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Abstract

Our goal is to solve nonlinear contact problems. We consider bodies in contact
with each other divided into subdomains, which in turn are unions of elements.
The contact surface between the bodies is unknown a priori, and we have a nonpen-
etration condition between the bodies, which is essentially an inequality constraint.
We choose to use an active set method to solve such problems, which has both
outer iterations in which the active set is updated, and inner iterations in which
a (linear) minimization problem is solved on the current active face. In the first
part of this dissertation, we review the basics of domain decomposition methods.
In the second part, we consider how to solve the inner minimization problems.
Using an approach based purely on FETI algorithms with only Lagrange multi-
pliers as unknowns, as has been developed by the engineering community, does
not lead to a scalable algorithm with respect to the number of subdomains in
each body. We prove that such an algorithm has a condition number estimate
which depends linearly on the number of subdomains across a body; numerical
experiments suggest that this is the best possible bound. We also consider a new
method based on the saddle point formulation of the FETI methods with both
displacement vectors and Lagrange multipliers as unknowns. The resulting system
is solved with a block-diagonal preconditioner which combines the one-level FETI
and the BDDC methods. This approach allows the use of inexact solvers. We show
that this new method is scalable with respect to the number of subdomains, and
that its convergence rate depends only logarithmically on the number of degrees
of freedom of the subdomains and bodies. In the last part of this dissertation, a
model contact problem is solved by two approaches. The first one is a nonlinear
algorithm which combines an active set method and the new method of Chapter
4. We also present a novel way of finding an initial active set. The second one
uses the SMALBE algorithm, developed by Dostal et al. We show that the former
approach has advantages over the latter.
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Chapter 1

Introduction

1.1 An Overview

Finite element discretizations of elliptic partial differential equations result in
a very large, sparse algebraic system. Solving such a system directly can be very
expensive. Even iterative methods, such as the conjugate gradient method when
the system is symmetric and positive definite, can converge very slowly due to the
large condition number of such systems. Therefore we precondition the system
so that the preconditioned system has a much smaller condition number than the
original system. Domain decomposition methods can be viewed as preconditioning
techniques which can take advantage of modern parallel computers.

In domain decomposition methods, the original domain is split into potentially
many subdomains, on each of which a small subproblem related to the original
huge problem is solved directly. Data exchange occurs between neighboring sub-
domains. As the number of subdomains increases, we also need to solve a global
problem, which involves a few unknowns for each subdomain, in order to prevent
the convergence rate from deteriorating.

Domain decomposition methods can largely be divided into two categories,
Schwarz methods (with overlapping domains) and substructuring methods (with
nonoverlapping subdomains). In this dissertation, we will focus on the substructur-
ing methods. We will concentrate on popular variants of the substructuring meth-
ods, namely one-level FETI (finite element tearing and interconnecting), FETI-DP
(dual-primal FETI) and BDDC (balancing domain decomposition by constraints)
methods.

We consider contact problems with multiple bodies. Contact problems are
characterized by an active area of contact, which is unknown a priori, and inequal-
ity constraints, such as nonpenetration conditions; see [1, Section 3]. Therefore
contact problems can be stated as energy minimization problems with inequality
constraints. In this dissertation, we study two domain decomposition methods
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under the assumption that an active set method is used for enforcing inequality
constraints. In each step of an active set method the active set is updated, and
a minimization problem on the current active set is solved approximately, until a
desired accuracy is achieved. Thus, an active set method requires outer iterations
in which the active set is updated and inner iterations in which a minimization
problem is solved.

The two domain decomposition methods we present here deal with the inner
minimization: the first is the FETI-FETI method, which is an obvious extension of
the FETI methods to the context of the contact problems described above and has
been used by the engineering community. The FETI-FETI method is shown not
to be scalable with respect to the number of subdomains, both theoretically and
numerically. A hybrid method is introduced next; it is a not-so-obvious, scalable
alternative to the FETI-FETI method.

This dissertation is organized as follows.

• Part I: in Chapter 1, we provide the very basic functional analytic tools
that are used throughout the theory of domain decomposition methods. In
Chapter 2, we review the one-level FETI, FETI-DP and BDDC methods.

• Part II: in Chapter 3, we introduce a nonlinear model problem and the FETI-
FETI method, and also provide an analysis of the convergence rate of the
FETI-FETI method. In Chapter 4, we introduce the hybrid method and
provide an eigenvalue analysis of its preconditioned operator.

• Part III: in Chapter 5, we solve the nonlinear model problem using a com-
bination of an active set method and the hybrid method studied in Chapter
4. In Chapter 6, we transform the nonlinear model problem in its original
primal form to its dual form in terms of Lagrange multipliers with bound
and equality constraints, and solve it using the SMALBE (Semi-Monotonic
Augmented Lagrangians for Bound and Equality constraints) algorithm in-
troduced by Dostal. We compare these two methods.

1.2 Functional Analytic Tools

1.2.1 Sobolev Spaces

Assume Ω is a bounded domain in Rn, n = 2, 3. L2(Ω) is the space of all
real-valued, measurable functions u which satisfy

∫

Ω

|u|2dx < ∞.
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It is a Hilbert space with the scalar product

(u, v)L2(Ω) =

∫

Ω

uvdx

and an induced norm

||u||2L2(Ω) = (u, u)2
L2(Ω) =

∫

Ω

|u|2dx.

The space H1(Ω) ⊂ L2(Ω) is a space of functions u such that u,∇u ∈ L2(Ω),
i.e., ∫

Ω

|u|2dx < ∞ and

∫

Ω

|∇u|2dx < ∞,

where ∇u is to be understood in terms of weak derivatives of u. The scaled H1-
norm of u is given by

||u||2H1(Ω) :=

∫

Ω

|∇u|2dx +
1

H2
Ω

∫

Ω

|u|2dx,

where HΩ is the diameter of Ω; this scaling factor is obtained by dilation of a
domain of unit diameter. The corresponding H1- seminorm is defined by

|u|2H1(Ω) =

∫

Ω

|∇u|2dx.

H1
0 (Ω) is a closure of C∞

0 (Ω) in H1(Ω), a subspace of functions in H1(Ω) which
vanish on the boundary in the L2(∂Ω) sense.

1.2.2 Trace and Extension Theorems

Assume Ω is a bounded Lipschitz domain in Rn, n = 2, 3, and also Γ ⊂ ∂Ω, a
subset of positive measure. We define H1/2(Γ), the trace space of H1(Ω), with the
semi-norm and the full norm given by

|u|2H1/2(Γ) =

∫

Γ

∫

Γ

|u(x) − u(y)|2

|x − y|d
dxdy,

and

||u||2H1/2(Γ) = |u|2H1/2(Ω) +
1

HΓ

||u||2L2(Γ),

where HΓ is the diameter of Γ and d is the dimension of Ω.
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1.2.3 Poincaré and Friedrichs’ Inequalities

We first introduce the following theorem, which is [42, Lemme 2.7.1]:

Theorem 1.2.1. Let Ω ⊂ Rn be a bounded Lipschitz domain and let fi, i =
1, · · · , L, L ≥ 1 be functionals in H1(Ω), such that, if u is constant in Ω,

L∑

i=1

|fi(u)|2 = 0 ⇔ u = 0.

Then, there exist constants C1 and C2, depending only on Ω and the functionals
fi, such that, for u ∈ H1(Ω),

||u||2L2(Ω) ≤ C1|u|
2
H1(Ω) + C2

L∑

i=1

|fi(u)|2.

The theorem follows from the compactness of H1(Ω) in L2(Ω), which in fact
holds even for John domains; see [2]. John domains will be defined in Chapter
3. For the moment, we will only concentrate on Lipschitz domains. The following
lemmas are special cases of Theorem 1.2.1, and are repeatedly used throughout
the theory of domain decomposition methods.

Lemma 1.2.2 (Poincaré inequality). Let Ω ∈ Rn be a bounded Lipschitz domain.
Then, there exist constants C1 and C2, depending only on Ω, such that

||u||2L2(Ω) ≤ C1|u|
2
H1(Ω) + C2

(∫

Ω

udx

)2

, ∀u ∈ H1(Ω).

Lemma 1.2.3 (Friedrichs inequality). Let Ω ⊂ Rn be a bounded Lipschitz domain,
and Γ ⊂ ∂Ω have nonvanishing (n − 1)- dimensional measure. Then, there exist
constant C1 and C2, depending only on Ω and Γ, such that

||u||2L2(Ω) ≤ C1|u|
2
H1(Ω) + C2||u||

2
L2(Γ), ∀u ∈ H1(Ω).

1.3 Krylov Subspace Methods

In this dissertation, we will mainly use two Krylov subspace methods. One
is the preconditioned conjugate gradient method for positive definite and sym-
metric problems. The other is the preconditioned conjugate residual method for
symmetric, not necessarily positive definite, problems.

5



1.3.1 The Preconditioned Conjugate Gradient Method

We first introduce the conjugate gradient method in its original form and then
its preconditioned version, following the presentation of [14, Section 3.1]. Suppose
we want to solve the following problem:

min
x∈R

n
f(x), (1.1)

or, equivalently,
Ax = b, (1.2)

where f(x) = 1
2
xT Ax− bT x, b ∈ Rn is a given vector and A ∈ Rn×n is a symmetric

and positive definite matrix. Suppose we have nonzero vectors {pk}n
k=1 which are

A-conjugate, i.e.,
〈pi, Apj〉 = 〈pi, pj〉A = 0, ∀i 6= j.

Such p1, · · · , pn are linearly independent and thus form a basis of Rn. Any x ∈ Rn

can be written in the form

x = ξ1p
1 + · · · + ξnpn. (1.3)

Subsituting (1.3) into f , we obtain

min
x∈R

n
f(x) = min

ξ1∈R

f(ξ1p
1) + · · · + min

ξn∈R

f(ξnp
n). (1.4)

Thus the original problem (1.1), or (1.2), has been turned into n one-dimensional
problems, and it is easy to see that the solution x̂ of the original problem is given
by

x̂ = ξ1p
1 + · · · + ξnpn,

where
ξi = bT pi/(pi)

T Api, i = 1, · · · , n.

