Remote Memory Calls

Emmanuel Amaro* Zhihong Luo* Amy Ousterhout* Arvind Krishnamurthy®

Aurojit Panda’ Sylvia Ratnasamy* Scott Shenker**
* UC Berkeley ° University of Washington " NYU # ICSI

Abstract

In this paper we propose an extension to RDMA, called Remote Mem-
ory Calls (RMCs), that allows applications to install a customized set
of 1-sided RDMA operations. We then explain how RMCs can be im-
plemented on the forthcoming generation of SmartNICs and discuss
the resulting tradeoffs between RMCs, 1-sided RDMA operations,
and 2-sided RDMA operations.

ACM Reference Format:

Emmanuel Amaro, Zhihong Luo, Amy Ousterhout, Arvind Krishnamurthy,
Aurojit Panda, Sylvia Ratnasamy, Scott Shenker. 2020. Remote Memory Calls.
In Proceedings of the 19th ACM Workshop on Hot Topics in Networks (Hot-
Nets ’20), November 4-6, 2020, Virtual Event, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3422604.3425923

1 Introduction

RDMA bypasses CPUs and the kernel by offloading much of the
network stack to the NIC, thereby lowering latencies, achieving
higher throughput, and using fewer CPU cycles on both client and
server. As a result, in recent years RDMA has seen significant adop-
tion in datacenters [11, 27, 48], and is currently used to improve
the performance of a variety of distributed applications including
key-value stores [10, 23, 24, 26], machine learning [47], and graph
processing [34]. RDMA is also a key enabler for disaggregated dat-
acenters [2, 12, 15, 33] and GPU clusters [16, 22, 45].

RDMA supports two kinds of operations: 1-sided, where an RDMA
operation issued by a client is handled by the server’s RDMA NIC;
and 2-sided, where a client’s RDMA operation is processed by a core
on the server. The main advantage of 1-sided over 2-sided is the
reduced load on the server CPU. However, since 1-sided operations
are implemented in NIC hardware, they are less flexible than 2-sided;
1-sided operations only include read, write, atomic fetch and add,
and atomic compare and swap [41]. As others [1, 21, 23, 36] have ob-
served, real applications exhibit more complex access patterns such
as indirect memory accesses and memory scans that would require
multiple 1-sided RDMA operations, which increase latency, network
traffic, and client CPU utilization. The gap between the breadth of
application requirements and the narrowness of 1-sided RDMA oper-
ations has caused many [20, 21] to turn to 2-sided RDMA operations,
where the greater flexibility at the server allows more complicated
operations to be performed with a single RDMA invocation, but
imposes a higher load on server CPUs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HotNets °20, November 4—6, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8145-1/20/11.

https://doi.org/10.1145/3422604.3425923

Previous efforts [1] have called for a broader set of 1-sided opera-
tions to be implemented in RDMA NIC hardware, but this approach
faces two challenges: (1) it will take years to agree on and then deploy
anew generation of hardware-enabled RDMA operations, and (2) it
is not clear that any fixed set of additional operations will suffice
for all datacenter applications, particularly since RDMA does not
provide mechanisms through which operations can be chained to-
gether. To address these challenges we propose Remote Memory Calls
(RMCs), which are a specialization of software RPCs to memory-
oriented (rather than compute-oriented) remote operations. We find
that currently available RDMA-enabled SmartNICs have the features
required to implement RMCs but lack the performance advantage
over 1-sided RDMA. However, our analysis indicates that forthcom-
ing SmartNICs will have both the features and higher performance
to allow RMCs to prevail over 1-sided operations. As we discuss in
§3, host memory access latency, especially for small memory reads,
is the main impediment to currently achieving this vision. Forth-
coming improvements to SmartNICs—including faster CPUs, new
10 busses, and improvements to the software libraries used to access
host memory-will reduce host memory access latency. As a result,
we think an RMC-enabled future, where applications can define
custom 1-sided operations, is within reach.

In the rest of this paper we describe RMCs (§2), provide a feasibil-
ity roadmap to how they can be implemented on SmartNICs (§3), and
demonstrate their benefits (§4). Then, in §5, we compare the tradeoffs
between RMCs, 1-sided, and 2-sided operations, and discuss how
RMC:s as an abstraction can allow users to flexibly navigate these
tradeoffs.

2 RMC design

RMCs are memory-oriented software procedures that are registered
and invoked by a client, and executed by a remote server’s RDMA
NIC CPUs (see Figure 1). RMCs are useful for any distributed appli-
cation that needs to make multiple round trips to the same server to
achieve desired functionality; e.g., key value stores, lock managers,
replication and consensus protocols, etc. An RMC can perform a va-
riety of actions including: (a) reading and writing from host memory
(e.g., readhost () in Figure 1); (b) performing atomic operations on
host memory; (c) conditional branching and looping; (d) monitoring
writes to host memory addresses (similar tomwait); and (e) basic com-
putation, including calls to functions that hash or compress data. De-
spite the apparent generality of these operations, RMCs are not meant
to be used for arbitrary application logic, only for memory access
logic. In practice, we expect the limited NIC resources will restrict
the size (i.e., number of instructions) and runtime of RMCs, but this
will depend on the hardware on which they are eventually deployed.

