is an octahedral rotation then e ⋅ � has the same sign as	f ⋅ �. 
Therefore, we can define an equivalence relation over the sign rotation matrices: A is 

equivalent to B if f	 = 	e ⋅ � for some octahedral rotation P. 

Since every equivalence class of sign rotation has 24 elements; it is not necessary to 

enumerate all valid sign rotation matrices; it suffices to identify a representative from 

each equivalence class. Once we can instantiate a representative Q, we can then 

instantiate the other 23 elements by rotating the instance with the octahedral rotations. 

This greatly reduces the complexity of analyzing the sign rotation matrices. 

0−1 0 00 −1 00 0 11 0−1 0 00 1 00 0 −11 0−1 0 00 0 −10 −1 0 1 0−1 0 00 0 10 1 01 01 0 00 −1 00 0 −11 01 0 00 1 00 0 11 



 

13 

 

 

01 0 00 0 −10 1 0 1 01 0 00 0 10 −1 01 0 0 −1 0−1 0 00 0 −11 00 −1 01 0 00 0 11 00 −1 00 0 −11 0 0 1 0 0 −1 00 0 1−1 0 01 

0 0 1 0−1 0 00 0 11 00 1 01 0 00 0 −11 0 0 1 00 0 −1−1 0 0 1 00 1 00 0 11 0 01 0 0 0 −1−1 0 00 1 0 1 00 0 −11 0 00 −1 0 1 

0 0 0 −10 −1 0−1 0 0 1 00 0 −10 1 01 0 0 1 0 0 0 1−1 0 00 −1 01 00 0 11 0 00 1 01 00 0 10 −1 01 0 01 0 0 0 10 1 0−1 0 01 
Table 4- 24 octahedral rotations 

Since the octahedral rotations preserve the geometry of the octahedron, we can be 

sure that two sign rotations A and B are from different equivalence classes if the two 

triples 〈�% ⋅ e,			�% ⋅ e,			�̂ ⋅ e〉 and 〈�% ⋅ f,			�% ⋅ f,			�̂ ⋅ f〉 are geometrically different, in terms 

of features of the octahedron. Note that these are the rows of A and B respectively. 

2.2 REDUCED LIST OF SIGN ROTATIONS 

Below is a list of 14 sign rotation representatives, with geometric features that 

guarantee that they are distinct. These fall into 6 categories: 

• Category 1 includes three representatives. In these Q [1, :], Q [2, :] and Q [3, :] 

(each one of the three rows in matrix) are all in the faces that share the vertex 〈1, 0, 0〉. See figure 4 bellow. 
1. Q[1, :] shares an edge with both Q [2, :], Q [3, :],  �: 0+ + ++ − ++ + −1. 
2. Q [2, :] shares an edge with both Q [1, :], Q [3, :],  �: 0+ + ++ − ++ − −1. 
3. Q [3, :] shares an edge with both Q [1, :], Q [2, :],  �: 0+ + ++ − −+ + −1. 
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Figure 4- Q[1, :] shares an edge with both Q [2, :], Q [3, :]. 

• Category 2 includes a single representative. In this Q [1, :], Q [2, :], and Q [3, :] 

are all inside faces. Each of the faces connects to both of the other at a vertex. See 

the figure 5 bellow. 

4. �: 0+ + ++ − −− + −1 

 

             Figure 5 
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• Category 3 includes 3 representatives. In these, two of the row vectors lie in a 

face and one lies in an edge. The two faces have a common vertex; the edge 

connects two of the other vertices of the edge of the third vector in a vertex. See 

figure 6 bellow. 

5. Q [1, :] is in the edge, �: 0+ + 0− + ++ − +1. 
6. Q [2, :] is in the edge, �: 0+ + ++ 0 −− + −1. 
7.  Q [3, :] is in the edge, �: 0+ + +− − ++ − 01. 

 

Figure 6- Q [1, :] is in the edge. 

• Category 4 includes 3 representatives. In these, two of the row vectors lie in a 

face and one lies in an edge. The two faces have a common edge; one vertex of 

the edge meets one of the shared vertices of the faces. 
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Figure 7- Q [1, :] is in the edge. 

8. Q [3, :] is in the edge, �: 0+ + ++ + −− + 01. 
9. Q [2, :] is in the edge, �: 0+ + +− 0 ++ − +1. 
10. Q [1, :] is in the edge, �: 0+ + 0− + −− + +1.	 

• Category 5 includes 3 representatives. In these, one vector is mapped to a vertex 

and the other two are mapped to edges. 

11. Q [1, :] is mapped to the vertex, �:	 0+ 0 00 + −0 + +1. 
12. Q [2, :] is mapped to the vertex, �:	 0+ 0 −0 + 0+ 0 +1.  
13. Q [3, :] is mapped to the vertex, �:	 0+ − 0+ + 00 0 +1.  
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Figure 8- Q [1, :] is mapped to the vertex. 

• Category 6 includes 1 representative. In this all the vectors are mapped to 

vertices.  