Finding the exact solution x̂ can be an enormous task when the dimension n is
large. In such a case, it is natural to find an approximation x̃ of x̂ with an initial
guess x0 and just a few elements of the set {pk}n

k=1. Suppose we want to find a
minimizer xk of f in the set Sk := x0 + Span{p1, · · · , pk}. Any x ∈ Sk can be
written in the form

x = x0 + ξ1p
1 + · · · ξkp

k,

and substituting the expression above into f and using the A-conjugacy of {pk}n
k=1,

we obtain

f(x) = f(x0) +

(
1

2
ξ2
1(p1)T Ap1 + ξ1(Ax0 − b)T p1

)
+ · · ·
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+

(
1

2
ξ2
k(pk)T Apk + ξk(Ax0 − b)T pk

)
.

With g0 := ∇f(x0) = Ax0 − b and f0(x) := 1/2xT Ax − xT g0, we have

f(x) = f(x0) + f0(ξ1p
1) + · · · + f0(ξkp

k)

and
f(xk) = min

x∈Sk
f(x) = f(x0) + min

ξ1∈R

f(ξ1p
1) + · · · + min

ξk∈R

f(ξkp
k). (1.5)

From (1.5) also follows

f(xk) = min
x∈Sk

f(x) = f(xk−1) + min
ξ∈R

f(ξpk), k ≥ 1, (1.6)

and that we can generate the approximations xk iteratively. The conjugate direc-
tion method starts from an arbitrary initial guess x0, and given xk−1, we can find
xk with the formula

xk = xk−1 − αkp
k, αk = (g0)T pi/(pi)T Api.

We also need an efficient way of generating {pk}n
k=1; in the conjugate gradient

method, we apply the Gram-Schmidt process to the Krylov spaces

Kk = Kk(A, go) = Span{g0, Ag0, · · · , Ak−1g0}, k = 1, · · · , n,

to obtain a set of search directions. The complete conjugate gradient method for
the solution of (1.1) is is described in Figure 1.1.

1. Initialize: choose x0 ∈ Rn, set g0 = Ax0 − b, p1 = g0

2. Iterate k = 1, 2, 3, · · · , while ||gk−1|| > 0

αk = 〈gk−1, gk−1〉/〈Apk, pk〉
xk = xk−1 − αkp

k

gk = gk−1 − αkApk

βk = 〈gk, gk〉/〈gk−1, gk−1〉 = −〈gk, Apk〉/〈Apk, pk〉
pk+1 = gk + βkp

k

Figure 1.1: CG (Conjugate Gradient) Algorithm
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We have the following error bound for the conjugate gradient method; see [14,
Theorem 3.2].

Theorem 1.3.1. Let A be symmetric and positive definite and x̂ the solution of
(2.4). Let xk, k = 0, 1, 2, · · · be the iterates of the conjugate gradient method. Then
the error ek = xk − x̂ satisfies

||ek||A ≤ 2

(√
K(A) − 1√
K(A) + 1

)k

||e0||A, (1.7)

where K(A) denotes the spectral condition number of A.

As Theorem 1.3.1 suggests, the conjugate gradient method in its original form
can require many iterations for a desired accuracy when the condition number of
the system matrix K(A) is large, which is often the case for system matrices which
arise from PDE discretizations. We therefore consider the following transformed
equation, which is equivalent to (1.2),

M−1/2AM−1/2y = M−1/2b, (1.8)

where M−1 is also symmetric and positive definite and K(M−1/2AM−1/2) ≪ K(A).
Applying the conjugate gradient algorithm to (1.8), we obtain the preconditioned
conjugate gradient method; see Figure 1.2.

1. Initialize: choose x0 ∈ Rn, set g0 = Ax0 − b, z0 = M−1g0, p1 = z0

2. Iterate k = 1, 2, 3, · · · , while ||gk−1|| > 0

αk = 〈zk−1, gk−1〉/〈Apk, pk〉
xk = xk−1 − αkp

k

gk = gk−1 − αkApk

βk = 〈zk, gk〉/〈zk−1, gk−1〉
pk+1 = gk + βkp

k

Figure 1.2: PCG (Preconditioned Conjugate Gradient) Algorithm
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1. Initialize: choose x0 ∈ Rn, set r0 = b − Au0, p−1 = 0, p0 = M−1r0

2. Iterate k = 1, 2, 3, · · · , while ||gk−1|| > 0

β = 〈rk−1,M−1Apk−1〉/〈Apk−1,M−1Apk−1〉
uk = uk−1 + βpk−1

rk = rk−1 − βApk−1

α0 = 〈AM−1Apk−1,M−1Apk−1〉/〈Apk−1,M−1Apk−1,M−1Apk−1〉
α1 = 〈AM−1Apk−1,M−1Apk−2〉/〈Apk−2,M−1Apk−2〉
pk = M−1Apk−1 − α0p

k−1 − α1p
k−2

Figure 1.3: PCR (Preconditioned Conjugate Residual) Algorithm

1.3.2 The Preconditioned Conjugate Residual Method

The preconditioned conjugate residual method can be viewed as a generaliza-
tion of the preconditioned conjugate gradient method, for symmetric, not nec-
essarily positive definite, systems; it can essentially be derived by replacing the
Euclidean scalar products of Figure 1.2 with certain bilinear forms. For a fine
introduction, see [25, Section 9.5].

We consider the system (1.2), where A ∈ Rn is symmetric but not necessarily
positive definite. Let M ∈ Rn be a symmetric, positive definite matrix. The pre-
conditioned conjugate residual method is described in Figure 1.3.

We define

K(M−1A) =
µmax

µmin

=
max{|λ| : λ ∈ σ(M−1A)}

min{|λ| : λ ∈ σ(M−1A)}
, (1.9)

where σ(M−1A) is the spectrum of M−1A. We have the following result, which is
taken from [43, C.6.2]; a proof can be found in [25, Section 9.5].

Lemma 1.3.2. Let A be regular and symmetric and M symmetric and positive
definite. Then, after k steps of the PCR algorithm, the norm of the residual is
bounded by

||M−1/2rk||2 ≤
2ρµ

1 + ρ2µ
||M−1/2r0||2,

where ρ = K−1
K+1

and µ ∈ Z, such that k/2 − 1 < µ ≤ k/2.
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Chapter 2

Iterative Substructuring Methods

with Nonoverlapping Subdomains

2.1 Introduction

The original FETI method, which later became to be known as the one-level
FETI method, was first introduced by Farhat and Roux [24]. The discretization of
an elliptic partial differential equation, with subdomain interface continuity condi-
tions which are needed when a domain decomposition (with no coupling between
subdomains) is introduced, can be formulated as a Karush-Kuhn-Tucker (KKT)
system with the displacement vectors as primal unknowns and the Lagrange mul-
tipliers as dual unknowns. In this original method, the KKT system is reduced to
an equation in terms of the Lagrange multipliers alone; this reduction process re-
quires some care in case of the presence of subdomains lacking essential boundary
conditions. The resulting equation is solved using the conjugate gradient method.
The reduction process involves solving a Neumann problem exactly on each subdo-
main. The resulting algorithm is scalable, in the sense that the number of iterations
needed to achieve a certain accuracy is independent of the number of subdomains,
or, subproblems. Later Farhat, Mandel and Roux introduced a variant of the
FETI method [23] with a Dirichlet preconditioner, in which an additional Dirichlet
problem is solved exactly on each subdomain in the preconditioning step. The
use of this preconditioner makes the resulting algorithm even less sensitive to the
number of unknowns in each subproblem. Theoretical analysis of the convergence
of the one-level FETI method with Dirichlet preconditioners was first carried out
by Mandel and Tezaur in [40], and they showed that the conndition number K
satisfies the following upper bound:

K ≤ C

(
1 + log

H

h

)2

, (2.1)
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where H, h are the diameters of a typical subdomain and a typical element, re-
spectively. See also [6], [7] and [35].

The second generation of the FETI method, namely the dual-primal FETI
(FETI-DP) method, was introduced for two-dimensional problems by Farhat, Leso-
inne, Le Tallec, Pierson and Rixen in [22]. In this method, a certain degree of the
continuity coupling between subdomains, also known as primal constraints, is in-
troduced. The continuity of the displacement vectors at some select interface nodes
is built into the problem formulation, as in primal methods, whereas the continu-
ity at other interface nodes is imposed by the use of dual Lagrange multipliers
as in the one-level FETI method; thus the name dual-primal FETI. In FETI-DP
methods, sufficiently many primal constraints are introduced so that the resulting
stiffness matrix for the entire system becomes invertible. In addition, these primal
constraints also provide a coarse solver which is needed for the scalability of the
algorithm. Mandel and Tezaur carried out a theoretical analysis for the FETI-DP
method in the case of two-dimensional second and fourth order problems, and ob-
tained the same condition number estimate (2.1).

The FETI-DP method is preferred to the original one-level FETI method for
several reasons. Among them, a major advantage is that the introduction of the
primal continuity constraints eliminates the need to solve singular problems. Solv-
ing singular subproblems is not a trivial matter; see [21]. Also, the FETI-DP
method allows us great flexibility in choosing primal continuity constraints, which
provide the coarse solver, and can make the algorithm robust with respect to the
PDE coefficients.

The BDDC (Balancing Domain Decomposition by Constraints) method was
first introduced by Dohrmann in [11]. It is a variant of the two-level Neumann-
Neumann type preconditioner, with its coarse problem similar to that of the cor-
responding FETI-DP method; see [38]. Mandel and Dohrmann proved that the
BDDC method has the same condition number estimate (2.1) in [39], using the
abstract Schwarz framework.

