NetBricks: Taking the V out of NFV

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rathasamy, Scott Shenker
UC Berkeley, Google, ICSI

LINETSYS

What the heck iIs NFV?

A Short Introduction to NFV

A Short Introduction to NFV

‘:
I —

A Short Introduction to NFV

Network Function Chain

Why NFV?

o Simplifies adding new functionality: Deploy new software.

Why NFV?

o Simplifies adding new functionality: Deploy new software.

o Simplifies developing new functionality: \Write software vs design hardware

Why NFV?

o Simplifies adding new functionality: Deploy new software.
o Simplifies developing new functionality: \Write software vs design hardware

 Reuse management tools from other domains.

Why NFV?

Simplifies adding new functionality: Deploy new software.
Simplifies developing new functionality: \Write software vs design hardware
Reuse management tools from other domains.

Consolidation: Reduce number of hardware boxes in the network.

Challenges for NFV

Challenges for NFV

* Running NFs

e |solation and Performance

Challenges for NFV

* Running NFs

e |solation and Performance

. Building NFs

 High-Level Programming and Performance

Running NFs

|lsolation

« Memory Isolation: Each NF's memory cannot be accessed by other NFs.

|lsolation

« Memory Isolation: Each NF's memory cannot be accessed by other NFs.

* Packet Isolation: \When chained, each NF processes packets In isolation.

|lsolation

« Memory Isolation: Each NF's memory cannot be accessed by other NFs.

* Packet Isolation: \When chained, each NF processes packets In isolation.

|lsolation

« Memory Isolation: Each NF's memory cannot be accessed by other NFs.
* Packet Isolation: \When chained, each NF processes packets In isolation.

 Performance Isolation: One NF does not affect another’s performance.

|lsolation

« Memory Isolation: Each NF's memory cannot be accessed by other NFs.

* Packet Isolation: \When chained, each NF processes packets In isolation.

Current Solution

Memory [solation

vSwitch VM/Container || VM/Container || VM/Container |
o - Packet Isolation

NIC NIC

Performance

Current Solution

Memory [solation

VM/Container | | VM/Container | | VM/Container |
Packet [solation

Performance

Current Solution

v"Memory Isolation

VM/Container | | VM/Container | | VM/Container |
Packet [solation

Performance

Current Solution

v Memory Isolation

vSwitch VM/Container || VM/Container || VM/Container |
o - Packet Isolation

NIC NIC

Performance

Current Solution

v Memory Isolation

vSwitch VM/Container || VM/Container || VM/Container |
o Packet Isolation

NIC

<

NIC

Performance

Current Solution

VM/Container

v Memory Isolation

VM/Container | | VM/Container |
Packet |solation

vSwitch

Performance

Current Solution

v Memory Isolation

VM/Container | | VM/Container |
Packet |solation

vSwitch

Performance

Current Solution

VM/Container

v Memory Isolation

VM/Container | | VM/Container |
Packet |solation

Performance

Current Solution

v Memory Isolation

Co
VSWi’[ChD- . ps\5!\/I/C tainer | | VM/Container | | VM/Container |
N L A Packet Isolation

NIC NIC

Performance

Current Solution

v Memory Isolation

15
vSwitch vI\/I/C tainer || VM/Container || VM/Container |
R Packet Isolation

NIC NIC

Performance

Current Solution

v Memory Isolation

15
vSwitch vI\/I/C tainer || VM/Container || VM/Container |
R Packet Isolation

NIC NIC

Performance

Current Solution

v Memory Isolation

EICOD - -
vSwitch vI\/I/C tainer | | VM/Container | | VM/Container |
o v' Packet Isolation

NIC NIC

Performance

Current Solution

v Memory Isolation

15
vSwitch vI\/I/C tainer || VM/Container || VM/Container |
o v' Packet Isolation

NIC NIC

X Performance

Processing Rate (Mpps)

Isolatlon Costs Performance

Processing Rate (Mpps)

Isolatlon Costs Performance

No Isolation s
OVS VM

Processing Rate (Mpps)

Isolatlcn Costs Performance

No Isolation s
OVS VM
BESS VM

Processing Rate (Mpps)

Isclatlon Costs Performance

No Isolation s
OVS VM

BESS VM v
BESS Container ms

Processing Rate (Mpps)