14. �: 0+ 0 00 + 00 0 +1. 
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          Figure 9 

2.3 INSTANTIATION OF SIGN ROTATIONS 

To randomly instantiate the sign rotations, we first instantiate any of the 

representatives and then rotate the instance with each one of the octahedral rotations. The 

necessary constraints to instantiate a rotation matrix can be derived from 1.1 cases 3-6. 

Note that all of these constrains are definable in sign calculus as well.  In implementing 

the instantiation of the representatives we look at the zeros in the matrix and after 

randomly initializing enough number of the non-zero entries in the matrix, we get the 

values for the rest of none-zero entries based on the existing constraints in 1.1. 
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Chapter 3 

 Three-Dimensional Sign Vector Rotation 

In this chapter we explain our algorithm to answer the first question mentioned in 1.6; 

that is, for any given sign vector ��, and any signed rotation matrix �, what is the maximal 

set of signed vectors ���, such that: ��� = �� ⋅ �? The possible number of these kind of 

questions are 26 × 336, as for 26 non-zero sign vectors and 336 base rotations. 
3.1 VECTOR ROTATION 

To compute �� ⋅ �, our calculus converts the operation to a basic operation, which is 
pre-computed and saved. Once we look up the solution for the basic case, then we 

convert the solution to the solution of the current problem by applying an appropriate 

matrix multiplication.  

Let us define the three sign directions n5�����, nD����� and nL����� as n5����� = 	 〈+, 0, 0〉, nD����� =	〈+,+, 0〉 and nL����� = 	 〈+,+,+〉. Any of the sign directions n5�����, nD����� and nL����� is a 
representative of the class of vertices, edges and faces in the octahedron respectively. 

Any arbitrary sign vector �� maps to one of the vertex, edge or face in the octahedron. 

Using octahedral rotations it is possible to map �� to its class representative. This 
factorization is not unique. In fact based on the class of ��, there are a number of 

octahedral rotations that map �� to its class representative. If �� has exactly two zeros, it 
belongs to class of vertex in octahedron. Since an octahedron has six vertices and there 

are 24 distinct octahedral rotations and since octahedral rotations maintain the structure 
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of the octahedron, this means there are 24/6 or 4 octahedral rotations that map �� to  n5����� . 
Similarly if  �� belongs to class of edge in octahedron and since an octahedron has 12 
edges, there are two different octahedral rotations that map �� to nD�����. Lastly, if �� belongs 
to class of face in octahedron and since there are eight faces in octahedron, there are three 

different octahedron rotations that map �� to nL�����. 
After we factor �� as �� 	= no���� ⋅ �, we can compute � ⋅ �. Recall that � is a real number 

matrix. � ⋅ � permutes the columns of �,  which is still a sign rotation. Then we can 
factor this rotation to its equivalence class representative: � ⋅ � = �< . �′.  Since �� ⋅ � =	no���� ⋅ 	�< ⋅ �′, once we was able to compute no���� ⋅ 	�< we can simply output the solution to �� ⋅ � after we carry out a octahedral rotation �′ on the result. Following is the summary 

of the algorithm: 

1. Finds n��� and � such that �� = 	n��� ⋅ �; 
2. Compute � ⋅ �; 
3. Find a representative �< and an octahedral rotation �′ such that +� ⋅ �, = �< ⋅ �′; 
4. Look up the pre-computed value of n��� ⋅ 	�<; 
5. Compute pn��� ⋅ 	�<q ⋅ �′; 
6. Returns +pn��� ⋅ 	�<q ⋅ �′,; 

      To optimize the calculation we have pre-computed no���� 	 ⋅ �<, where 7 = 1,2, 3  and  : = 1,… ,14, which is the topic of the next part.  
3.2 INSTANTIATION OF THE BASE CASES 

The problem of computing the possible values of no���� 	 ⋅ �<, can be decomposed into a 

set of individual CSPs. For example let  n��� =	< +, +, 0 > and 
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� = 	 0+ + ++ − −+ + −1. 
Using the sign calculus directly, one can compute: 

 

n��� ⋅ � = &+ + 0' ⋅ 	 0+ + ++ − −+ + −1 = &+ 3 3'. 
Instantiating the I’s in all possible ways give the following: 

{&+ − −', &+ − 0', &+ − +', &+ 0 −', &+ 0 0', &+ 0 +',		 
&+ + −', &+ + 0', &+ + +'}. 
However not all of these are possible. We must check each of these suggested values 

independently for consistency: 

 &+ + 0' ⋅ 	 0+ + ++ − −+ + −1 = &+ − −'? 
 

	&+ + 0' ⋅ 	 0+ + ++ − −+ + −1 = &+ − 0'?	 
⋮ &+ + 0' ⋅ 	 0+ + ++ − −+ + −1 = &+ + +'? 

The consistency of each one of these decision problems can be computed using 

backtracking; That is, for each problem we try to find an instantiation with real values. 