The one-level FETI and the FETI-DP methods are dual substructuring meth-
ods, whereas the BDDC method is a primal substructuring method. This termi-
nology follows from the fact that a minimization problem, in terms of the primal
variables, is solved in the BDDC method, and an equivalent problem, in terms of
the dual variables, is solved in the FETI methods.

In Chapters 3 and 4, we will consider the FETI-FETI and a hybrid methods,
respectively. One-level FETI, FETI-DP and BDDC methods serve as building
blocks of those methods and we therefore briefly describe them here.

11



2.2 Problem Setting

2.2.1 Domain Decomposition

We consider a second-order scalar elliptic problem on a bounded domain Ω ⊂
Rn, n = 2, 3. We denote the boundary of Ω by ∂Ω, and assume that homogeneous
Dirichlet boundary conditions are imposed on ∂ΩD ⊂ ∂Ω, which is a subset of
∂Ω with a positive measure. Let ∂ΩN := ∂Ω \ ∂ΩD be its complement. The
corresponding Sobolev space in which the solution will be found is H1

0 (Ω, ∂ΩD) :=
{v ∈ H1(Ω) : u = 0 on ∂ΩD}. We find u ∈ H1

0 (Ω, ∂ΩD) such that

a(u, v) = f(v), ∀v ∈ H1
0 (Ω, ∂ΩD), (2.2)

where

a(u, v) :=

∫

Ω

ρ(x)∇u · ∇v, f(v) =

∫

Ω

fv. (2.3)

Note that (2.2) is equivalent to the following minimization problem:

min
u∈H1

0(Ω,∂ΩD)

1

2
a(u, u) − f(u). (2.4)

We decompose Ω into N nonoverlapping subdomains Ωi, i = 1, · · · , N , each of
which is the union of shape-regular elements. The diameter of Ωi is Hi, and we
set H = maxiHi. The triangulation of the subdomain Ωi is of diameter hi, and
we set h = maxihi. We note that many of the estimates in this dissertation will
be expressed in terms of the ratio H/h, which is to be interpreted as maxiHi/hi.
We also note that (Hi/hi)

n, Ωi ⊂ Rn gives a measure of the number of degrees of
freedom associated with Ωi.

The finite element nodes on the boundaries of neighboring subdomains match
across the interface Γ := ∪i6=j∂Ωi ∩ ∂Ωj. Γ is the union of

• faces, edges and vertices in three dimensions: faces, regarded as open subsets
of Γ, are shared by two subdomains. Edges, regarded as open subsets of the
boundaries of the faces, are shared by more than two subdomains. Vertices
are endpoints of edges.

• edges and vertices in two dimensions: edges, regarded as open subsets of
Γ, are shared by two subdomains. Vertices, as in three dimensions, are
endpoints of edges.

We note that the nodal values on ∂ΩD will always vanish and those on ∂ΩN which
belong to only one subdomain will effectively belong to the subdomain interior.
They will be eliminated together with the interior degrees of freedom when the
given linear system is reduced to a Schur complement system associated with the
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interface Γ.
We assume that ρ(x) = ρi ≥ ρmin > 0,∀x ∈ Ωi, i = 1, · · · , N . We also introduce
the corresponding set of interface nodes Γh := ∪i6=j∂Ωi,h ∩ ∂Ωj,h, where ∂Ωi,h and
∂Ωj,h are the sets of finite element nodes on ∂Ωi and ∂Ωj, respectively. We also
define local bilinear forms and linear functionals,

a(i)(u, v) :=

∫

Ωi

ρ(x)∇u · ∇v, f (i)(v) =

∫

Ωi

fv, i = 1, · · · , N. (2.5)

We will consider linear elasticity problems in Rn, n = 2, 3 as well. The equations
of linear elasticity model the displacement of a linear elastic material under the
action of external and internal forces. The elastic body occupies a bounded domain
Ω ⊂ Rn, n = 2, 3. We denote its boundary by ∂Ω and assume that a part of it,
∂ΩD, is clamped, i.e., Dirichlet boundary conditions are imposed on ∂ΩD, and that
the rest of the boundary, ∂ΩN := ∂Ω \ ∂ΩD is subject to a surface force g, i.e., a
natural boundary condition. We also introduce a body force f , e.g., gravity. With
H1(Ω) := (H1(Ω))n, n = 2, 3, the appropriate space for a variational formulation
is the Sobolev space H1

0
(Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}. The linear

elasticity problem consists in finding the displacement u ∈ H1

0
(Ω, ∂ΩD) of the

elastic body Ω such that ∀v ∈ H1

0
(Ω, ∂ΩD),

∫

Ω

G(x)ǫ(u) : ǫ(v)dx +

∫

Ω

G(x)β(x)divu divvdx = 〈F,v〉. (2.6)

Here G and β are material parameters that depend on the Young’s modulus E > 0
and the Poisson ratio ν ∈ (0, 1

2
); we have G = E/(1 + ν) and β = ν/(1 − 2ν).

The coefficients are also referred to as the Lamé parameters. In this dissertation,
we only consider the case of compressible elasticity, which means that the Poisson
ratio ν is bounded away from 1/2. Furthermore, ǫij(u) := 1

2
(∂ui/∂xj + ∂uj/∂xi)

are the elements of the linearized strain tensor, and

ǫ(u) : ǫ(v) =
3∑

i,j=1

ǫij(u)ǫij(v), 〈F,v〉 :=

∫

Ω

fTvdx +

∫

∂ΩN

gTvdσ.

2.2.2 Finite Element Spaces

We discuss the choice of the space of finite element functions in one-level FETI,
FETI-DP, and BDDC methods. We denote a standard finite element space of
continuous, piecewise linear functions on Ωi by W (i). We will always assume that
these functions vanish on ∂ΩD. Each W (i) is decomposed into a subdomain interior
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part W
(i)
I and a subdomain interface part W

(i)
Γ :

W (i) = W
(i)
I ⊕ W

(i)
Γ .

We denote the associated product spaces by W :=
∏N

i=1 W (i),WI :=
∏N

i=1 W
(i)
I ,

and WΓ :=
∏N

i=1 W
(i)
Γ .

The functions in W and WΓ are in general discontinuous across the interface,
whereas the finite element solutions are continuous across the interface Γ. There-
fore we introduce Ŵ and ŴΓ, which are the continuous subspaces of W and WΓ,
respectively.

For the FETI-DP and BDDC methods, we will also need a subspace W̃ ⊂ W ,
intermediate between W and Ŵ , which consists of finite element functions which
satisfy certain continuity constraints. The corresponding interface space is denoted
by W̃Γ. In the two-dimensional case, we require the functions in W̃ to be contin-
uous at subdomain vertices. In the three-dimensional case, enforcing such vertex
constraints alone makes the condition number of the resulting algorithm very sensi-
tive to the number of degrees of freedom on each subdomain and we need different
continuity constraints to obtain a better algorithm; we will give more details in
Section 2.6.

We introduce the following decomposition of W̃Γ:

W̃Γ = W∆ ⊕ ŴΠ =

(
N∏

i=1

W
(i)
∆

)
⊕ ŴΠ,

where ŴΠ, a primal subspace, consists of continuous functions, and W
(i)
∆ , a dual

subspace, consists of functions which are allowed to be discontinuous across the
interface. More precisely, ŴΠ is spanned by subdomain vertex nodal basis func-
tions, i.e., consists of functions which are nonzero on Γ only at subdomain vertices
(primal nodes), in the two-dimensional case. Accordingly, W

(i)
∆ ∈ W

(i)
Γ consist of

functions which are zero at the vertices of the subdomain Ωi. The terminologies
primal and dual indicate the fact that the continuity is imposed in the manner
of primal methods at the primal nodes, and in the manner of dual methods (i.e.,
via Lagrange multipliers) at the dual nodes, respectively. In the three-dimensional

case, we need to be more careful about the design of ŴΠ, i.e., the choice of primal
constraints and W

(i)
∆ , i = 1, · · · , N , due to the reason mentioned above. W∆ is the

product space of W
(i)
∆ , i = 1, · · · , N and we also define WΠ =

∏N
i=1 W

(i)
Π , where

W
(i)
Π is the local subspace of ŴΠ for the subdomain Ωi, i = 1, · · · , N . See Figure

2.1 for a depiction of W, W̃ , and Ŵ in the two-dimensional case.
We note that we will not distinguish between a finite element function and its

vector counterpart of nodal values.
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For each subdomain Ωi, i = 1, · · · , N , we assemble local stiffness matrices

A(i) =

[
A

(i)
II A

(i)T

ΓI

A
(i)
ΓI A

(i)
ΓΓ

]

and local load vectors f (i) by integrating appropriate expressions over individual
subdomains.

Figure 2.1: W, W̃ and Ŵ
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(a) W : One-Level
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(b) W̃ : FETI-DP (c) Ŵ : BDDC

2.3 Some Useful Operators

We routinely use several restriction, extension, and scaling operators in the
theory of domain decomposition methods. These operators serve many purposes,
and among them is the need to describe small subdomain problems in terms of the
original huge problem on the entire domain.and to establish a connection between
different finite element structures.

The restriction operator R
(i)
Γ maps a vector of the product space WΓ to its

restriction in the subdomain space W
(i)
Γ . R̃

(i)
Γ and R̂

(i)
Γ are similar, and represent

restrictions from W̃Γ and ŴΓ, respectively, to W
(i)
Γ . R̃Γ : W̃Γ → WΓ and R̂Γ :

ŴΓ → WΓ are the direct sums of R̃
(i)
Γ and R̂

(i)
Γ , respectively. R

(i)
Π is the restriction

operator from ŴΠ to W
(i)
Π .