Client applications register RMCs with the server NIC at runtime;
they do this by first creating a queue pair (QP) and then using a new
RMCRegister operation that associates the RMC with the QP. RMCs
can allocate and store state in the NIC’s local memory. Distinct QPs

https://doi.org/10.1145/3422604.3425923
https://doi.org/10.1145/3422604.3425923

Clientl

Appl
search_TnkdTst(void *first,int key) {
Node *n = readhost(first,NODE_SIZE);
RMC while (n->key != key)
n = readhost(n->next,NODE_SIZE);
return n->value; }
main() {

id = RMCRegister(qgp,search_lnkdIst);

val = RMCInvoke(qgp,id,root,key); ...

network

Server

4 SmartNIC A
DRAM
search_1nkdlst

ARM CPUs
RDMA/DMA

Host CPUs

Host memory
OO0 na

Figure 1: RMC architecture. We show a client application App1 registering and invoking the RMC search_lnkdlst (), which searches for a Node
with a given key in a (remote) host memory linked list. The RMC uses the readhost () function to access host memory from the SmartNIC.

(from the same application on different clients) might register and
use the same RMC, in which case the NIC keeps a single copy of the
RMC code in local memory, and the RMC dictates whether to use
per-QP state, or share state across QPs. An RMC is unregistered (i.e.,
all state erased and resources freed) when all QPs that registered it
have disconnected. In order to call RMCs we add another RMCInvoke
operation to the RDMA verbs library, which takes an id returned
by the registration operation, and any RMC parameters. The same
RMC can be invoked many times after a single registration.

Our goal is to allow applications to avail themselves of what-
ever RMCs would best suit their needs. To that end, we require that:
(1) application developers should be able to easily develop new RMCs
suited to an application’s memory access patterns; and (2) client
applications should be able to register RMCs quickly at runtime. Al-
though we leave a complete RMC API specification for future work,
at a minimum it should support most of the features the SmartNIC’s
RDMA or DMA engine provides to access host memory; e.g., reading,
writing, scatter/gather, and atomics. In addition, the APIshould allow
RMCs to declare variables and small buffers that outlive an RMC exe-
cution. This would be crucial to support counters, cached values, etc.,
and importantly, synchronization primitives that use NIC-memory;
e.g., in lock(x), the address of x should be NIC-memory accessible
to all RMCs. Further, notification support could be directly embedded
in an RMC; e.g., at the end of an RMC a condition can be added, and
if the condition is true, the RMC enqueues a message to be sent to
a set of subscribed clients.

RMCs’ approach is similar to previous efforts to enable near-
memory compute [37], and programmable SSD controllers [9] except
RMCs target remote memory access over the network fabric.

3 Implementing RMCs on SmartNICs
3.1 SmartNIC hardware

We argue that the next generation of SmartNICs will have the appro-
priate hardware capabilities to efficiently support RMCs. As such,
in the following three paragraphs we review SmartNICs in detail
and note how specific hardware components enable desirable RMC
capabilities.

Currently, most SmartNICs are built using either FPGAs (e.g.,
Xilinx Alveo [46], Mellanox Innova-2 [38]), or embedded CPUs for
computation. While prior work such as StRoM [36] has looked at
how FPGAs can enable custom RDMA extensions, in our work we
focus on CPU NICs. This is for four reasons: first, FPGA synthesis
and reconfiguration (including partial-reconfiguration) is a slow
process that in many cases requires manual intervention [44], thus

adding unacceptably high latency when registering new RMCs. Sec-
ond, FPGAs on NICs impose static resource limitations which limit
the number of RMCs that can be registered on the NIC at one time.
Third, many programmers find it challenging to write FPGA designs
and this could be an impediment for them to use RMCs for their
applications. Finally, RMCs designed to be executed on SmartNIC
CPUs can be trivially ported to run on the server or client CPU. As we
discuss later in §5, the flexibility to run RMCs on both SmartNIC and
host CPUs allows a scheduler to optimize the RDMA primitives used
by an application; this cannot be done when FPGAs are used. Thus,
while RMCs and StRoM both strive to enable RDMA extensibility, the
projects have different goals which result in significantly different
designs and implementations.

In this paper we focus on CPU-based RDMA-enabled SmartNICs
which usually have the following components: (1) a dedicated ASIC
for handling network and RDMA operations, (2) a hardware embed-
ded switch which can be programmed to forward packets to the NIC
or host, (3) a multi-core CPU, (4) some amount of on-board memory,
and (5) a mechanism that allows the NIC CPUs to efficiently access
host memory; depending on the specific design this could be achieved
by reusing the RDMA engine, or with an independent DMA unit.

To make our feasibility analysis more concrete we focus on Mel-
lanox Bluefield-1 NICs [39] (BF1); the measurements in [25] previ-
ously showed that specifications for BF1 are comparable to other
CPU-based SmartNICs. Bluefield-1 has a 16-core 64-bit ARM proces-
sor, where each core runs at a frequency of 1.35GHz.! CPU frequency
isimportant as it influences overall RMC runtime. BF1 includes 16GB
of DRAM and is cache coherent, paving the way for RMCs to support
locks and transactions without accessing host memory.

3.2 Feasibility

We now consider whether RMCs can be implemented in a platform
similar to BF1. There are three main concerns to address: (1) is there
enough bandwidth on the bus between the NIC and host memory;
(2) are SmartNIC to host memory access latencies smaller than RTTs
in a datacenter (if not, then multiple 1-sided operations would be
faster); and (3) can SmartNICs execute RMCs at a sufficiently high rate.

The bandwidth between the NIC and host memory is a concern
because RMCs are memory-oriented procedures, and we expect each
RMC to issue more than one access to host memory. Thus for RMCs
to be viable, a SmartNIC must be able to drive at least as much band-
width and operations per second to its host memory as a 1-sided
client across the network. CPUs in BF1 access host memory through

!BF1 CPUs run by default at 800MHz, however a control register allows the clock
frequency to be raised.