The basic backtracking algorithm [8] takes as input a set of constraints u over the set of 
relations W	 ⊆ 2�. (� is the set of base relations) It selects an unprocessed constraint �w�x�	of u, splits � into its base relations f5, … , fy, replaces �w�x� with �wf;x� and 
repeats this process until all constraints are refined. If the resulting constraints is 

consistent, which can be shown using the local consistency algorithm, then u is 
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consistent. Otherwise the algorithm backtracks and replaces the last constraint with the 

next possible base relation. For example let n��� = &nz 	, n{	, 0	', 
 

� =	 |�z5 �{5 �}5�z5 �{D �}D�zL �{L �}L~  
and for the second possible resultant sign vector &+ − 0', let : nz	, n{ , �z5, �{5, �}5, �zD, �zL, and �{L 	 ∈ 	ℝ� and �{D, �}D	and �}L 	 ∈ 	ℝ4.  
The set of constraints u, is consist of 4 constraints as follows: 

• � must be an orthogonal matrix. 

• nz�z5 +	n{�zD > 0. 
• nz�{5 +	n{�{D < 0. 
• nz�}5 +	n{�}D = 0. 

We can refine the general constraint � must be an orthogonal matrix in 3 different ways:  f5: The dot product of first and second row in � is zero:	�z5�zD + �{5�{D + �}5�}D = 0. 
fD: The dot product of second and third row in � is zero:	�zD�zL + �{D�{L + �}D�}L = 0. 
fL: The dot product of third and first row in � is zero:	�zL�z5 + �{L�{5 +�}L�}5 = 0. 
For example if the backtracking algorithm (1.6) selects f5, by applying constraint 
propagation the following three constraints would be added to the set of constraints: 

• 	�{5�}D > �}5�{D. 
• 	�}5�zD > �z5�}D. 
• �z5�{D <	�{5�zD. 
The inconsistency of some of the CSPs is detectable before applying backtracking. 

For example in the given example above, we proved that four out of the nine cases are 

inconsistent. This is expanded in the next part. 
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3.3 COMPUTING ����	. � 
In this section for any no���� ⋅ �< operation, we identify the achievable (consistent) cases 

within the hypothesis space of the results. Since there are 3 direction representatives and 

14 rotation representatives; there are 42 cases to study: 

� �5 =	 0+ + ++ − ++ + −1   

Case 1.1. n5����� ⋅ �5 =	 〈+,+,+〉: This is a unique case. It is always achievable. 
Case 1.2. nD����� ⋅ �5 =	 〈+, I, +〉:	All three possible cases are achievable. 
Case 1.3. nL����� ⋅ �5 =	 〈+, I, I〉:	All nine possible cases are achievable. 

� �D =	 0+ + ++ − ++ − −1   

Case 2.1. n5����� ⋅ �D =	 〈+,+,+〉: This is a unique case. It is always achievable. 
Case 2.2. nD����� ⋅ �D =	 〈+, I, +〉:		All three possible cases are achievable. 
Case 2.3. nL����� ⋅ �D =	 〈+, I, I〉:	 All nine possible cases are achievable. 

� �L =	 0+ + ++ − −+ + −1   

Case 3.1. n5����� ⋅ �L =	 〈+,+,+〉: This is a unique case. It is always achievable. 
Case 3.2. nD����� ⋅ �L =	 〈+, I, I〉:	Five out of nine possible cases are achievable.  
Proof. Assume �;, �; 	�?�	�; ∈ ℝ�,  

� =	 0+�5 +�5 +�5+�D −�D −�D+�L +�L −�L1 ,  �	 ∈ 	�L 
Since � is a rotation matrix and the dot product of any two row vectors of it are zero: 
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�5�D −	�5�D − �5�D = 0		 → 	 ��5�D >	�5�D																+3.1,	�5�D >	�5�D																	+3.2,	 �D�L −	�D�L + �D�L = 0		 → 	 ��D�L >	�D�L																+3.3,	�D�L >	�D�L																+3.4,  �L�5 +	�L�5 − �L�5 = 0		 → 	 ��L�5 	> 	 �L�5																+3.5,�L�5 >	�L�5																		+3.6, 
Let also assume �5 and �D ∈ ℝ�, ��� = 〈�5, �D, 0〉, so ��� ∈ 	nD����� . Let’s have 	��� ⋅ � = �� and �� = 〈�5, �D, �L〉, where �5 ∈ ℝ�, �D and �L ∈ ℝ . Therefore, �D = �5�5 −	�D�D and �L =�5�5 −	�D�D.  
7�	�D ≥ 0	 → 	�5�5 ≥ �D�D 	→ 	���� 	≥ 	 {�{� 														+3.7,    +L.J,,+L.�,�������	�D�L�L�5 >	�D�L�L�5 	→ 	�D�5 >	�D�5 	→ �D�5 >	�D�5 	 +L.H,���	�5�D 	> 	 �D�5 	→			 
�5�5 > �D�D 	→ 	�L > 0.   
 7�	�L ≤ 0	 → 	�5�5 ≤ �D�D 	→ 	���� 	≤ 	 }�}� 															+3.8,    +L.J,,+L.�,�������	{�{� >	 }�}� 	 +L.�,���	���� <	 {�{� 	→ 	�5�5 < �D�D 	→ 	�D < 0. 
Case 3.3. �L����� ⋅ �L =	 〈+, I, I〉: All nine possible cases are achievable. 