Isclatlon Costs Performance

No Isolation wss
Near |deal wm

25 OVS VM
BESS VM o
BESS Container mws
o0 b I B e
15 0 D B
10
5

Isclatlon Costs Performance

No Isolation
NetBricks s

25 OVS VM
‘» BESS VM s
) BESS Container s
S 20 [B
O
©
T I o S S
O)
=
@
© 10
=
0

5

NetBricks Runtime Architecture

Single Process Space

NF D NF D NF D
4 4 4
NF C] [NFZ NF C] [NFZ | NECl FINFZ
NgB NgY NgB NgY NgB NF Y
4 4 4 4 4
N?A N?X N;A N?X N;A N;X

5 ZCS| Scheduler 5
DPDK Poll for I/O ¢ DPDK Poll for 1/O ~ DPDK Poll for I/O

Poll for 1/O

NICs

NetBricks Runtime Architecture

Single Process Space

NF D NF D
4 4
¥ NEC NEZ NiC NF Z
Function
NF Y] e Bl | N | M| Y
NF Al | INE X | NFA] | NFX
v ——v—i T T ' T T
5 ZCS| Scheduler 5
DPDK Poll for I/O ¢ DPDK Poll for 1/O ~ DPDK Poll for I/O

Poll for 1/O

NICs

NetBricks Runtime Architecture

Single Process Space

NF D NF D NF D
4 4 4
NF C] [NFZ NF C] [NFZ | NECl FINFZ
NgB NgY NgB NgY NgB NF Y
4 4 4 4 4
N?A N?X N;A N?X N;A N;X

5 ZCS| Scheduler 5
DPDK Poll for I/O ¢ DPDK Poll for 1/O ~ DPDK Poll for I/O

Poll for 1/O

NICs

NetBricks Runtime Architecture

Single Process Space

NF D NF D NFD

NF C| [INF Z N NF C| [INF Z
NgB NgY NgB tc? et NgB NF Y
ompletion

4 4 $ Scheduling | 4
N?A N;X N;A N;A N;X
DPDK Poll for |/O DPDK Poll for |/O DPDK Poll for |/O
Pall for 1/O |

NICs

What about Isolation?

Provide Isolation through Software

ZCSI: Zero Copy Soft Isolation

* VMs and containers impose cost on packets crossing isolation boundaries.

* Frequent operation for many NFs which must support 10s of MPPS.

ZCSI: Zero Copy Soft Isolation

* VMs and containers impose cost on packets crossing isolation boundaries.
* Frequent operation for many NFs which must support 10s of MPPS.
* Insight: Use type checking (compile time) and runtime checks for isolation.

* |solation costs largely paid at compile time (small runtime costs).

Our Approacn

* Disallow pointer arithmetic in NF code: use safe subset of languages.

Our Approacn

* Disallow pointer arithmetic in NF code: use safe subset of languages.

* [ype checks + array bounds checking provide memory isolation.

Our Approacn

* Disallow pointer arithmetic in NF code: use safe subset of languages.
* [ype checks + array bounds checking provide memory isolation.

e Build on unique types for packet isolation.

Our Approacn

* Disallow pointer arithmetic in NF code: use safe subset of languages.
* [ype checks + array bounds checking provide memory isolation.
e Build on unique types for packet isolation.

e Unigue types ensure references destroyed after certain calls.

Our Approacn

* Disallow pointer arithmetic in NF code: use safe subset of languages.
* [ype checks + array bounds checking provide memory isolation.
e Build on unique types for packet isolation.

e Unigue types ensure references destroyed after certain calls.

* Ensure only one NF has a reference to a packet.

Our Approacn

* Disallow pointer arithmetic in NF code: use safe subset of languages.
* [ype checks + array bounds checking provide memory isolation.
e Build on unique types for packet isolation.

e Unigue types ensure references destroyed after certain calls.

* Ensure only one NF has a reference to a packet.

* Enables zero copy packet I/0.

Our Approacn

Disallow pointer arithmetic in NF code: use safe subset of languages.
lype checks + array bounds checking provide memory isolation.
Bulld on unigue types for packet isolation.

e Unigue types ensure references destroyed after certain calls.

* Ensure only one NF has a reference to a packet.

* Enables zero copy packet I/0O.

All of these features implemented on top of Rust.

Software can provide both
Memory and Packet Isolation

Benefits of Software Isolation

* Enable better consolidation: multiple NFs can share a core.

Benefits of Software Isolation

* Enable better consolidation: multiple NFs can share a core.

 Normally hard because of context switch costs (~1us).

Benefits of Software Isolation

* Enable better consolidation: multiple NFs can share a core.
 Normally hard because of context switch costs (~1us).

* |n our case just a function call (a few cycles at most).

Benefits of Software Isolation

* Enable better consolidation: multiple NFs can share a core.
 Normally hard because of context switch costs (~1us).
* |n our case just a function call (a few cycles at most).

 Reduce memory and cache pressure for NFV deployments.

Benefits of Software Isolation

* Enable better consolidation: multiple NFs can share a core.
 Normally hard because of context switch costs (~1us).
* |n our case just a function call (a few cycles at most).
 Reduce memory and cache pressure for NFV deployments.

e Zero copy I/0O => do not need to copy packets around.