R
(i)
Γ∆ extracts the subdomain part corresponding to the subdomain space W

(i)
∆

from a vector in ŴΓ. Similarly, RΓΠ extracts the part that corresponds to ŴΠ

from a vector in ŴΓ. R̄Γ : ŴΓ → W̃Γ is the direct sum of R
(i)
Γ∆ and RΓΠ.
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We also introduce scaling factors δ†i (x) for each node x ∈ Γh ∩ ∂Ωi,h, i =
1, · · · , N : for γ ∈ [1/2,∞),

δ†i (x) =
ργ

i∑
j∈Nx

ργ
j

, x ∈ ∂Ωi,h ∩ Γh.

Here, Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj,h.

We also introduce the scaled version of R
(i)
Γ∆, which we denote by R

(i)
D,Γ∆; each

row of R
(i)
Γ∆ has exactly one nonzero entry corresponding to a node x on the subdo-

main interface. Multiplying each such entry with δ†i (x) results in the scaled version

R
(i)
D,Γ∆. R̄D,Γ is the direct sum of R

(i)
D,Γ∆ and RΓΠ. The scaled version of R̂

(i)
Γ , which

we denote by R̂
(i)
D,Γ, is defined analogously, and so is their direct sum R̂D,Γ.

It is easy to see that

R̂T
Γ R̂D,Γ = R̂T

D,ΓR̂Γ = I and R̄T
Γ R̄D,Γ = R̄T

D,ΓR̄Γ = I on ŴΓ.

We define the averaging operators on ŴΓ and W̃Γ by

ÊD := R̂ΓR̂T
D,Γ and ED := R̄ΓR̄T

D,Γ,

respectively.
We need to represent the difference of the values of the displacement unknowns

at a node common to two or more subdomains, in the FETI methods. We usually
use the symbol B, and add more symbols to indicate the space on which it acts.
For instance, the matrix

B = [B(1), B(2), · · · , B(N)]

consists of elements 0, 1,−1 such that Bu = 0, u ∈ W if and only if the values of
u associated with more than one subdomain boundary conincide. The columns of
B(i), which correspond to the interior nodes of Ωi, are zero. Thus, B(i) = [ 0 B

(i)
Γ

]
when the interior degrees of freedom are ordered first. BΓ is obtained by eliminating
the zero columns of B which correspond to the interior nodes, or

BΓ = [B
(1)
Γ , B

(2)
Γ , · · · , B

(N)
Γ ].

Similarly, B̃ and B̃Γ are jump operators which act on the spaces W̃ and W̃Γ,
respectively.

We also introduce the scaled versions of BΓ and B̃Γ, which we denote by BD,Γ

and B̃D,Γ, respectively. B
(i)
D,Γ is obtained as follows: each nonzero entry of B

(i)
Γ

contributes to the Lagrange multiplier enforcing the continuity at a node x ∈
∂Ωi ∩ ∂Ωj and is multiplied by δ†j(x) to produce the corresponding B

(i)
D,Γ. B̃D,Γ is
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obtained in the same manner.
We define

PD := B̃T
D,ΓB̃Γ.

Lemma 2.3.1.

ED + PD = I; E2
D = ED, P 2

D = PD; EDPD = PDED = 0

Proof. See [38, Lemma 1].

2.4 Schur Complement Systems and Discrete Har-

monic Extensions

In the first step of many iterative substructuring algorithms, the unknowns in
the interior of each subdomain are eliminated. In this step, the Schur complement
with respect to the interface unknowns with their nodes on ∂Ωi ∩ Γ is introduced.
For instance, consider the KKT system (2.9) for the one-level FETI method, where
the local stiffness matrices are

A(i) =

[
A

(i)
II A

(i)T

ΓI

A
(i)
ΓI A

(i)
ΓΓ

]
, i = 1, · · · , N.

The corresponding local Schur complements are

S(i) = A
(i)
ΓΓ − A

(i)
ΓIA

(i)−1

II A
(i)T

ΓI , i = 1, · · · , N,

and the Schur complement for the entire system is S := diagN
i=1S

(i), a direct sum
of S(i), i = 1, · · · , N .

We introduce the space of discrete harmonic functions, which is an important
subspace directly related to the Schur complements. A function u(i) is said to be
discrete harmonic on Ωi if

A
(i)
II u

(i)
I + A

(i)
IΓu

(i)
Γ = 0.

From this definition, we can see that a discrete harmonic function in Ωi is com-
pletely determined by its values on the subdomain boundary ∂Ωi ∩ Γ. We use the
notation u(i) := Hi(u

(i)
Γ ) to indicate extending u

(i)
Γ into the interior of Ωi so that the

resulting function is discrete harmonic in Ωi, and call Hi the discrete harmonic ex-
tension operator on Ωi. Also, we denote the piecewise discrete harmonic extension
of uΓ into the entire Ω by H(uΓ).

Lemma 2.4.1. Let u
(i)
Γ be the restriction of a finite element function to ∂Ωi ∩ Γ.
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Then, the discrete harmonic extension u(i) = Hi(u
(i)
Γ ) of u

(i)
Γ into Ωi satisfies

u
(i)T

Γ A(i)u
(i)
Γ = min

v(i)|∂Ωi∩Γ=u
(i)
Γ

v(i)T

A(i)v(i)

and
u

(i)T

Γ S(i)u
(i)
Γ = u(i)T

A(i)u(i)

Analogously, if uΓ is the restriction of a finite element function to Γ, the piecewise
discrete harmonic extension u = H(uΓ) of uΓ into the interior of the subdomains
satisfies

uT Au = min
v|Γ=uΓ

vT Av

and
uT

ΓSuΓ = uT Au.

2.5 One-Level FETI methods

In this subsection, we review the one-level FETI method. We use the finite
element functions in the space W to discretize the minimization problem (2.4) (or,
equivalently, the variational problem (1.2)). Since the functions in W are in general
discontinuous across the interface Γ, we need to enforce the continuity condition
explicitly:

min
u∈W

1

2
a(u, u) − f(u), subject to Bu = 0. (2.7)

We can rewrite the minimization problem (2.7) using matrix notation:

min
u∈W

1

2
uT Au − fT u, subject to Bu = 0, (2.8)

where

A =




A(1)

. . .

A(N)


 , f =




f (1)

...
f (N)


 .

Introducing a vector of Lagrange multipliers λ to enforce the continuity constraint
Bu = 0, we obtain the following Karush-Kuhn-Tucker (KKT) system:

Find (u, λ) ∈ W × range(B), such that

Au + BT λ = f
Bu = 0

}
. (2.9)
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λ is unique only up to an additive element of ker(BT ). The space of Lagrange
multipliers is therefore chosen as range(B).
Eliminating the interior unknowns in each subdomain, we obtain the following:

Find (uΓ, λ) ∈ WΓ × range(BΓ), such that

SuΓ + BT
Γ λ = g

BΓuΓ = 0

}
, (2.10)

where

S =




S(1)

. . .

S(N)


 , S(i) = A

(i)
ΓΓ − A

(i)
ΓIA

(i)−1

II A
(i)T

ΓI , i = 1, · · · , N,

g =




g(1)

...
g(N)


 , g(i) = f

(i)
Γ − A

(i)
ΓIA

(i)−1

II f
(i)
I , i = 1, · · · , N.

In all FETI methods, we reduce the KKT system (2.10) to an equation of λ
alone, by solving the first equation of (2.10) for uΓ. The matrices A in (2.9)
and S in (2.10), however, are singular in general, when there are subdomains
with boundaries which do not intersect the Dirichlet boundary ∂ΩD. We call such
subdomains floating. In such a case the solution of the first equation of (2.10) exists
if and only if g − BT

Γ λ ∈ range(S); this requirement leads to the introduction of
a projection P , which will be introduced shortly. First, we introduce a matrix R
such that range(R) = ker(S):

R =




R(1)

. . .

R(N)


 ,

where R(i) consists of the null vectors of S(i), i = 1, · · · , N . Subdomains with
nonsingular stiffness matrices do not contribute to the matrix R, i.e., R(i) is an
empty matrix if ∂Ωi ∩ ∂ΩD 6= ∅. We can now solve the first equation of (2.10) for
uΓ:

uΓ = S†(g−BT
Γ λ)+Rα if g−BT

Γ λ ∈ range(S) = ker(S)⊥ = range(R)⊥, (2.11)

where S† is a pseudoinverse of S and α has to be determined. Substituting (2.11)
into the second equation of (2.10), we obtain

BΓS†BT
Γ λ = BΓS†g + BΓRα. (2.12)
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We introduce the notation F := BΓS†BT
Γ , d := BΓS†g,G := BΓR, e := RT g and

P := I − G(GT G)−1GT . Note that P is a projection operator with its range
orthogonal to G. We apply this P to (2.12) to eliminate the term with α and
rewrite the orthogonality condition in (2.11) to obtain the following:

PFλ = Pd
GT λ = e.

}
. (2.13)

We define the space

V := {µ ∈ range(BΓ) : BT
Γ µ ∈ range(S)} = ker(GT ),

which we call the space of admissible increments, following Farhat, Chen and
Mandel [20]. The one-level FETI method is a preconditioned conjugate gradient
method applied to

PFλ = Pd, λ ∈ λ0 + V (2.14)

where λ0 is chosen such that GT λ0 = e. Here, we only consider the Dirichlet
preconditioner M−1

D := BD,ΓSBT
D,Γ. With this choice of preconditioner, the

preconditioned operator of the one-level FETI method has the following condition
number bound:

K ≤ C(1 + log(H/h))2, (2.15)

where K denotes the condition number of the preconditioned operator in the ap-
propriate subspace and C is a constant which does not depend on H or h. For a
proof of (2.15), see [40] or [43, Section 6.3]. Thus the convergence rate of the one-
level FETI method depends only polylogarithmically on the number of elements
across a subdomain.