� �J =	 0+ + ++ − −− + −1 
Case 4.1. n5����� ⋅ �J =	 〈+,+,+〉	, This is a unique case. It is always achievable. 
Case 4.2. nD����� ⋅ �J =	 〈+, I, I〉: Five out of nine possible cases are achievable 
Proof. Assume �;, �; 	�?�	�; ∈ ℝ�, 

� =	 0+�5 +�5 +�5+�D −�D −�D−�L +�L −�L1 , �	 ∈ 	�J. 
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	�5�D −	�5�D − �5�D = 0		 → 	 ��5�D >	�5�D																	+4.1,	�5�D >	�5�D																	+4.2,	 −�D�L −	�D�L + �D�L = 0		 → 	 ��D�L >	�D�L																+4.3,	�D�L >		 �D�L															+4.4,  −�L�5 +	�L�5 − �L�5 = 0		 → 	 ��L�5 >	�L�5																+4.5,�L�5 > �L�5																		+4.6, 
 

Assume �5 and �D ∈ ℝ� , ��� = 〈�5, �D, 0〉, so ��� ∈ 	nD����� . Let’s have 	��� ⋅ � = ��	 and 
 �� = 〈�5, �D, �L〉, where �5 ∈ ℝ�, �D and �L ∈ ℝ. �5 > 0, �D = �5�5 −	�D�D	and �L = �5�5 −	�D�D.  
 7�	�D ≤ 0	 → 	�5�5 ≤ �D�D 	→ 	���� 	≤ 	 {�{� 														+4.7,    +J.J,,+J.�,�������	�D�L�L�5 >	�D�L�L�5 	→ 	 �D�5 >	�D�5 	→ 	 �D�5 	> �D�5 		+J.H,���		�D�5 > �5�D 	→		 
�5�5 < �D�D 	→ 	�L < 0.   
 7�		�L ≥ 0	 → 	�5�5 ≥ �D�D 	→ 	���� 	≥ 	 }�}� 														+4.8,    +J.J,,+J.�,�������	}�}� 	> {�{� 		+J.�,	����	���� >	 {�{� 	→ 	�5�5 > �D�D →	�D > 0. 
 

Case 4.3. nL����� ⋅ �J =	 〈I, I, I〉: Seven cases out of twenty seven hypotheses are achievable. 
 Proof. Assume �5, �D and �L ∈ ℝ�, ��� = 〈�5, �D, �L〉, so ��� ∈ 	nL����� . Let’s have 	��� ⋅ � = �� and �� = 〈�5, �D, �L〉, where �5, �Dand �L ∈ ℝ . 
 �5 = �5�5 +	�D�D − �L�L , �D = �5�5 −	�D�D + �L�L and �L = �5�5 −	�D�D −	�L�L.   
 

7�	�5 ≤ 0	� �L�L ≥ �5�5 	→ 	 �L�5 	≥ 		 �5�L 																					+4.9,�L�L ≥ �D�D 	→ 		 �L�D 	≥ 		 �D�L 																				+4.10,	 	+J.5,,+J.L,�������	�5�D�5�L >	�5�D�5�L 	→ 	 �D�L >	�D�L 	→		�L�D 	> 	 �L�D 	+J.5C,����		�L�D > �D�L 	→ 

		�L�L >	�D�D 		→ 	�D > 0.   
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+J.D,,+J.�,�������	�5�D�D�L >	�5�D�D�L 	→ 	 �5�L >	�5�L 	→		�L�5 	> 	 �L�5 	+J.I,���		�L�5 > �5�L →	 
	�L�L >	�5�5 		→ 	�L < 0. 
7�	�D ≤ 0	 → 	��D�D ≥ �5�5 	→ 	���� 	≥ 	 {�{� 																+4.11,�D�D ≥	�L�L →	���� 	≥ 	 {�{� 																+4.12,  +J.5,,+J.L,�������	�5�D�5�L >	�5�D�5�L 	→ 	 �D�L >	�D�L 	→		�L�D 	> 	 �L�D 	+J.5D,����		�D�L > �L�D 	→ 

�D�D 		> 	 �L�L 	→ 	�5 > 0.   +J.J,,+J.�,�������	�D�L�L�5 >	�D�L�L�5 	→ 	 �D�5 >	�D�5 	→	�5�D >	 �5�D 		+J.55,����		�D�5 > �5�D 	→	 
	�D�D >	�5�5 	→ 	�L < 0. 
7�	�L ≥ 0		 → 	��5�5 ≥ �D�D 	→ 		 �5�D 	≥ 	 �D�5 											+4.13,�5�5 ≥	�L�L →		 �5�L ≥	�L�5 													+4.14, +J.J,,+J.�,�������	�D�L�L�5 >	�D�L�L�5 	→ 	 �D�5 >	�D�5 	→	�5�D >	 �5�D 		+J.5L,����	�5�D 	> �D�5	 →		�5�5 >	�D�D 	→ 	�D > 0. +J.D,,+J.�,�������	�5�D�D�L >	�5�D�D�L 	→ 	 �5�L >	�5�L 	→		�L�5 	> 	 �L�5 	+J.5J,����		�5�L >	�L�5 → �5�5 > �L�L 	→ 	�5 > 0. 