PCle4 by reusing its RDMA engine, and there are two device versions:
an 8 PCle lane version that supports network links of 25Gb/s, and a
16 lane version that supports 100Gb/s. In PCle4 each lane can transfer
data at 16Gb/s,? therefore, the x8 device can transfer data to its host
at 128Gb/s, ~ 5x the network bandwidth the interface supports. The
ratio between available PCIe and network bandwidth is reduced to
~ 2.5% with the x16 version (i.e., 256Gb/s for PCIe vs 100Gb/s for
network), but in both cases PCIe has more capacity than the network
bandwidth. In terms of operations per second, FaSST [21] previously
reported that ConnectX-3 over RoCE could achieve ~ 11M 1-sided
RDMA reads/s and an Infiniband device could achieve ~ 50M 1-sided
RDMA reads/s. In contrast, a recent PCle study [29] reported that
PCle3 with 8 lanes can support 200M reads/s.? Therefore, PCle3
supports ~ 18X more reads/s compared to ConnectX-3 RoCE, and
~4x higher reads/s compared to the Infiniband device. Thus BF1 has
sufficient bandwidth to support RMCs that issue multiple memory
operations and that transfer more data between SmartNIC and host
during RMC execution than they do over the network.

Regarding the second concern-whether access latencies from
SmartNIC to host memory are lower than network RTTs-note that
any traditional network communication between host CPUs must
traverse the PCle bus. In particular, the core-to-core delays (one way)
across a datacenter are composed of two PCle traversals in addition
to the network traversal, while communication from the NIC to
host memory only requires one PCle traversal. Prior work [27] has
observed network RTTs of approximately 25ps in a highly-tuned
production datacenter. In multi-tenant datacenters, three recent
measurement studies [4, 18, 32] have found that the round-trip times
between two AWS instances in the same region and availability
zone vary between 90 and 500us.* Popescu et al [32] observed sim-
ilar network latencies on GCE and Azure. By contrast, [29] reports
NIC PCle traversal latencies ranging between 0.6 and 1.2us. Thus,
in the pessimal case (i.e., when taking the lowest network latency
and the highest PClIe latency) two PCle delays are more than 10x
smaller (2.4ps vs. 25ps) than the full round-trip delays, while in multi-
tenant datacenters they are more than 37x smaller (2.4ps vs. 90us).
Furthermore, Ranganathan and Vahdat recently proposed a future
datacenter architecture in a keynote [43], where datacenters are built
as collections of cliques with network latency of ~ 10ps. Additionally,
they reported current PCle latencies of ~ 1us. These are indications
that future datacenter architectures are likely to maintain a 10X
latency gap between the network and PCle. Finally, we speculate
that even if the interconnect between NIC and its host changes from
PCle4 to a new bus (e.g., PCIe5 [31], Gen-Z [13], CXL [8], CCIX [7]),
server platforms are likely to use the new bus to support multiple
I/O devices, so the performance of the internal bus is likely to remain
higher than the network fabric.

Now we consider the last concern-whether SmartNICs can ex-
ecute RMCs at a sufficiently high rate. To answer this question we
used a microbenchmark that compares RDMA read throughput be-
tween: (1) one BF1 core and its host memory (i.e., NIC-Host); and
(2) one server-grade core at 2.6Ghz> with a 100Gb/s RDMA NIC

2We ignore encoding overheads in this discussion.

3 And 180M writes/s.

4The wide range is due to configuration differences; the use of Virtual Private Cloud
usually enables lower network latencies.

SIntel Xeon Sandy Bridge E5-2640 v3.

connected back-to-back to another host equipped with a BF1 NIC
(i.e., Host-Host). We found that for 1KB reads,® Host-Host achieves
10.2M reads/s while NIC-Host achieves 9.6M reads/s (94% of Host-
Host). However, with smaller reads of 128B, Host-Host achieves
19.4M reads/s while NIC-Host achieves 9.5M reads/s (49% of Host-
Host). This lower rate of operations supported by NIC-Host is due
partially to the 1.35Ghz frequency of the SmartNIC CPUs-much
lower than many server CPUs including our comparison. In our
testing we found that invoking RDMA operations from BF1 CPUs
uses a significant number of cycles and frequency becomes a bottle-
neck especially at small access sizes. Fortunately, RMCs are memory
dominated and will not include significant amounts of additional
compute. Furthermore, adoption of RMCs and other techniques that
rely on host memory access from SmartNIC CPUs is likely to cat-
alyze efforts to optimize the host memory access stack, thus reducing
its cost in cycles. Additionally, future SmartNICs (including the al-
ready announced Bluefield-2 [40]) include CPUs with higher clock
frequencies (i.e., 2.5Ghz), which should further address this issue.
While hardware specifications alone do not allow us to project the
rate at which SmartNICs can execute and schedule RMCs (which
depends on system design, host memory access pattern, CPU mi-
croarchitecture, etc.), we believe our analysis shows that RMCs could
achieve sufficient throughput (compared to 1-sided RDMA) using
multiple cores on future SmartNICs.

This analysis leads us to conclude that the answer to the three
questions is either already yes, or will soon be with newer Smart-
NICs, so we believe that SmartNICs represent a viable approach
to deploying RMCs. However, many implementation challenges
remain, which we turn to next.