2.6 FETI-DP methods

In this subsection, we closely follow the approach and notation of [38]. In the

FETI-DP method, we use finite element functions in W̃ = WI ⊕ W̃Γ to discretize
(2.4), or equivalently, (2.3). As mentioned in Section 2.2.2, we can let W̃Γ consist
of functions which are continuous at subdomain vertices and obtain a scalable
algorithm in the two-dimensional case, but enforcing such vertex constraints alone
makes the resulting algorithm very sensitive to the number of degrees of freedom
on each subdomain. In fact, the following upper bound for the condition number
of the resulting preconditioned operator has been established:

K ≤ C
H

h

(
1 +

H

h

)2

,
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see [17], [37]. Numerical results also indicate that the linear factor H/h cannot
be removed; see [22]. The remedy is to introduce the average values over certain
edges and faces for scalar second-order elliptic problems, and even additional first
order moments for linear elasticity problems with large jumps in PDE coefficients,
as primal constraints in addition to or in replacement of the vertex constraints; see
[36], [29], and [31].

We first provide a common framework for both two- and three-dimensional
cases and then provide more details for the three-dimensional case, following [38]
and [36, Section 4].

Figure 2.2: W̃ in 2D
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 ∆  ∆ 

Π    

Π    Π     

Π    

Ι

     ∆ 

We first note that the local stiffness matrices A(i) and the local load vectors
f (i) can be written as follows:

A(i) =




A
(i)
II A

(i)T

∆I A
(i)T

ΠI

A
(i)
∆I A

(i)
∆∆ A

(i)T

ΠI

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ


 , f (i) =




f
(i)
I

f
(i)
∆

f
(i)
Π


 , (2.16)

where I, ∆ and Π indicate the index sets corresponding to the interior nodes, dual
nodes, i.e., corresponding to W

(i)
∆ , and primal nodes, i.e., corresponding to W

(i)
Π ,

respectively. We introduce the matrix Ã, which can be thought of as the restriction
of A, defined for the functions in W , to the subspace W̃ :

Ã =




A
(1)
II A

(1)T

∆I Ã
(1)T

ΠI

A
(1)
∆I A

(1)
∆∆ Ã

(1)T

Π∆
. . .

...

A
(N)
II A

(N)T

∆I Ã
(N)T

ΠI

A
(N)
∆I A

(i)
∆∆ Ã

(N)T

Π∆

Ã
(1)
ΠI Ã

(1)
Π∆ · · · Ã

(N)
ΠI Ã

(N)
Π∆ ÃΠΠ




. (2.17)
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Here,

Ã
(i)
ΠI = R

(i)T

Π A
(i)
ΠI , Ã

(i)
Π∆ = R

(i)T

Π A
(i)
Π∆, i = 1, · · · , N,

and

ÃΠΠ =
N∑

i=1

R
(i)T

Π A
(i)
ΠΠR

(i)
Π .

As in the one-level FETI method, we introduce a vector of Lagrange multipliers
and obtain the following saddle point problem:

Find (u, λ) ∈ W̃ × range(B̃), such that

Ãu + B̃T λ = f

B̃u = 0

}
. (2.18)

Eliminating the interior unknowns of each subdomain from the system (2.18), we
obtain:

Find (u, λ) ∈ W̃Γ × range(B̃Γ), such that

S̃ΓuΓ + B̃T
Γ λ = g

B̃Γu = 0

}
. (2.19)

We note that S̃Γ for W̃Γ can be defined as follows:

Ã




u
(1)
I

u
(1)
∆
...

u
(N)
I

u
(N)
∆

uΠ




=




0

(S̃ΓuΓ)
(1)
∆

...
0

(S̃ΓuΓ)
(1)
∆

(S̃ΓuΓ)Π




, (2.20)

where uT
Γ = [u

(1)T

∆ · · ·u(N)T

∆ uT
Π]. S̃Γ can also be regarded as the restriction of S,

defined on WΓ, to the subspace W̃Γ:

S̃Γ = R̃T
ΓSR̃Γ.

The matrix Ã, and therefore also S̃Γ, are nonsingular, so we can solve the first equa-
tion of (2.19) for uΓ without any difficulty and substitute the resulting equation
into the second equation of (2.19):

B̃ΓS̃−1
Γ B̃T

Γ λ = −B̃ΓS̃−1
Γ g. (2.21)

22



The Dirichlet preconditioner used in the FETI-DP algorithms to solve the equation
(2.21) is of the form B̃D,ΓS̃ΓB̃T

D,Γ.
We now return to the issue of the choice of primal constraints in the three-

dimensional case. We note that for scalar elliptic problems, enforcing the continuity
of edge averages and vertex values leads to a scalable algorithm with its condition
number bounded polylogarithmically in terms of the number of degrees of freedom
on each subdomain, regardless of the coefficient jumps; see [37]. For linear elasticity
problems, we are guaranteed to have such a condition number bound only when
the material coefficient jumps are small, and we need a more elaborate choice of
primal constraints to obtain robust condition number estimates independent of
arbitrarily large jumps of the coefficients; see [36], [31].

There are two ways of enforcing additional continuity constraints besides vertex
constraints, one using an extra set of Lagrange multipliers, and the other, with a
change of basis. The second approach, in which appropriate average values or first
order moments become explicit degrees of freedom, in general leads to a smaller and
computationally more efficient coarse problem. Also, with the second approach, we
can use the same implementation of the algorithm as described above; for details,
see [36, Section 4]

We here illustrate how the change of basis is done when the average values
over all the edges of a subdomain Ωi are required to have common values across
the interface. We closely follow the idea and notation of [38, Section 3.3] and [37,
Section 4.2.1]. It is sufficient to consider the transformation for a single edge, say
E . Let uE and ûE indicate the nodal displacement unknowns for the edge E in the
original basis and the new basis, respectively. Denoting the change-of-basis matrix
from the new basis to the original basis by TE, we have

uE = TEûE.

TE can be designed in many different ways, depending on which entry of ûE

represents the average value of uE: with uT
E =

[
u1 · · · um · · · ul

]
and

ûT
E =

[
û1 · · · ûm · · · ûl

]
, where node m can be any node on E ,

uE = TEûE

=




u1
...

um
...
ul




=




1 1
. . .

...
−1 · · · 1 · · · −1

...
. . .

1 1







û1
...

ûm
...
ûl
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=




1
...
1
...
1




ûm +




û1
...

−û1 − · · · − ûm−1 − ûm+1 − · · · − ûl
...

û
(i)
l




, (2.22)

with ûm = 1/l
∑l

k=1 uk. Note that the edge unknowns have been separated into
two parts, the first of which is a constant vector and the second of which has
zero average. ûm will be added to the set of primal variables. The rest of the
edge unknowns, i.e.,

[
u1 · · · um−1 um+1 · · · ul

]
, will be the dual variables,

along with the face nodal unknowns. Such a change of basis can be performed
edge by edge, and we define T

(i)
E as the change-of-basis matrix for all edges, i.e., a

block-diagonal matrix consisting of such TE described above for individual edges.

Reordering the unknowns such that u(i)T
=
[

u
(i)T

I u
(i)T

Γ
u

(i)T

E

]
, where u

(i)
I are

the interior unknowns, u
(i)

Γ
are the interface unknowns excluding the unknowns

corresponding to the edges, and u
(i)
E are the unknowns corresponding to the col-

lection of all edges, we now introduce the transformation for the entire subdomain
Ωi:

T (i) =




I 0 0
0 I 0

0 0 T
(i)
E


 .

Therefore, 


u
(i)
I

u
(i)

Γ

u
(i)
E


 = T (i)




u
(i)
I

u
(i)

Γ

û
(i)
E


 ,

or, with û(i)T
=
[

u
(i)T

I u
(i)T

Γ
û

(i)T

E

]
,

u(i) = T (i)û(i).

In the following discussion, we will always assume that such a change of basis has
already been performed in the three-dimensional case. The local stiffness matrices

need to be modified accordingly, and we use A
(i)

:= T (i)T
A(i)T (i) in lieu of A(i).

We again rearrange û(i) and A
(i)

such that the interior unknowns come first, the
primal unknowns last, and the dual unknowns in the middle; see (2.16). Note
that the set of primal unknowns include not only the vertex nodal values but
also the average values over the edges. We also need to transform the local load
vector f (i), and reorder the resulting vector accordingly. We will use the original
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notation A(i), u(i), and f (i) for the transformed and rearranged stiffness matrices,
displacement vectors, and load vectors to keep the notation uncluttered. Now
that we have obtained (2.16) for the three-dimensional case, we can derive the
corresponding matrices, vectors, and operators for the FETI-DP algorithm for the
three-dimensional case as well.

With B̃D,ΓS̃ΓB̃T
D,ΓB̃ΓS̃−1

Γ B̃T
Γ as the preconditioner, we also have the following

condition number bound,

K ≤ C(1 + log(H/h))2,

for the preconditioned operator of the FETI-DP method. For a proof of this con-
vergence bound for the two-dimensional case, see [41]. For three-dimensional scalar
elliptic problems and linear elasticity problems, see e.g., [37] and [36], respectively.

2.7 BDDC methods

In this subsection, we review the BDDC method, following [45].
The discretized problem on the entire domain Ω is:

Find (uI , uΓ) ∈ (WI , ŴΓ), such that

(
AII AT

ΓI

AΓI AΓΓ

)(
uI

uΓ

)
=

(
fI

fΓ

)
. (2.23)

The equation (2.23) can be rewritten as




A
(1)
II A

(1)T

ΓI R̂
(1)
Γ

. . .
...

A
(N)
II A

(N)T

ΓI R̂
(N)
Γ

R̂
(1)T

Γ A
(1)
ΓI · · · R̂

(N)T

Γ A
(N)
ΓI

∑N
i=1 R̂

(i)T

Γ A
(i)
ΓΓR̂

(i)
Γ







u
(1)
I
...

u
(N)
I

uΓ







f
(1)
I
...

f
(N)
I∑N

i=1 R
(i)T

Γ f
(i)
Γ




.