� �� =	 0+ + 0− + ++ − +1   

Case 5.1. n5����� ⋅ �� =	 〈+,+,+〉:	This is a unique case. It is always achievable. 
Case 5.2. nD����� ⋅ �� =	 〈	I, +,+〉:	All three possible cases are achievable. 
Case 5.3. �L����� ⋅ �� =	 〈I, I, +〉: Five out of nine possible cases are achievable. 
Proof. Assume �; , �; and �; ∈ ℝ�,  

� =	 0+�5 +�5 0−�D +�D +�D+�L −�L +�L1, �	 ∈ 	��. 
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	�5�D = �5�D	�L�5 = �L�5� → 	�D�L = 	�L�D 	→ 		 �D�L =	�D�L 															+5.1,	 
Assume �5, �D and �L ∈ ℝ�, ��� = 〈�5, �D, �L〉, so we have ��� ∈ 	nL����� . Let have 	���. � = �� and �� = 〈�5, �D, �L〉, where �5, �D ∈ ℝ and �L ∈ ℝ�. �5 = �5�5 −	�D�D + �L�L, �D = �5�5 +	�D�D − �L�L. 
7�	�5 ≤ 0	 → 	�L�L < �D�D 	→ 	���� <	 z�z� 		 +�.5,���	���� <		 {�{� 	→ 	�L�L < �D�D 	→ 	�D > 0.  
7�	�D ≤ 0	 → 	�L�L > �D�D 	→ 	���� >	 {�{� 			 +�.5,���	���� >		 z�z� 	→ 	�L�L > �D�D 	→ 	�5 > 0.				   

� �� =	 0+ + ++ 0 −− + −1   

Case 6.1. n5����� ⋅ �� =	 〈+,+,+〉:This is a unique case. It is always achievable. 
Case 6.2. nD����� ⋅ �� =	 〈	+,+, I〉:	All three possible cases are achievable. 
Case 6.3. nL����� ⋅ �� =	 〈I, +, I〉:	Five cases out of nine possible cases are achievable. 
Proof. Assume �; , �; and �; ∈ ℝ�, 

� =	 0+�5 +�5 +�5+�D 0 −�D−�L +�L −�L1 , �	 ∈ 	�� . 

	�5�D = �5�D�D�L = �D�L� → 	�5�L =	�L�5 	→ 			 �5�L =	 �5�L 																		+6.1,	 
Assume �5, �D and �L ∈ ℝ� , ��� = 〈�5, �D, �L〉, so we have ��� ∈ 	nL����� . Let have 	��� ⋅ � = �� 
and �� = 〈�5, �D, �L〉 where �5, �L ∈ ℝ and �D ∈ ℝ�. 
�5 = �5�5 +	�D�D − �L�L, �L = �5�5 −	�D�D − �L�L. 
7�	�5 ≤ 0	 → 	�5�5 < �L�L 	→ z�z� <	���� 			 +�.5,���	}�}� 	< 	���� →	�5�5 < �L�L 	→ 	�L < 0. 
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 7�	�L ≥ 0	 → 	�5�5 > �L�L 	→ }�}� >	���� 			+�.5,���	z�z� >	���� 	→ 	�5�5 >		 �L�L 		→ 	�5 > 0.		  
� �H =	 0+ + +− − ++ − 01   

Case 7.1. n5����� ⋅ �H =	 〈+,+,+〉: This is a unique case. It is always achievable. 
Case 7.2. nD����� ⋅ �H =	 〈	I	, I, +〉:		Three out of nine possible cases are achievable. 
Proof. Assume �; , �; and �; ∈ ℝ�, 

� =	 0+�5 +�5 +�5−�D −�D +�D+�L −�L 0 1 , �	 ∈ 	�H . 
 �5�L = �5�L�D�L = �D�L� → 	�5�D =	�D�5 	→ 			 �5�D = 	�5�D 																		+7.1,	 

 

Assume �5 and �D ∈ ℝ� , ��� = 〈�5, �D, 0〉, so ��� ∈ 	nD����� . Let’s have 	���. � = �� and �� =〈�5, �D, �L〉, where �5, �D ∈ ℝ and �L ∈ ℝ�.  �5 = �5�5 −	�D�D�D = �5�5 −	�D�D� +H.5,���	�5 and �D have the same sign. 