3.3 Implementation challenges

In the previous section we showed that one BF1 core could support
up to 9M reads/s of 128B. On average, this would require executing
RMC:s that issue host memory accesses every 111ns. These small
time budgets pose several challenges including:

Low-cost memory isolation: In our model, a single SmartNIC ex-
ecutes RMCs registered by multiple client applications. Enforcing
memory isolation between these RMCs is crucial to ensure that bugs
in one application do not impact the correctness of another, and is
also a key building block for network security. However, on most
systems, switching between memory-isolated processes can take a
microsecond or more [5]. Containers and VMs further exacerbate
this problem [30]. Instead, prior work including SPIN [6], Singu-
larity [17], and Netbricks [30] have shown that compiler-assisted
isolation, which relies on static type checking and runtime bounds
checking, can provide lower isolation overheads and allow switching
between isolated contexts in nanoseconds. We believe that these
techniques, appropriately extended to the RMC context, provide a
promising approach to address this challenge.

Low-cost preemption and scheduling: We also need to ensure
performance isolation between RMCs, in particular, to guarantee
that a given QP cannot monopolize processing resources to the detri-
ment of others. Current systems rely on preemption to interrupt
long-running tasks and provide performance isolation. However, on

®Using one BF1 core, 4 queue pairs, posting lists of 16 work requests, and using signaled
sends only once every 16 posts.

most CPUs interrupts require 1000s of cycles [19] which translates
to overheads on the order of microseconds. As such, interrupt-based
preemption is too slow for an RMC system. Instead, an RMC system
could switch between RMCs when they call helper functions, such
as those for asynchronous host memory accesses (e.g., readhost ()).

In order to safely install RMCs on a SmartNIC we propose to bor-
row techniques that enable safe extensions of highly sensitive code.
Several projects, including the Linux kernel, have recently started
using eBPF programs to provide such extensions. By restricting the
class of programs that can be expressed by using eBPF and a veri-
fier that proves termination, these projects can guarantee that code
functions will finish in a bounded number of CPU cycles. While
the need to prove termination often complicates the task of writing
these programs (e.g., imposing limits on how loops are written),
recent efforts [14] have looked at extending eBPF verification using
abstract interpretation and other techniques in order to support a
wider range of programs, thereby reducing the programming effort.
Therefore, semantically-constrained programming languages pro-
vide a mechanism for RMCs to avoid runtime protection overheads.

An RMC system would also need to decide the order in which
RMCs execute. Fair scheduling algorithms often require significant
state updates so their execution can take microseconds. For exam-
ple, Torrey et al. [42] found that the O(1) completely fair scheduler
included in Linux 2.6 required about 4ps to schedule jobs on a unipro-
cessor system (a best case scenario). Simpler schedulers might be
faster but may not provide fairness between QPs. A system for RMCs
therefore needs to adopt a scheduling discipline that provides an
adequate compromise between fairness and timeliness.
Programming language: Our proposed solutions for memory iso-
lation and scheduling concerns require programmers to use a domain-
specific language to write RMCs. Such a language should be portable
across CPU architectures; e.g., based on C or C++, and as we men-
tioned before, should be verifiable like eBPF. Furthermore, the pro-
gramming language should allow our API to be used (see §2). Fully
identifying a concrete programming model for RMCs is a major open
question that we leave for future work.

4 How far away are RMCs in practice?

Now that we have argued for the feasibility of RMCs on SmartNICs,
we turn to the question of what are the benefits of using RMCs on
today’s, and future SmartNICs. We do so by comparing the RMC ap-
proach to 1-sided operations in two relevant workloads: (1) scanning
aremote data structure; and (2) hashing a remote buffer. Since we do
not have an RMC system yet, we evaluate the RMC approach by mod-
eling various delays. In particular, for both workloads, we assume
the RMC runtime adds 0.5ps of scheduling delay between invoca-
tion and execution. We estimate currently achievable latencies using
Mellanox Bluefield-1 NICs (described in §3.1); and project achievable
performance in the near future using data from recent works that
measure PCle performance [29] and SmartNIC performance [25, 28].

The results that follow indicate that, as expected, the use of RMCs
significantly reduces the load on the network, and therefore, reduces
congestion; for contexts where network congestion is a problem,
this is critical. However, the results on latency are mixed. The delays
incurred using BF1 are typically worse than those achieved with
1-sided host-to-host operations. On the other hand, the delays es-
timated using idealized NICs fare better (for the scan workload) or

@0.5ps
(1) 1.8us 7 (3)NIC-Host

NIC
@ 1.8us

Ext. Host

CPU ‘O.GUS [29] ~ | Memory
1.7ps [25]
3.1us [BF1]

(a) Latencies when using RMC.

Ext. Host [«

(b) Latencies when using 1-sided RDMA.

Figure 2: Latencies used when modeling an n-element linked list scan.
Arrows indicate direction of data movement, double arrows indicate
round-trip times (RTTs). We use three possible values of NIC-Host
RTTs: (a) 0.6ps, the DMA RTT reported for NFP6000 [29]; (b) 1.Tus,
the DMA RTT reported for LiquidIOII [25]; and (c) 3.1ps, the measured
RTT for Bluefield-1.

comparably (for the hashing workload) than 1-sided delays. These
results indicate that while RMCs implemented on today’s Smart-
NICs would decrease network load, they would not decrease delays.
However, the results also indicate that RMCs implemented on forth-
coming SmartNICs would yield decreased delays for workloads that
issue repeated host memory accesses.