(2.24)
Eliminating the interior unknowns of each subdomain, i.e., eliminating the upper
left block of (2.24), we obtain

ŜΓuΓ = g, (2.25)

where

ŜΓ =
N∑

i=1

R̂
(i)T

Γ (A
(i)
ΓΓ − A

(i)
ΓIA

(i)−1

II A
(i)T

ΓI )R̂
(i)
Γ

=
N∑

i=1

R̂
(i)T

Γ S(i)R̂
(i)
Γ
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= R̂T
ΓSR̂Γ, (2.26)

and

g =
N∑

i=1

R̂
(i)T

Γ (f
(i)
Γ − A

(i)
ΓIA

(i)−1

II f
(i)
I ).

From (2.26), we can see that ŜΓ can be regarded as the restriction of S, defined

on WΓ =
∏N

i=1 W
(i)
Γ , to the continuous subspace ŴΓ. We can also view ŜΓ as the

restriction of S̃Γ to ŴΓ:
ŜΓ = R̄T

Γ S̃ΓR̄Γ.

In the BDDC method, we use M−1 = R̄T
D,ΓS̃−1

Γ R̄D,Γ as the preconditioner, and the
preconditioned operator is

R̄T
D,ΓS̃−1

Γ R̄D,ΓR̄T
Γ S̃ΓR̄Γ. (2.27)

Recall that the preconditioned operator for the FETI-DP method is

B̃D,ΓS̃ΓB̃T
D,ΓB̃ΓS̃−1

Γ B̃T
Γ . (2.28)

Using Lemma 2.3.1, we can prove that (2.27) and (2.28) have essentially the
same spectrum, and therefore the same condition number estimate, K ≤ C(1 +
log(H/h))2; see [38].
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Part II

Auxiliary Linear Algorithms for

Nonlinear Contact Problems
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Chapter 3

FETI-FETI method

3.1 Introduction

Our ultimate goal is to solve contact problems with N bodies, Ω1, · · · , ΩN .
Contact problems are characterized by an active area of contact, which is un-
known a priori, and inequality constraints such as non-penentration conditions;
see [1]. We recall that the subdomain interface continuity constraints are of the
form Bu = 0 in the FETI methods, which are due to the use of a domain de-
composition algorithm and the fact that finite element functions that are used are
not continuous across the interface. The introduction of the subdomains and the
ensuing need for continuity constraints such as Bu = 0 are artificial in a sense. In
contact problems, however, inequality constraints arise from the fact that we have
multiple bodies and are inherent to the nature of the problem.

In this and the next chapters, we assume that we use an active set method to
deal with the inequality constraints; for other ways of dealing with inequality con-
straints, see [1]. An active set method gives rise to a sequence of auxiliary equality
constrained problems, in which some of the inequality constraints are replaced by
corresponding equality constraints and the rest are ignored. An active set method
has outer iterations in which the active set is updated, and a minimization prob-
lem on the current active face is solved in each inner iteration. The FETI-FETI
method of this chapter and the hybrid method of the next chapter deal with the
inner minimization problem.

3.2 The Model Problem

In this dissertation, we concentrate on scalar elliptic problems in two- and three-
dimensions with inequality constraints. We present the following model problem
as a motivation. It will actually be solved in Chapters 5 and 6:
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0.75

0.75
0.25

0.25

Ω

Ω

1

2

f= −5
f

Γ1
u Γ1

f Γc Γ2
f

= −1

min
2∑

i=1

(
1

2

∫

Ωi

|∇ui|2dx −

∫

Ωi

fuidx

)

where ui ∈ H1(Ωi), i = 1, 2, Ω1 = (0, 1) × (0, 1), Ω2 = (1, 2) × (0, 1)
u1 = 0 on Γ1

u = {0} × (0, 1)
u2 − u1 ≥ 0 on Γc = {1} × (0, 1) (3.1)

The reason we consider only scalar elliptic problems is that the inequality con-
straints in scalar elliptic problems are much simpler than those in linear elasticity
problems and their simplicity allows us to focus on the analysis of the precon-
ditioned operator. In linear elasticity problems, the non-penentration conditions
depend on the current configuration of the bodies and need to be updated in each
iteration (see [1, Section 4]), whereas in this scalar problem the inequality condi-
tion is expresssed by a single equation such as Bu ≤ 0.

We consider multiple bodies Ωi, i = 1, · · · , N , each of which has many degrees
of freedom and is decomposed into subdomains Ωi,j, i = 1, · · · , N, j = 1, · · · , Ni.
The diameter of the body Ωi is Hb

i , with Hb = maxiH
b
i . The diameter of the sub-

domain Ωi,j is Hs
i,j, with Hs = maxi,jH

s
i,j. When there is no danger of confusion,

we will use the notation H instead of Hs as in Chapter 2.
We assume that at least one body is clamped on part of its boundary, and de-

note the union of such fixed boundaries for the entire system by ∂ΩD. We assume
that ρ(x) = ρi,j ≥ ρmin > 0,∀x ∈ Ωi,j,∀i, j. We also assume that the coefficient
varies only moderately within the same body; in particular, we assume

ρi := max
j

ρi,j ≤ Cρi,j, ∀i, j, (3.2)

where C ≥ 1 is a constant independent of i.
We introduce two types of global interfaces: the first one is Γgl :=

⋃
i6=j ∂Ωi ∩

∂Ωj, and can be viewed as the potential contact area between the bodies: in the
model problem, this is Γc. The second one, the “current” contact area, is denoted
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by Γk
gl, where Γk

gl ⊂ Γgl; the superscript k indicates the outer iteration of the active
set method and reminds us that the “current” active set changes. In each outer iter-
ation of the active set method some of the inequality constraints are adopted as the
corresponding equality constraints and the rest are ignored, and Γk

gl,h can be viewed
as the collection of the nodes at which equality constraints are being imposed. We
also introduce the local interfaces Γ

(i)
loc :=

⋃
j 6=k(∂Ωi,j ∩ ∂Ωi,k), i = 1, · · · , N . We

assume there are no traction forces and denote the union of the free boundaries by
∂ΩF := (∪i∂Ωi) \ (∂ΩD ∪ Γgl).

We denote a standard finite element space of continuous, piecewise linear func-
tions on Ωi,j by W (i,j). Each W (i,j) is decomposed into a subdomain interior part

W
(i,j)
I and a subdomain interface part W

(i,j)
Γ for functions on ∂Ωi,j ∩ Γgl. W

(i,j)
Γ

is further decomposed into a primal subspace W
(i,j)
Π and a dual subspace W

(i,j)
∆ in

the style of the FETI-DP method. In the two-dimensional case, on which we will
concentrate, we can impose the primal continuity at vertex nodes. In the three-
dimensional case, we require the average values of all edges to be continuous in
addition to the continuity at all vertex nodes. This choice of primal constraints
leads to a scalable algorithm with the condition number estimate bounded above
by C(1 + log(H/h))2 in the scalar elliptic case [37]. We also note that all func-
tions vanish on the Dirichlet boundary ∂ΩD. We define associated product spaces,
W

(i)
I :=

∏Ni

j=1 W
(i,j)
I ,W

(i)
Γ :=

∏Ni

j=1 W
(i,j)
Γ ,W

(i)
∆ :=

∏Ni

j=1 W
(i,j)
∆ ,W

(i)
Π :=

∏Ni

j=1 W
(i,j)
Π ,

and Ŵ
(i)
Π , which is the continuous subspace of W

(i)
Π .

We introduce spaces analogous to the W̃Γ and ŴΓ of Section 2.2.2. Functions in
W

(i)
Γ are in general discontinuous across the local interface Γ

(i)
loc, and we define Ŵ

(i)
Γ

as the continuous subspace of W
(i)
Γ . W̃

(i)
Γ := W

(i)
∆ ⊕ Ŵ

(i)
Π is intermediate between

Ŵ
(i)
Γ and W

(i)
Γ .

3.3 Technical Tools

In the theory of domain decomposition methods, it had been previously as-
sumed that each subdomain is a union of a small number of coarse triangles or
tetrahedra. However, this assumption is often unrealistic, especially when the sub-
domains result from using a mesh partitioner. In such a case, subdomain bound-
aries may not even be uniformly Lipschitz.

However, there have been recent developments on the theory of domain de-
composition methods with very weak assumptions about the regularity of the
subdomains. In this section, we introduce some of the new results obtained by
Dohrmann, Klawonn, Rheinbach, and Widlund. We also provide some technical
lemmas that will be needed for the convergence analysis of the FETI-FETI method.

We first give the definition of a John domain; see Haj lasz [26] and the references
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therein.

Definition 1 (John Domains). A domain Ω ⊂ Rn - an open, bounded, and con-
nected set - is a John domain if there exist a constant CJ and a distinguished
central point x0 ∈ Ω such that each x ∈ Ω can be joined to it by a rectifiable curve
γ : [0, 1] → Ω with γ(0) = x0, γ(1) = x and |x− γ(t)| ≤ CJ · distance(γ(t), ∂Ω) for
all t ∈ [0, 1].

We note that the length of the boundary of a John domain can be arbitrarily
much longer than its diameter, and also that a John domain can have cusps facing
inwards, but not outwards. This means that if we have a union of several nonover-
lapping subdomains, having any kind of cusp on the interface would lead to the
existence of a subdomain which is not a John domain.

We define uniform domains, which are also known as Jones domains. It is
known, and easy to see, that any uniform domain is a John domain. According
to Jones [27, Theorem 4], uniform domains form the largest class of domains for
which an extension theorem holds in two dimensions; see Lemma 3.3.1 below. We
also note that the complement of a uniform domain is also a uniform domain; see
[27, Theorem C].

Definition 2 (Uniform Domains). A domain Ω ⊂ Rn is a uniform domain if there
exists a constant CU such that any pair of points x1 ∈ Ω and x2 ∈ Ω can be joined
by a rectifiable curve γ(t) : [0, 1] → Ω with γ(0) = x1, γ(1) = x2 and the Euclidean
arc length of γ ≤ CU |x1 − x2| and mini=1,2|xi − γ(t)| ≤ CU · distance(γ(t), ∂Ω) for
all t ∈ [0, 1].