Case 7.3. nL�����. �H =	 〈I, I, +〉:	Five out of nine possible cases are achievable. 
Proof. Assume �5, �D and �L ∈ ℝ� , ��� = 〈�5, �D, �L〉, so ��� ∈ 	nL�����. 
 �5 = �5�5 −	�D�D + �L�L, �D = �5�5 − �D�D − �L�L. 7�		�5 ≤ 0	 → 	�D�D >	�5�5 →	�D�5 >	�5�D 		 +H.5,���	�D�5 >		 �5�D 	→ 	�D�D > �5�5 	→ 	�D < 0. 
7�	�D ≤ 0			 → 	�5�5 > �D�D 	→ 	���� >	 {�{� 			 +H.5,���	���� >		 z�z� 	→ 	�5�5 > �D�D 	→ 	�5 < 0.				   
For the remaining representative matrices, all the possible cases of no���� ⋅ �< are achievable.  
Table 5 represents these achievable sign products for different no����	 and �<. 
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3.4 ����. � = ���� INSTANTIATION 
The algorithm to instantiate n��� ⋅ � = ��, is dependent on the equivalence classes of 

both n��� and �. The general idea is to instantiate � randomly and try to assign value to n���.  
For example let’s assume we want to instantiate nL����� ⋅ �5 = ��	, where �� = 〈+, �D, �L〉, �D 
and �L ∈ ℝ. From the last section we know that the general form of nL����� ⋅ �5 is as <+, I, 
I>.  The general idea is first to try to instantiate the special case of <+, 0, 0>. To solve the 

problem of nL����� ⋅ �5 =< +, 0, 0 >, after assigning a random positive real value to �5 and 
generating a random instance of �5; � =	 0+�5 +�5 +�5+�D −�D +�D+�L +�L −�L1, 
where �; , �; and �; ∈ ℝ� the values of �D and �L are simply derived from solving the two 

existing equations: �5�5 −	�D�D + �L�L = 0,              �5�5 +	�D�D −	�L�L = 0. 
Once we have the values of �D and �L for the state of < +, 0, 0 > in hand, since �D = E7F?��+�5�5 −	�D�D + �L�L, and �L = E7F?��+�5�5 +	�D�D −	�L�L,, to reach 

the desired product of 〈+, �D, �L〉 the rest of algorithm works as follows: 

 

7�	�D	7E +  
  3?����E�	�ℎ�	�� ��	¡�	�5	A�¡A¡��7¡?� 	�¡	�ℎ�	�� ��	¡�	�D; 

 ¢�����E�	�ℎ�	�� ��	¡�	�D	A�¡A¡��7¡?� 	�¡	�ℎ�	�� ��	¡�	�5; � E�	7�	�D	7E −  
  ¢�����E�	�ℎ�	�� ��	¡�	�5	A�¡A¡��7¡?� 	�¡	�ℎ�	�� ��	¡�	�D; 

 3?����E�	�ℎ�	�� ��	¡�	�D	A�¡A¡��7¡?� 	�¡	�ℎ�	�� ��	¡�	�5; 7�	�L	7E +  
  3?����E�	�ℎ�	�� ��	¡�	�5	A�¡A¡��7¡?� 	�¡	�ℎ�	�� ��	¡�	�L; 
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 ¢�����E�	�ℎ�	�� ��	¡�	�L	A�¡A¡��7¡?� 	�¡	�ℎ�	�� ��	¡�	�5; � E�	7�	�L	7E −  
  ¢�����E�	�ℎ�	�� ��	¡�	�5	A�¡A¡��7¡?� 	�¡	�ℎ�	�� ��	¡�	�L; 

 3?����E�	�ℎ�	�� ��	¡�	�L	A�¡A¡��7¡?� 	�¡	�ℎ�	�� ��	¡�	�5; 
Note that the change of the value of �5 and �D in order to make the value of �D 
positive/negative does not affect the sign of �L and vice versa. 
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Table 5- Representative sign vector rotation achievable products 
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Chapter 4 

 Three-Dimensional Sign Rotation Composition 

In this chapter we explain our algorithm to answer the second question mentioned in 

1.6; that is, for any given signed rotation matrices £ and �, what is the maximal set of 

signed rotations $, such that: $ = 	� ⋅ £? 
4.1 ROTATION COMPOSITION 

As we have seen in the last chapter, we can factor any sign rotation as the product of 

its class representative and the octahedral rotation.  Once we do that we can reduce the 

problem of composition of any two sign rotations R and S, � ⋅ £, to the problem of 

composition of two representative rotations �; and �<. Note that the size of the problem 

in the former case is 336×336, while it is 14×14 in the latter one.  If we have pre-

computed the solutions for representatives composition computed, we can look up the 

solution whenever it is needed. The following summarizes the above process: 

1. Factor R as � = �; ⋅ �;; 
2. Compute �; ⋅ £; 
3. Factor  +�; ⋅ £)  as  +�;. £, = 	�< ⋅ �<; 
4. Look up �; ⋅ �<; 
5. Compute +�;. �<,. �<; 
6. Return ¤p�;. �<q. �<¥ ; 
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4.2 CALCULATE �¦. �§ 
The main purpose here is to compute the set of possible values of the product of �; ⋅ �<  for any given representative sign rotations �; and �<. To do this, it is easier to 

think of �;	 as a collection of three row vectors. Then we can divide the problem of �; ⋅ �< to three separate vector rotation problems: �;&1, ∶' ⋅ 	�< , �;&2, ∶' ⋅ 	�< and �;&3, ∶' ⋅	�<, which we already have seen the solution in the last chapter. 
 Once we found the set of solution for each one of these problems, we can roughly 

estimate the set of solutions for �; ⋅ �<. This estimation is a set of matrices whose first 

row is a member of the first vector rotation solution set, second row is a member of the 

second vector rotation solution set and finally the third row is from the third vector 

rotation solution set. Since the product of composition of any two rotations is a rotation 

as well, we can eliminate any combination that is not a sign rotation. The resultant is the 

list of possible products for the �; ⋅ �<. In order to recognize the achievable cases out of 
these possible products, for each possible case such as R, we can try to find some random 

instances of  �; and �< such that their composition is an instance of R. Next section 

elaborates the algorithm to do this. 