4.1 Scanning data structures

Many distributed RDMA applications need to scan lists of data in or-
der to find a specific value. For example, key-value stores might need
to search an index to find a key, and hashmaps use linked lists to store
values whose keys hash to the same bucket. When scanning n ele-
ments, an application using 1-sided operations must make n 1-sided
requests, whereas with RMCs a single RMCInvoke call suffices.

We model the scan of a remote linked list in a SmartNIC by using
the search_lnkdlist RMC from Figure 1, and we break down the
model latencies as Figure 2a illustrates. In Step 1, the client invokes
the RMC by sending 24-bytes: 8-bytes for the RMC id, 8-bytes for
the head of the list, and 8-bytes for the scan key. We use a latency
of 1.8us for this step, as this was the value we measured between a
server’ and a 100Gb/s BF1 NIC connected back-to-back. For Step 2,
we assume a 0.5ps scheduling delay as previously stated. Next, since
each linked list node size is 24-bytes, the RMC performs n 24-byte
reads from host memory through PCle (i.e., Step 3). In this step we
consider three different round-trip times (RTTs) from the SmartNIC
CPU to host memory (NIC-Host in Figure 2a): (1) 0.6us, which is
the DMA RTT reported for small accesses when using NFP6000
NICs [28, 29]; (2) 1.7ps, another DMA RTT reported by iPipe when
using LiquidIOII NICs [25]; and (3) 3.1ps, the RTT we measured
from the BF1 CPU to host memory using RDMA. Once the node with
the key is found, Step 4 returns the value to the client.

As Figure 2 shows, in Bluefield-1 the round-trip time of 1-sided
RDMA reads from another host is lower (2.7us) than the RTT from
the BF1 CPU (3.1ps) to its host memory: this matches previously
reported results from iPipe [25] for small memory accesses. We
hypothesize this is due to the use of ARM cores with slow frequen-
cies, and a non-optimized RDMA library, but we expect this will be
resolved in future SmartNICs (see §3.2).

7Equipped with Intel Xeon Sandy Bridge E5-2640 v3 CPUs running at 2.6Ghz.

2001 --- RMC, Bluefield 1 ;
— 1-sided ADMA p
@ 1501
3
» - T
AR
R
8 s0{ e
0

Nodes in Linked List

Figure 3: Latency comparison in a model that scans a remote linked
list. 1-sided issues as many RDMA reads as there are nodes, while RMC
reads the nodes through PCle. When PCle round-trip time is lower than
a network RTT, it is feasible to improve latencies compared to 1-sided.

» J

.ﬂi 2000 — 1-sided RDMA

o

= 1500+ RMC

©

o

S 1000+

(73]

S

= 5001

ol

© 1 e

o o1 . . .
0 20 40 60

Nodes in Linked List

Figure 4: Data transferred through the network in a model that scans a
remote linked list. RMC moves a constant number of bytes, while 1-sided
needs to move data proportional to the number of scanned nodes.

Figure 3 shows the results of using our scan model with the three
NIC-Host round-trip times previously mentioned. As discussed
before, 1-sided RDMA outperforms RMCs when using BF1. In con-
trast, both DMA-based RMC results show better latency relative to
1-sided when scanning lists with 4 or more nodes, and the latency
gap between them and 1-sided reads increases as a function of the
list length. As such, these idealized SmartNICs perform better than
1-sided RDMA, showing the promise of RMCs. For the same model,
Figure 4 shows the amount of data transferred over the network.
RMCs allow the system to transfer a constant amount of data (24
bytes for the request, 8 bytes for the result), while 1-sided operations
require transferring an increasing amount of data, dependent on the
linked list length.

4.2 Hashing a remote buffer

Next we consider a workload where an application needs to read a
large amount of data, compute a smaller value from it (e.g., a hash),
and then make use of the computed digest. This pattern is common
in applications that verify data integrity or deduplicate data.
Implementing this workload using 1-sided RDMA requires trans-
ferring the entire buffer to the client in order to compute the hash.
Using RMCs, the hash can be computed directly on the server NIC;
many SmartNIC CPUs, including BF1, have specialized instructions
to compute hashes (ARM’s Neon extensions [3]). In our model we

10004 _s- RMC, Bluefield 1
— RMC, PCle model ~
%) ~
=2 1009 -e— 1-sided RDMA P
> //
) 4_//"/
o) -
T 10 hcaa AT
S et

14

2 8 33 131 524 2097

Buffer Size (KB)

Figure 5: Modeled latency when reading and hashing a remote buffer
from a host (1-sided RDMA) vs. using RMCs.

o 20977 —e 1-sided RDMA
< RMC, PCle model
o 1314

o -+~ RMC, Bluefield 1
(9] _

5 8

o

©

= 05+

g

© 4

T L [S P S S S S S S S

2 8 33 131 524 2097
Buffer Size (KB)

Figure 6: Data transferred through the network when hashing a remote

buffer. With regular 1-sided RDMA reads, the complete buffer needs

to be moved to the client host, whereas with RMCs the buffer is moved

through PCle, so only the resulting hash is moved through the network.

omit hash computation time at both the client and the SmartNIC be-
cause transmission time dominates for the large buffers we consider.