3.3.1 Technical Tools - part I

In this subsection, we collect technical tools that are mostly from [43, Chapter
4], [12] and [33]. The first lemma that we introduce is [27, Theorem 1].

Lemma 3.3.1. Let Ω ⊂ Rn be a uniform domain. Then there exists a bounded
linear operator EΩ : H1(Ω) → H1(Rn), which extends any element in H1(Ω) to
one defined for all of Rn, i.e., (EΩu)|Ω = u, ∀u ∈ H1(Ω). The norm of this
operator depends only on CU(Ω) and the dimension n.

The following lemma is [33, Lemma 4.5], and we note that Lemma 3.3.1 is
needed its the proof.

Lemma 3.3.2 (Extension Lemma). Let Ωi and Ωj be subsets of Rn and two sub-
domains with a common (n−1)−dimensional interface E ij. Furthermore, let Ωi be
a uniform domain, let V h

i = {vh ∈ W h(Ωi) : vh(x) = 0 at all nodes of ∂Ωi \ E
ij},

and let V h
j = {vh ∈ W h(Ωj) : vh(x) = 0 at all nodes of ∂Ωj \ E

ij}, where W h(Ωi)
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is the standard finite element space of continuous, piecewise linear functions on
Ωi. Then, there exists an extension operator

Eh
ji : V h

j → V h
i , (3.3)

with the following properties:

1. (Eh
jiuh)|Ωj

= uh, ∀uh ∈ V h
j

2. ||Eh
jiuh||H1(Ωi) ≤ C||uh||H1(Ωj), ∀uh ∈ V h

j ,

where the constant C ≥ 0 depends only on the uniformity parameter CU(CΩi) of the
complement of Ωi and the shape regularity of the finite elements and is otherwise
independent of the finite element mesh sizes hi and hj and the diameters Hi and
Hj.

We note that the inequalities of the following lemma are well known in the the-
ory of iterative substructuring methods. Proofs for domains satisfying an interior
cone condition are given in [3] and [8, Section 4.9] and a different proof is given in
[43, Lemma 4.15]. For a proof that this inequality is sharp, see [5]. For a proof of
the following lemma, which is for John domains, see [12].

Lemma 3.3.3 (Discrete Sobolev Inequality). Let Ω ⊂ R2 be a John domain with
diameter H. Then,

||u − ūΩ||
2
L∞(Ω) ≤ C(1 + log(H/h))|u|2H1(Ω) and

||u||2L∞(Ω) ≤ C(1 + log(H/h))||u||2H1(Ω), ∀u ∈ W h(Ω).

The constant C depends only on the John parameter CJ(Ω) of Ω and the shape
regularity of elements.

Corollary 3.3.4. Let Ω ⊂ R2 be a John domain with diameter H. Then,

||u − u(x0)||
2
L2(Ω) ≤ CH2(1 + log(H/h))|u|2H1(Ω), ∀x0 ∈ Ω. (3.4)

Proof. Note that

||u − u(x0)||
2
L2(Ω) ≤ 2||u − ūΩ||

2
L2(Ω) + 2||ūΩ − u(x0)||

2
L2(Ω) (3.5)

The first term on the right hand side of (3.5) can be estimated by an elementary
Poincaré inequality, which holds for John domains:

||u − ūΩ||
2
L2(Ω) ≤ CH2|u|2H1(Ω), (3.6)

where C is a constant independent of the size of Ω. As for the second term on the
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right hand side,

||ūΩ − u(x0)||
2
L2(Ω)

≤ |Ω|||u − ūΩ||
2
L∞(Ω)

≤ C|Ω|(1 + log(H/h))|u|2H1(Ω), (3.7)

where the second inequality follows from the discrete Sobolev inequality in Lemma
3.3.3. Combining (3.5),(3.6) and (3.7), we obtain (3.4).

We need another tool to estimate energies coming from edge contributions in
the two-dimensional case. For a proof of the following lemma for John domains,
see [33, Lemma 4.4]. See [18] for the first proof of the same lemma for regular
subdomains in two dimensions.

Lemma 3.3.5 (Edge Lemma). Let Ωi ⊂ R2 be a John domain, E ij ⊂ ∂Ωi be an
edge, and θEij ∈ W h(Ωi) be a finite element function which equals 1 at all nodes of
E ij, vanishes at the other nodes on ∂Ωi, and is discrete harmonic in Ωi. Then,

|H(θEiju)|2H1(Ωi)
≤ C(1 + log(H/h))2||u||2H1(Ωi)

, ∀u ∈ W h(Ωi), (3.8)

|θEij |2H1(Ωi)
≤ C(1 + log(H/h)) (3.9)

and
||θEij ||2L2(Ωi)

≤ CH2(1 + log(H/h)). (3.10)

Here, C depends only on the John parameter CJ(Ωi) of Ωi and the shape regularity
of the finite elements. The logarithmic factor of (3.10) can be removed for P1

elements if all angles of the triangulation are acute.

We also note that the bound of Lemma 3.3.5 is independent of the length of
the edge E ij.

We would need similar face and edge lemmas to advance the theory for the
three-dimensional case. Theory for irregular subdomains in three dimensions is
not complete at this point. However, such bounds have been established for reg-
ular subdomains such as tetrahedra or cubes. Therefore we will assume that we
have regular subdomains in the three-dimensional case in the rest of this chapter.
The following lemma is taken from [43, Section 4.6.3] and [10], which deal with
tetrahedral subdomains and cubic subdomains, respectively.

Lemma 3.3.6 (Face Lemma). Let Ωi ⊂ R3 be a tetrahedron or a cube, F j ⊂ ∂Ωi

be a face, and θFj ∈ W h(Ωi) be a finite element function which equals 1 at all
nodes of F j, vanishes at the other nodes on ∂Ωi, and is discrete harmonic in Ωi.
We then have

|H(θFju)|2H1(Ωi)
≤ C(1 + log(H/h))2||u||2H1(Ωi)

, ∀u ∈ W h(Ωi), (3.11)
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and
|θFj |2H1(Ωi)

≤ C(1 + log(H/h))H. (3.12)

C is independent of H and h.

For the proof of the previous lemma, a function ϑFj
is constructed, which

coincides with θFj
on ∂Ωi and satisfies |∇ϑFj

(x)| ≤ C/r(x), where r(x) denotes
the distance between x and the edge of Ωi closest to x. The lemma then follows
from the fact that the harmonic extension is of minimal energy.

Suppose we have a square subset, F j
0 ( F j. We will present an argument that

we can replace F j with F j
0 in Lemma 3.3.6 and obtain a bound which is uniformly

bounded regardless of the ratio |F j
0 |/|F

j|, by constructing a function ϑFj
0

with

similar properties as ϑFj . Here, we describe how such functions can be constructed
for the case of a cubic subdomain, following [10]. We first consider functions which
are not finite element functions, and then obtain their finite-element counterparts
by linear interpolation. We will use the same notation for both functions.

We first sketch how ϑFj is constructed. We divide the cube into twenty-four
tetrahedra by connecting its center C to all the vertices and the centers of all the
faces, Ck, k = 1, 2, · · · , 6, and drawing the diagonals on each face. The function
ϑFj associated with the face F j is defined to be 1/6 at the center C, and we require
ϑFj (Ck) = δjk, where δjk is the Kronecker symbol. ϑFj is linear on the segment
CCk. The values inside a tetrahedron defined by the segment CCk and one edge of
the face Fk are defined to be constant on the intersection of any plane throughout
that edge and the tetrahedron, and the value is given by the value at the point of
intersection between the plane and the segment CCk.

We now consider θFj
0
. We can construct a cube, a proper subset of the cubic

subdomain Ωi, with F j
0 as its base; we denote it by T . In T , ϑFj

0
is defined exactly

the same way as ϑFj in Ωi; we can complete the definition of ϑFj
0

by extending its

values by zero in Ωi \ T .
The following is [43, Lemma 4.19]. We note that the proof is quite elementary,

and can be obtained using the energy-minimizing property of discrete harmonic
extensions and inverse inequalities.

Lemma 3.3.7. Let E be an edge of a subdomain Ωi ⊂ R3 and let u ∈ W h(Ωi).
Then,

|H(θEu)|2H1(Ωi)
≤ |Ih(ϑEu)|2H1(Ωi)

≤ C||Ih(θEu)||2L2(E),

|H(θEu)|2H1(Ωi)
≤ |Ih(ϑEu)|2H1(Ωi)

≤ C||u||2L2(E).

The proof of the following lemma, which is [43, Lemma 4.16], is straightforward;
we can take Lemma 3.3.3 given for two dimensions, and integrate along the third
direction. It will be needed for the analysis of the three-dimensional case.
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Lemma 3.3.8. Let ūE be the average value of u over E, an edge of a regular
domain Ωi ⊂ R3. Then,

||u||2L2(E) ≤ C(1 + log(H/h))||u||2H1(Ωi)

and
||u − ūE ||

2
L2(E) ≤ C(1 + log(H/h))|u|2H1(Ωi)

.

We can obtain the following lemma by a use of the Cauchy-Schwarz inequality
and Lemma 3.3.8; see [43, Lemma 4.21].

Lemma 3.3.9. Let E be an edge of Ωi ⊂ R3. Then, for any u ∈ W h(Ωi),

||u − ūE ||
2
L2(∂Ωi)

≤ CH(1 + log(H/h))|u|2H1(Ωi)
,

||u − ūE ||
2
L2(Ωi)

≤ CH2(1 + log(H/h))|u|2H1(Ωi)
.

The following lemma is [4, Lemma 2.3], and can be proved by an inverse in-
equality and Sobolev embedding.

Lemma 3.3.10. For all u ∈ W h(Ωi), where Ωi ⊂ R3,

||u||2L∞(Ωi)
≤ C(1/h)||u||2H1(Ωi)

,

where C is independent of h and the diameter of Ωi.