4.3 INSTANTIATION OF �¦ ⋅ �§ = © 
We want to find a random real instance of representative sign rotations �; and �< 

such that their composition is an instance of sign rotation R. The general idea is that we 

will use the results of section 3.4 to instantiate the sign equation n���. � = �� to find an exact 
instantiation of �;&1, : ' ⋅ �<&1, : ' = �&1, : ' and �;&2, : ' ⋅ �<&2, : ' = �&2, : '. Two extra 
conditions must be met. First the instance of �< must be the same in both instantiations. 

Second the two instances of row vectors in �; must be perpendicular to each other. Once 

we found such desired row instances of �; we can simply get the third row for �; as the 
cross product �;&1, : ' × �;&2, : ' of the resultant matrix is an instance of �; and the 
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product of it with the above instance of �< is an instance of R, we are done. In some 

cases, we do not start with the first and second row of �; but a different pair of rows, as 
described below. 

We can elaborate the above solution as follows. Before that we need to mention that 

this solution works for those cases of �; ⋅ 	�< = �, such that �; has at least one non-zero 
row. Otherwise �; has at least four zeros in its body, which is a trivial case. 

• Between the three rows of �; choose a non-zero row and mark it. 

• Choose an unmarked row from �;; �;&A, ∶', mark it and take the corresponding 

row from R; �&A, ∶'. Instantiate the problem of �;&A, ∶' ⋅ �< = 	�&A, ∶'.  
• Take the unmarked row from �;; �;&ª, ∶', and its corresponding row from R; �&ª, ∶'. Repeat the last step. Use the same instance of �< for instantiation. The 

solution for this instantiation should satisfy one more condition: having dot-

product of zero with the row instance of  �; from the last step. In this way the 

resulting row instances in R;  �&A, ∶' and �&ª, ∶', have dot-product of zero to each 
other as well. 

• Normalize both instances of �o&A, ∶'	��������������� and �o&ª, ∶'	���������������. 
• Once we have two normalized instance vectors of �; , we can output the third row 

vector of �; as the cross product of �;&A, ∶' and �;&ª, ∶' , let’s assume; �o&A, ∶'	��������������� =	«Az , A{ , A}¬ and �o&ª, ∶'	��������������� = 	 «ªz, ª{ , ª}¬, we can get the instance of third row of �; 
as:  �o&A, ∶'�������������� 	× 	�o&ª, ∶'	��������������� = 	 «A{ª} − A}ª{	, A}ªz − Azª}, Azª{ − A{ªz¬. 

• If any permutation of row vectors �o&A, ∶'	���������������, �o&ª, ∶'	��������������� and �o&A, ∶'�������������� 	× 	�o&ª, ∶'	��������������� is an 
instance of �;, calculate the product of composition of this and the existing 

instance of �<. If the product is an instance of R, return the instances. Otherwise 
repeat the algorithm. 
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•  Terminate after a certain number of trials and omit R from the set of solutions for �; ⋅ 	�<. 
The implementation for those cases of �; ⋅ 	�< = �, in which �; has at least four zeros in 
its body is trivial. We can always pick two row vectors of  �; that are perpendicular to 
each other. Once we solve the problem of direction rotation for these two vectors with the 

same instance of �<, we can produce the instance of third row of �; as before and see 
whether or not the overall instantiation satisfies �; ⋅ 	�< = �. 
4.4 AN EXAMPLE OF CALCULATION OF  �¦ ⋅ 	�§ 

Let assume we want to compute �� ⋅ 	�H= 0+ + ++ + −− + 01 × 0+ + +− − ++ − 01. 
(1) Identify the plausible products:  

From table 5 compute the solutions for each case of ��&1, ∶' ⋅ 	�H, ��&2, ∶' ⋅ 	�H 
and ��&3, ∶' ⋅ 	�H and construct all possible sign matrices as described above. 

After eliminating all those non-rotation matrices, we end up with following 

matrices: 

 

0−	− 	+−	+ 	+−	− 	−1 
 

0+	−	++	+	+−	−	+1 
 

0+	−	+−	−	+−	−	−1 
 

0+	+	+−	+	+−	−	+1 
 

 

0+	− 	+−	0	 +−	− 	−1 
 

0+	−	+−	+	+−	−	+1 
 

0+	−	+−	+	+−	−	−1 
 

00	 −	+−	+	+−	−	−1 
 

 

0+	− 	+−	+ 	+−	− 	01 
 

0+	−	+0	 +	+−	−	+1 
 

0 +	0	 +−	+	+−	−	+1 
 

  