Figure 5 plots the latency for this scenario as a function of data
size. The BF1 results (i.e., “RMC, Bluefield 1”) report the latency
we measured when issuing a host memory read of the given buffer
size, and we use PCle bandwidth (from [29]) to model the idealized
SmartNIC (i.e., “RMC, PCle Model”). As before, the 1-sided request
does not encounter the 0.5us scheduling delay, while the others
do. We observe that 1-sided RDMA has comparable latency for the
entire range of buffer sizes we consider. We also observe that, de-
spite its limitations with small memory accesses, once access size
grows sufficiently, RMCs on BF1 can provide comparable latency
to 1-sided operations. As expected, Figure 6 shows only a constant
amount of data traverses the network when using RMCs to compute
hashes at the server. Prior work [27, 35, 48] has discussed many of
the challenges of using RDMA in congested networks. In this case,
the use of RMCs reduces the amount of bulk data transferred over
the network fabric, thereby reducing congestion.

5 Implications of RMCs

5.1 Application design

So far we have presented RMCs as a way to make 1-sided RDMA oper-
ations more flexible, and therefore, more widely applicable. However,
there is still an important role for 2-sided operations. The tradeoffs
between the various ways of implementing an application (i.e., using

A o
B small
B Mediu
O o * 8 Lae;ge "
-sided
O 8 O;-zidgd
1‘30 <YRMC

Cost

Latency

Figure 7: Total latency vs. total cost (CPU resources and network utiliza-
tion) when accessing remote memory N times within a computation.
Shapes show RDMA operation type, colors indicate size of N.

traditional 1-sided operations, RMCs, or 2-sided operations) involve
weighing two main factors. The first is performance, which of course
will depend on the details of the application and the nature of the
underlying hardware. The second is the “cost” of the resources used;
these resources include the client core, the server core, the server’s
NIC core, and network usage. The costs assigned to these depend
on both the long-term design strategies (e.g., some hyperscale cloud
operators view host cores as being far more precious than NIC com-
puting resources, while others do not), and the short-term conditions
where some resources may be scarce, raising their cost.

To illustrate these tradeoffs, Figure 7 compares different imple-
mentation options for an application whose access pattern requires N
remote memory accesses. In this illustration we make three assump-
tions: (1) SmartNIC cores are less powerful (i.e., have slower clock
speeds, shallower pipelines, etc.), and are therefore “cheaper” than
host cores; (2) network costs are proportional to data transferred over
the network; and (3) CPU costs are proportional to execution time.

Given these assumptions, when N is small, 1-sided operations
provide lower latency than both RMCs and 2-sided operations be-
cause the client CPU, which initiates the requests and processes the
resulting values, is the only processor involved. In contrast, RMCs
require processing at the SmartNIC CPU, and 2-sided operations
require processing at the host CPU; participation of these additional
CPUs adds latency for small accesses. However, as N grows, time
spent transferring data over the network dominates any time saved
by avoiding remote CPUs, so 1-sided RDMA operations show in-
creased latency when compared to the alternatives. FaSST [21] and
others have observed the same.

When N is small, RMCs may begin executing sooner compared to
2-sided operations, as we expect the SmartNIC CPUs to be dedicated
for the RMC runtime system. In contrast, host CPUs are likely to be
shared with other processes; i.e., host CPUs are more expensive, so
dedicating cores to RMC processing has a higher cost. As a result,
scheduling an RMC on a SmartNIC CPU could take less time com-
pared to the host CPU. The fact that RMCs may start running sooner
potentially improves completion time when N is small. However, as
N grows, the performance gap between SmartNIC CPUs and host
CPUs becomes more important, and for large N, processing time and

memory access bandwidth are likely to dominate, which would result
in RMCs producing higher latencies compared to 2-sided operations.

In terms of costs: 1-sided operations are more expensive compared
to both RMCs and 2-sided operations because they require use of
client host CPUs and network fabric. Additionally, since the amount
of data transferred over the network and processing time increase
with larger N, 1-sided operations show the fastest growth in cost.
Network utilization for RMCs and 2-sided operations is independent
of N, and CPU time is their main cost source. In this case RMCs
are cheaper than 2-sided operations because of our assumption that
SmartNIC cores are cheaper than host cores. However, since runtime
when using RMCs grows faster than when using 2-sided RDMA,
RMC costs grow faster as well.

5.2 Navigating RDMA tradeoffs

RDMA applications have always had to navigate the trade-off be-
tween 1-sided and 2-sided RDMA, and the decision about which to

use has so far been made by application developers. For example,
implementing applications that use 1-sided RDMA requires devel-

opers to choose data layouts and algorithms that are amenable to
such operations (e.g., trading network round trips for read size [10]).
On the other hand, applications that use 2-sided operations must
include a server component [21]. While the choice between 1-sided
and 2-sided operations is made when the application is designed,
the relative merits of each vary based on where an application is
deployed-which dictates the relative cost of host CPU cycles, Smart-
NIC CPU cycles, and network transfers—and can even vary over
time due to changing demands for processing power and network
capacity. Therefore, choosing between these modes dynamically at
runtime is more desirable than choosing at development time.

RMCs-as an abstraction—presents a third option for applications,
and can enable runtime decisions about how to access remote mem-
ory. This is because RMCs could be executed not only at the server’s
SmartNIC (our focus so far), but also at the server’s CPU (resembling
2-sided operations with local memory access), at the client’s Smart-
NIC, or at the client’s CPU (resembling 1-sided operations). Thus, the
location of an RMC could be controlled by its API, and it would dictate
the type of memory access required (i.e., the underlying access mech-
anism for readhost () could be adaptive), so moving from 1-sided,
to RMCs, to 2-sided, would require no application changes and could
therefore be automated. The ability to switch between these modes
could enable the use of schedulers that could account for instanta-
neous resource demands and deployment costs when choosing RMC
locations, enabling greater efficiency and application performance.
We believe this dynamic choice is a significant benefit provided by
RMCs, and we plan to explore this direction in future work.