Challenges for NFV

. Building NFs

 High-Level Programming and Performance

How to write NFs?

* Current: NF writers concerned about meeting performance targets

How to write NFs?

* Current: NF writers concerned about meeting performance targets

* | ow level abstractions (I/0O, cache aware data structures) and low level code.

How to write NFs?

* Current: NF writers concerned about meeting performance targets
* | ow level abstractions (I/0O, cache aware data structures) and low level code.

e Spend lots of time optimizing how abstractions are used to get performance.

How to write NFs?

* Current: NF writers concerned about meeting performance targets
* | ow level abstractions (I/0O, cache aware data structures) and low level code.
e Spend lots of time optimizing how abstractions are used to get performance.

 Observation: NFs exhibit common patterns: abstract and optimize these.

How to write NFs?

Current: NF writers concerned about meeting performance targets

* | ow level abstractions (I/0O, cache aware data structures) and low level code.
Spend lots of time optimizing how abstractions are used to get performance.
Observation: NFs exhibit common patterns: abstract and optimize these.

What happened in other areas

How to write NFs?

Current: NF writers concerned about meeting performance targets

* | ow level abstractions (I/0O, cache aware data structures) and low level code.
Spend lots of time optimizing how abstractions are used to get performance.
Observation: NFs exhibit common patterns: abstract and optimize these.
What happened in other areas

 MPIto Map Reduce, etc.

Abstractions

Packet Processing Abstractions

Parse/Deparse éParse (or undo parsing for) a header from the packet.
Transform Operate on the packet header and payload.
Filter éDrop packet whose header or payload meet some criterion.

Byte Stream Processing Abstractions

Window éUse a sliding window to gather packet payload and call a function.

..

Packetize éSegment a byte array into a sequence of packets,

Control Flow

Group By éBranch control flow between abstractions.
Shuffle Shuffle packets across processing cores.
Merge él\/lerge control from branches.

State Abstractions

Bounded Consistency State éState store with tunable consistency specification.

Schedulabe Abstractions

Invoke Periodically execute a function.

Shuffle Abstraction

Spread packets
aCross cores for
scaling

———>

Mux

Shuffle Abstraction

Spread packets
aCross cores for
scaling

—

Might even use
hardware for this.

Mux

Example NF: Maglev

Maglev: Load balancer from Google (NSDI'16).

Main contribution: a novel consistent hashing algorithm.

 Most of the work in common optimization: batching, scaling cross core.
NetBricks implementation: 105 lines, 2 hours of grad student time.

Comparable performance to optimized code

Managing NFs

Building and Running NFs

Managing NFs

E2 (SOSP'15)

Stratos

FTMB (SIGCOMM 15
FlowTags (NSDI "14)

Building and Running NFs

Managing NFs

E2 (SOSP'15)

Stratos

FTMB (SIGCOMM 15
FlowTags (NSDI "14)

Building and Running NFs

- No Isolation

CoMB (NSDI'12)
| xOMB (ANCS’12)

Managing NFs

E2 (SOSP'15)

Stratos

FTMB (SIGCOMM 15
FlowTags (NSDI "14)

)
)
- IHyperSwitch (ATC’13)
)

Building and Running NFs

- No Isolation

CoMB (NSDI'12)
XxOMB (ANCS’12)

VM Isolation

NetVM (IEEE TNSM

ClickOS (NSDI'14

mSwitch (SOSR'15

Managing NFs

E2 (SOSP'15)

Stratos

FTMB (SIGCOMM 15
FlowTags (NSDI "14)

Hyperswitch (ATC'13

Building and Running NFs

- No Isolation

CoMB (NSDI'12)
XxOMB (ANCS’12)

VM Isolation
| NetVM (IEEE TNSM)|No Packet Isol.

ClickOS (NSDI'14)

)
mSwitch (SOSR’15)

Conclusion

* Performance demands for NFV require forwarding 10-100 MPPS.
* Requires isolation for consolidation.

o Software isolation is necessary to meet performance requirements.
* Requires low level optimization, slowing down NF development.

» Abstract operators + UDF can simplify development without sacrificing performance.

Conclusion

* Performance demands for NFV require forwarding 10-100 MPPS.
* Requires isolation for consolidation.

o Software isolation is necessary to meet performance requirements.
* Requires low level optimization, slowing down NF development.

» Abstract operators + UDF can simplify development without sacrificing performance.

Code available at http:/netbricks.io/

Both Memory Isolation and |/0O Induce Overheads

1o N
No Isolation s
0-Copy Container pmm
DD R S e BESS Container mwwm ...
%)
o)
— P20 Bo-- ... I .
)
©
C 15 B N
®))
c
7
S 10k N O e
O
O
al
SN 4O =™ e