(2) For each one of the plausible solutions R, try to instantiate �� ⋅ 	�H = �. 
For instance, let assume � is the second matrix in the set: 
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0+ + ++ + −− + 01 × 0+ + +− − ++ − 01 = 	 0+	−	++	+	+−	−	+1 
 

 

Get a random instance for �H ; �7?EH = 0 0.123 0.988 0.084−0.01	 −0.084 0.9960.992 −0.123 0 1	; 
Find an instance of �7?E�&1, ∶' such that the product of  �7?E�&1, ∶' × 	�7?EH	 is an 
instance of �&1, ∶': &0.061 		0.003 0.998' × 0 0.123 0.988 0.084−0.01	 −0.084 0.9960.992 −0.123 0 1 = &0.997 −0.063	 0.008'	 
Find an instance of �7?E�&2, ∶' such that the product of  �7?E�&2, ∶' × 	�7?EH is an 
instance of �&2, ∶' and  �7?E�&1, ∶' ⋅ �7?E�&2, ∶' = 0 ∶ 

 &0.996 0.058 	−0.061' × 00.123 0.988 0.084−0.01 −0.084 0.9960.992 −0.123 0 1 = &0.061 0.987 0.143'. 
Compute �7?E�&1, ∶' × �7?E�&2, ∶': &0.061 		0.003 0.998' × &0.996 0.058 	−0.061' = &−0.059 0.998 0'. 
Since the cross product is an instance of third row in ��, Compute �7?E�&2, ∶' × �7?EH:  
 &−0.059 0.998 0' × 0 0.123 0.988 0.084−0.010	 −0.084 0.9960.992 −0.123 0 1 = &−0.017 −0.142 0.989'. 
Since the cross product is an instance of �&3, ∶'; return  �7?E� and �7?EH as solution. 
 

0 0.061 0.003 0.9980.996 0.058 −0.061−0.059 0.998 0 1 × 0 0.123 0.988 0.084−0.010	 −0.084 0.9960.992 −0.123 0 1 = 0 0.997 −0.063 0.0080.061 0.987 0.143−0.017 −0.142 0.9891 
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 �b �c �` �_ �d �a �i �] �­ �b^ �bb �bc �b` �b_ 
�b 

4851 2931 2931 3031 2931 2021 2121 2931 2931 2121 77 77 77 11 
�c 

2931 2931 4451 2931 2121 2021 2929 2121 2929 2931 77 77 77 11 
�` 

2931 4751 2931 2931 2121 2929 2021 2729 2021 2829 77 77 77 11 
�_ 

2931 3031 4651 3031 2121 2021 2729 2021 2929 2931 77 77 77 11 
�d 

2121 2021 2929 1929 1819 1419 1516 911 1719 1419 55 55 33 11 
�a 

2929 2021 2929 2021 1419 911 1819 1719 1516 1719 55 33 55 11 
�i 

2931 2729 2121 2021 1319 1719 911 1416 1419 1819 55 55 33 11 
�] 

2931 2729 2121 2021 1719 1719 811 1219 1419 1819 55 55 33 11 
�­ 

2931 2021 2929 2021 1419 811 1819 1719 1319 1719 55 33 55 11 
�b^ 

2121 2021 2929 2929 1819 1619 1616 911 1819 1619 55 55 33 11 
�bb 

77 77 77 77 33 55 55 55 55 33 23 11 11 11 
�bc 

77 77 77 77 55 33 55 55 33 55 11 23 11 11 
�b` 

77 77 77 77 55 55 33 33 55 55 11 11 23 11 
�b_ 

11 11 11 11 11 11 11 11 11 11 11 11 11 11 
Table 6- Number of achievable cases out of the possible cases, in the transitivity table of 

representative rotations. 
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Conclusion 

In this project we introduced and implemented a qualitative calculus for three-

dimensional rotation. We defined a triple sign vector as a qualitative vector and identified 

336 possible 3 × 3 base sign rotations matrices. The calculus consists of two parts. First 

it computes and instantiates the set of all possible products for the given vector and 

rotation matrix. It also computes and instantiates the maximal set of the composition for 

the given two basic sign rotations. Since the size of problem was large, in terms of the 

number of CSPs that we need to implement (27 × 336 in the first part and 336 × 336 in 
the second part) by mapping the 26 non-zero possible sign row vectors to unit length 

octahedral centered in origin we categorized 26 vectors to 3 categories (face/edge/vertex) 

and 336 rotation matrices to 14 distinct categories. This way the former size became 3 × 14 and the latter became 14 × 14. 
As future work, the current calculus can be extended to a qualitative calculus and 

other constraint propagation systems with more expressivity and functionality, which is 

the end product of most QSR projects. That would be also worthwhile to establish 

reliably that the set of achievable products for each case in composition part is not 

missing any possible product. That could be more desirable to work out this in linear 

algebra as we did in chapter 3. But it would be also possible to try to refine the current 

code and may be to increase the number of trials to see if it gets better results. 

A more challenging would be to create a qualitative calculus of rotations based on 

one of the other regular polyhedra like icosahedron or cube rather than the octahedral. 

Any of the regular polyhedral gives a qualitative calculus though none of the others can 

be analyzed in terms of the sign calculus.  
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