Acknowledgements

We thank our shepherd Radhika Niranjan Mysore, and the anony-
mous reviewers for their helpful comments. This work was funded
in part by NSF Grants 2029037, 2028832, 2028771, 2006349, 1817115,
1817116, and 1704941, and by grants from Intel, VMware, Ericsson,
Futurewei, and Cisco.

References

(1]

[2

M. K. Aguilera, K. Keeton, S. Novakovic, and S. Singhal. Designing far memory
data structures: Think outside the box. In Workshop on Hot Topics in Operating
Systems, HotOS’19, pages 120-126, 2019.

E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera, A. Panda,
S. Ratnasamy, and S. Shenker. Can far memory improve job throughput? In
European Conference on Computer Systems, EUROSYS 17, pages 1-16, 2020.
ARM. Neon programmer guides for armv8-a, Accessed 2020/06/10.
https://developer.arm.com/architectures/instruction- sets/simd-isas/neon.

P. Bailis. Communication Costs in Real World Networks, Accessed 2020/06/10.
http://www.bailis.org/blog/communication- costs-in-real-world-networks/.

L. Barroso, M. Marty, D. Patterson, and P. Ranganathan. Attack of the killer
microseconds. Communications of the ACM, 60(4):48-54, 2017.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers. Extensibility safety and performance in the spin
operating system. In ACM Symposium on Operating Systems Principles, SOSP’95,
pages 267-283, 1995.

The ccix consortium, Accessed 2020/09/24. https://www.ccixconsortium.com/.
Compute express link, Accessed 2020/09/24. https://www.computeexpresslink.
org/.

[9] J. Do, S. Sengupta, and S. Swanson. Programmable solid-state storage in future

[10]

[11]

[12]

[13]
[14

[15]

[16]

[17]

(18]

[19

[20

[21]

[22

[23]

[24]

cloud datacenters. Communications of the ACM, 62(6):54-62, 2019.

A. Dragojevi¢, D. Narayanan, O. Hodson, and M. Castro. Farm: Fast remote
memory. In Symposium on Networked Systems Design and Implementation,
NSDI'14, pages 401-414, 2014.

D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,
H. Angepat, V. Bhanu, A. Caulfield, E. Chung, et al. Azure accelerated networking:
Smartnics in the public cloud. In Symposium on Networked Systems Design and
Implementation, NSDI'18, pages 51-66, 2018.

P.X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Ratnasamy,
and S. Shenker. Network requirements for resource disaggregation. In Symposium
on Operating Systems Design and Implementation, OSDI'16, pages 249-264, 2016.
The gen-z consortium, Accessed 2020/09/24. https://genzconsortium.org/.

E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska, J. A. Navas, N. Rinetzky,
L. Ryzhyk, and S. Sagiv. Simple and precise static analysis of untrusted linux
kernel extensions. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI'19, 2019.

J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient memory
disaggregation with infiniswap. In Symposium on Networked Systems Design and
Implementation, NSDI'17, pages 649-667, 2017.

K. Hamidouche, A. Venkatesh, A. A. Awan, H. Subramoni, C.-H. Chu, and D. K.
Panda. Exploiting gpudirect rdma in designing high performance openshmem
for nvidia gpu clusters. In IEEE Transactions on Parallel and Distributed Systems,
TPDS’15, pages 78-87, 2015.

G. C. Hunt and J. R. Larus. Singularity: rethinking the software stack. ACM
SIGOPS Operating Systems Review, 41(2):37-49, 2007.

R. Imaoka. Using ping to test AWS VPC network latency within a single region,
Accessed 2020/06/10. https://richardimaoka.github.io/blog/network-latency-
analysis-with-ping-aws/.

K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Maziéres, and C. Kozyrakis.
Shinjuku: Preemptive scheduling for usecond-scale tail latency. In Symposium
on Networked Systems Design and Implementation, NSDI'19, pages 345-360, 2019.
A. Kalia, M. Kaminsky, and D. G. Andersen. Using rdma efficiently for key-value
services. In ACM Special Interest Group on Data Communications, SSIGCOMM’14,
pages 295-306, 2014.

A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast, scalable and simple
distributed transactions with two-sided (rdma) datagram rpcs. In Symposium
on Operating Systems Design and Implementation, OSDI’'16, pages 185-201, 2016.
A.Li, S.L.Song, J. Chen, X. Liu, N. Tallent, and K. Barker. Tartan: evaluating mod-
ern gpu interconnect via a multi-gpu benchmark suite. In 2018 IEEE International
Symposium on Workload Characterization (IISWC), pages 191-202. IEEE, 2018.
B.Li, Z.Ruan, W.Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and L. Zhang. Kv-direct:
High-performance in-memory key-value store with programmable nic. In ACM
Symposium on Operating Systems Principles, SOSP’17, pages 137-152, 2017.

S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G. Andersen,
O. Seongil, S. Lee, and P. Dubey. Architecting to achieve a billion requests per

[25

[26

[27

(28]

[29

[30

[31

(32]

[33

(34]

@
=

[42]

[43]

[44]

[45]

[46

(47]

(48]

second throughput on a single key-value store server platform. In International
Symposium on Computer Architecture, ISCA’15, pages 476-488, 2015.

M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta. Offloading
distributed applications onto smartnics using ipipe. In ACM Special Interest Group
on Data Communications, SIGCOMM’19, 2019.

