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A Short Introduction to NFV
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Why NFV?

o Simplifies adding new functionality: Deploy new software.



Why NFV?

o Simplifies adding new functionality: Deploy new software.

o Simplifies developing new functionality: \Write software vs design hardware



Why NFV?

o Simplifies adding new functionality: Deploy new software.
o Simplifies developing new functionality: \Write software vs design hardware

 Reuse management tools from other domains.



Why NFV?

Simplifies adding new functionality: Deploy new software.
Simplifies developing new functionality: \Write software vs design hardware
Reuse management tools from other domains.

Consolidation: Reduce number of hardware boxes in the network.
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. Building NFs

 High-Level Programming and Performance
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What about Isolation?



Provide Isolation through Software
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ZCSI: Zero Copy Soft Isolation

* VMs and containers impose cost on packets crossing isolation boundaries.
* Frequent operation for many NFs which must support 10s of MPPS.
* Insight: Use type checking (compile time) and runtime checks for isolation.

* |solation costs largely paid at compile time (small runtime costs).
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Our Approacn

Disallow pointer arithmetic in NF code: use safe subset of languages.
lype checks + array bounds checking provide memory isolation.
Bulld on unigue types for packet isolation.

e Unigue types ensure references destroyed after certain calls.

* Ensure only one NF has a reference to a packet.

* Enables zero copy packet I/0O.

All of these features implemented on top of Rust.



Software can provide both
Memory and Packet Isolation
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Benefits of Software Isolation

* Enable better consolidation: multiple NFs can share a core.
 Normally hard because of context switch costs (~1us).
* |n our case just a function call (a few cycles at most).
 Reduce memory and cache pressure for NFV deployments.

e Zero copy I/0O => do not need to copy packets around.



Challenges for NFV

. Building NFs

 High-Level Programming and Performance
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How to write NFs?

Current: NF writers concerned about meeting performance targets

* | ow level abstractions (I/0O, cache aware data structures) and low level code.
Spend lots of time optimizing how abstractions are used to get performance.
Observation: NFs exhibit common patterns: abstract and optimize these.
What happened in other areas

 MPIto Map Reduce, etc.



Abstractions

Packet Processing Abstractions

Parse/Deparse éParse (or undo parsing for) a header from the packet.
Transform Operate on the packet header and payload.
Filter éDrop packet whose header or payload meet some criterion.

Byte Stream Processing Abstractions

Window éUse a sliding window to gather packet payload and call a function.

..........................................................................................................................................................................................................................................................................................................................................................................................................................

Packetize éSegment a byte array into a sequence of packets,

Control Flow

Group By éBranch control flow between abstractions.
Shuffle Shuffle packets across processing cores.
Merge él\/lerge control from branches.

State Abstractions

Bounded Consistency State éState store with tunable consistency specification.

Schedulabe Abstractions

Invoke Periodically execute a function.



Shuffle Abstraction
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scaling
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Shuffle Abstraction

Spread packets
aCross cores for
scaling

—

Might even use
hardware for this.

Mux



Example NF: Maglev

Maglev: Load balancer from Google (NSDI'16).

Main contribution: a novel consistent hashing algorithm.

 Most of the work in common optimization: batching, scaling cross core.
NetBricks implementation: 105 lines, 2 hours of grad student time.

Comparable performance to optimized code
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Conclusion

* Performance demands for NFV require forwarding 10-100 MPPS.
* Requires isolation for consolidation.

o Software isolation is necessary to meet performance requirements.
* Requires low level optimization, slowing down NF development.

» Abstract operators + UDF can simplify development without sacrificing performance.



Conclusion

* Performance demands for NFV require forwarding 10-100 MPPS.
* Requires isolation for consolidation.

o Software isolation is necessary to meet performance requirements.
* Requires low level optimization, slowing down NF development.

» Abstract operators + UDF can simplify development without sacrificing performance.

Code available at http:/netbricks.io/
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