C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma reads to build a fast, cpu-
efficient key-value store. In USENIX Annual Technical Conference, ATC’13, 2013.
R. Mittal, V. T. Lam, N. Dukkipati, E. R. Blem, H. M. G. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. Timely: Rtt-based congestion
control for the datacenter. In ACM Special Interest Group on Data Communications,
SIGCOMM’15, 2015.

Netronome. Nfp-6000 intelligent ethernet controller family, Accessed
2020/06/10. https://www.netronome.com/static/app/img/products/silicon-
solutions/PB_NFP6000.pdf.

R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. Lopez-Buedo, and A. W.
Moore. Understanding pcie performance for end host networking. In ACM Special
Interest Group on Data Communications, SSIGCOMM’18, pages 327-341, 2018.

A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker. Netbricks:
Taking the v out of nfv. In Symposium on Operating Systems Design and
Implementation, OSDI'16, pages 203-216, 2016.

Pci-sig specifications library, Accessed 2020/09/24.
specifications.

D. A. Popescu. Latency-driven performance in data center. PhD thesis, University
of Cambridge, 2019.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. Legoos: A disseminated, distributed
os for hardware resource disaggregation. In Symposium on Operating Systems
Design and Implementation, OSDI'18, pages 69-87, 2018.

J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast and concurrent rdf queries with
rdma-based distributed graph exploration. In Symposium on Operating Systems
Design and Implementation, OSDI'16, 2016.

A. Shpiner, E. Zahavi, V. Zdornov, T. Anker, and M. Kadosh. Unlocking credit
loop deadlocks. 2016.

D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso. Strom: smart remote
memory. In European Conference on Computer Systems, EUROSYS’20, pages 1-16,
2020.

G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corporaal, and
A.-]. Boonstra. Near-memory computing: Past, present, and future. Microprocess.
Microsystems, 71, 2019.

M. Technologies. Mellanox innova-2 flex open programmable smartnic, Accessed
2020/06/10. https://www.mellanox.com/sites/default/files/doc-2020/pb-innova-
2-flex.pdf.

M. Technologies. Nvidia mellanox bluefield-1 smartnic, Accessed 2020/06/10.
https://www.mellanox.com/files/doc-2020/pb-bluefield- smart-nic.pdf.

M. Technologies. Nvidia mellanox bluefield-2 smartnic, Accessed 2020/06/10.
https://www.mellanox.com/files/doc-2020/pb-bluefield- 2-smart-nic-eth.pdf.

M. Technologies. Rdma aware networks programming user manual, Accessed
2020/06/10. https://www.mellanox.com/related-docs/prod_software/RDMA_
Aware_Programming_user_manual.pdf.

L. A. Torrey, J. Coleman, and B. P. Miller. A comparison of interactivity in the
linux 2.6 scheduler and an mlfq scheduler. Software - Practice and Experience,
37:347-364, 2007.

P.R.. A. Vahdat. Plotting a Course to a Continued Moore’s Law - Keynote,
Accessed 2020/06/10. https://youtu.be/6wqég_vi6yw.

K. Vipin and S. A. Fahmy. Fpga dynamic and partial reconfiguration: a survey
of architectures, methods, and applications. ACM Computing Surveys (CSUR),
51(4):1-39, 2018.

H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda. Gpu-aware mpi on
rdma-enabled clusters: Design, implementation and evaluation. IEEE Transactions
on Parallel and Distributed Systems, 25:2595-2605, 2014.

Xilinx. Xilinx alveo u280, Accessed 2020/06/10. https://www.xilinx.com/
publications/product-briefs/alveo-u280-product-brief.pdf.

J. Xue, Y. Miao, C. Chen, M. Wu, L. Zhang, and L. Zhou. Fast distributed deep learn-
ing over rdma. In European Conference on Computer Systems, EUROSYS’19, 2019.
Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Raindel,
M. H. Yahia, and M. Zhang. Congestion control for large-scale rdma deployments.
In ACM Special Interest Group on Data Communications, SSIGCOMM’15, 2015.

https://pcisig.com/

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
http://www.bailis.org/blog/communication-costs-in-real-world-networks/
https://www.ccixconsortium.com/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://genzconsortium.org/
https://richardimaoka.github.io/blog/network-latency-analysis-with-ping-aws/
https://richardimaoka.github.io/blog/network-latency-analysis-with-ping-aws/
https://www.netronome.com/static/app/img/products/silicon-solutions/PB_NFP6000.pdf
https://www.netronome.com/static/app/img/products/silicon-solutions/PB_NFP6000.pdf
https://pcisig.com/specifications
https://pcisig.com/specifications
https://www.mellanox.com/sites/default/files/doc-2020/pb-innova-2-flex.pdf
https://www.mellanox.com/sites/default/files/doc-2020/pb-innova-2-flex.pdf
https://www.mellanox.com/files/doc-2020/pb-bluefield-smart-nic.pdf
https://www.mellanox.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://youtu.be/6wq6g_vi6yw
https://www.xilinx.com/publications/product-briefs/alveo-u280-product-brief.pdf
https://www.xilinx.com/publications/product-briefs/alveo-u280-product-brief.pdf

	Abstract
	1 Introduction
	2 RMC design
	3 Implementing RMCs on SmartNICs
	3.1 SmartNIC hardware
	3.2 Feasibility
	3.3 Implementation challenges

	4 How far away are RMCs in practice?
	4.1 Scanning data structures
	4.2 Hashing a remote buffer

	5 Implications of RMCs
	5.1 Application design
	5.2 Navigating RDMA tradeoffs

	References