3.3.2 Technical Tools - part II

In this subsection, we present lemmas that are specific to the study of the
FETI-FETI method.

We need a Poincaré-type inequality to treat the energy terms coming from the
global interface between different bodies. We present such a lemma for the two-
dimensional case. In the following lemma, which is an adaptation of [8, Lemma
10.6.6], we assume that we have Lipschitz subdomains.

Lemma 3.3.11. Let v ∈ W̃ (i) = W
(i)
I ⊕ W̃

(i)
Γ . Then

||v||2L2(Ωi)
≤ C

(
H2

b (1 + log(Hs/h))2
∑

j

|v|2H1(Ωi,j)
+

1

H2
b

∣∣∣∣
∫

Ωi

vdx

∣∣∣∣
2
)

, (3.13)

and

||v||2L2(Ωi)
≤ C

(
H2

b (1 + log(Hs/h))2
∑

j

|v|2H1(Ωi,j)
+

∣∣∣∣
∫

∂Ωi∩∂ΩD

vds

∣∣∣∣
2
)

. (3.14)
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Proof. We follow the idea of [8, Lemma 10.6.6]. Let c be piecewise constant in each
subdomain of Ωi, i.e., c(x) = ci,j,∀x ∈ Ωi,j, j = 1, · · · , Ni. We define a function
Ec ∈ H1(Ωi) as follows. On the local interface of Ωi, Ec is defined as the average
of c, i.e.,

Ec(x) =

∑
j∈Nx

ci,j(x)

|Nx|
, x ∈ Γ

(i)
loc,h,

where Nx is the set of indices of the subdomains of Ωi with x on their boundaries.
Also, we set Ec|∂Ωi

= c|∂Ωi

With Ec|∂Ωi,j
, j = 1, · · · , Ni given as above, Ec is defined to be discrete har-

monic in each subdomain of Ωi. We have

||c||2L2(Ωi)

≤ 2||c − Ec||2L2(Ωi)
+ 2||Ec||2L2(Ωi)

≤ 2
∑

j

||c − Ec||2L2(Ωi,j)
+ C

(
H2

b |Ec|2H1(Ωi)
+

1

H2
b

∣∣∣∣
∫

Ωi

Ecdx

∣∣∣∣
2
)

, (3.15)

where the second inequality follows from a Poincaré inequality with scaling. We
estimate the first term of (3.15):

∑

j

||c − Ec||2L2(Ωi,j)

≤ C
∑

j

(
H2

s |c − Ec|2H1(Ωi,j)
+ Hs||c − Ec||2L2(∂Ωi,j)

)

≤ C


∑

j

H2
s |c − Ec|2H1(Ωi,j)

+ Hs

∑

e∈Ei(Ωi)

||[[c]]e||
2
L2(e)


 , (3.16)

where the first inequality is a Friedrichs inequality with scaling, E i(Ωi) denotes the
set of interior edges of Ωi and [[c]]e the jump of the function c across the edge e.
Note that c−Ec is constant on each edge of Ωi,j, j = 1, · · · , Ni, and its values will
often differ between different edges and vertices. Therefore we can write

(c − Ec)(x) =
∑

E∈∂Ωi,j

(c − Ec)|EθE(x) +
∑

V∈∂Ωi,j

(c − Ec)|VθV(x), x ∈ ∂Ωi,j,h.

We note that the characteristic function θE has already been defined in Lemma 3.3.5;
θV is defined analogously. It equals 1 at V , vanishes at all other nodes on ∂Ωi,j

and is discrete harmonic in Ωi,j. Noting that c − Ec is discrete harmonic in Ωi,j,
we have

|c − Ec|2H1(Ωi,j)
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≤ C

(
∑

E

|(c − Ec)|EθE |
2
H1(Ωi,j)

+
∑

V

|(c − Ec)|VθV |
2
H1(Ωi,j)

)
. (3.17)

We have

|(c − Ec)|EθE |
2
H1(Ωi,j)

≤ |[[c]]E ||θE |
2
H1(Ωi,j)

≤
1

|E|
||[[c]]E ||

2
L2(E)|θE |

2
H1(Ωi,j)

≤ C(1 + log(Hs/h))
1

|E|
||[[c]]E ||

2
L2(E), (3.18)

where the last inequality follows from Lemma 3.3.5. Using the fact that |θV |
2
H1(Ωi,j)

=

O(1), we have

|(c − Ec)|VθV |
2
H1(Ωi,j)

≤ C|(c − Ec)|V |. (3.19)

We note that (3.19) can be absorbed into (3.18). Combining (3.17), (3.18), and
(3.19), we obtain

|Ec|2H1(Ωi,j)
= |c − Ec|2H1(Ωi,j)

≤ C(1 + log(Hs/h))
1

|E|
||[[c]]E ||

2
L2(E). (3.20)

Combining (3.15), (3.16), and (3.20), we have

||c||2L2(Ωi)

≤ CH2
b (1 + log(Hs/h))

∑

e∈Ei(Ωi)

1

|e|
||[[c]]e||

2
l2(e) + C

1

H2
b

∣∣∣∣
∫

Ωi

Ecdx

∣∣∣∣
2

≤ CH2
b H−1

s (1 + log(Hs/h))
∑

e∈Ei(Ωi)

||[[c]]e||
2
L2(e) + C

1

H2
b

∣∣∣∣
∫

Ωi

Ecdx

∣∣∣∣
2

.(3.21)

The rest of the proof of (3.13) is similar to the proof of [8, Lemma 10.6.7]; let
v satisfy the assumption of the lemma and v̄ be defined by

v̄(x) =
1

|Ωi,j|

∫

Ωi,j

vdx, ∀x ∈ Ωi,j, j = 1, · · · , Ni.
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Then,

||v||2L2(Ωi)

≤ 2||v − v̄||2L2(Ωi)
+ 2||v̄||2L2(Ωi)

≤ 2
∑

j

||v − v̄||2L2(Ωi,j)
+ C

(
H2

b H−1
s (1 + log(Hs/h))

∑

e∈Ei(Ωi)

||[[v̄]]e||
2
L2(e)+

1

H2
b

∣∣∣∣
∫

Ωi

v̄dx

∣∣∣∣
2 )

≤ C
(∑

j

H2
s |v|

2
H1(Ωi,j)

+ H2
b H−1

s (1 + log(Hs/h))
∑

e∈Ei(Ωi)

||[[v]]e||
2
L2(e)+

H2
b H−1

s (1 + log(Hs/h))
∑

e∈Ei(Ωi)

||[[v − v̄]]e||
2
L2(e) +

1

H2
b

∣∣∣∣
∫

Ωi

vdx

∣∣∣∣
2 )

, (3.22)

where the second inequality follows from (3.21). We estimate the second to the
last term:

H2
b H−1

s (1 + log(Hs/h))
∑

e∈Ei(Ωi)

||[[v − v̄]]e||
2
L2(e)

≤ H2
b H−1

s (1 + log(Hs/h))C
∑

j

||v − v̄||2L2(∂Ωi,j)

≤ H2
b H−1

s (1 + log(Hs/h))C
∑

j

(
Hs|v − v̄|2H1(Ωi,j)

+ H−1
s ||v − v̄||2L2(Ωi,j)

)

≤ CH2
b (1 + log(Hs/h))

∑

j

|v − v̄|2H1(Ωi,j)
, (3.23)

where the second inequality follows from a trace theorem and the third a Poincaré
inequality with scaling.

Assuming e is shared by Ωi,j and Ωi,k and V is a vertex of e, we have

H2
b H−1

s (1 + log(Hs/h))||[[v]]e||
2
L2(e)

= H2
b H−1

s (1 + log(Hs/h))||vi,j − vi,k||
2
L2(e)

≤ 2H2
b H−1

s (1 + log(Hs/h))
(
||vi,j − vi,j(V)||2L2(e) + ||vi,k − vi,k(V)||2L2(e)

)

≤ CH2
b H−1

s (1 + log(Hs/h))
(
Hs||vi,j − vi,j(V)||2L∞(Ωi,j)

+ Hs||vi,k − vi,k(V)||2L∞(Ωi,k)

)

≤ CH2
b (1 + log(Hs/h))2

(
|v|2H1(Ωi,j)

+ |v|2H1(Ωi,k)

)
, (3.24)

where the last inequality follows from [43, Lemma 4.15]. Combining (3.22), (3.23),
and (3.24), we obtain (3.13).

38



Similarly, we have

||v||2L2(Ωi)

≤ 2||v − v̄||2L2(Ωi)
+ 2||v̄||2L2(Ωi)

≤ 2
∑

j

||v − v̄||2L2(Ωi,j)
+ C

(
H2

b H−1
s (1 + log(Hs/h))

∑

e∈Ei(Ωi)

||[[v̄]]e||
2
L2(Ωi)

+

∣∣∣∣
∫

∂Ωi∩∂ΩD

v̄ds

∣∣∣∣
2 )

≤ 2
∑

j

||v − v̄||2L2(Ωi,j)
+ C

(
H2

b H−1
s (1 + log(Hs/h))

∑

e∈Ei(Ωi)

||[[v̄]]e||
2
L2(Ωi)

+

∣∣∣∣
∫

∂Ωi∩∂ΩD

vds

∣∣∣∣
2

+

∣∣∣∣
∫

∂Ωi∩∂ΩD

(v − v̄)ds

∣∣∣∣
2 )

. (3.25)

Letting Eb(Ωi) denote the set of exterior subdomain edges of Ωi, we have

∣∣∣∣
∫

∂Ωi∩∂ΩD

(v − v̄)dx

∣∣∣∣
2

≤ |∂Ωi ∩ ∂ΩD|

∫

∂Ωi∩∂ΩD

(v − v̄)2ds

= |∂Ωi ∩ ∂ΩD|
∑

e∈Eb(Ωi)

||v − v̄||2L2(e)

≤ |∂Ωi ∩ ∂ΩD|
∑

j

||v − v̄||2L2(∂Ωi,j)

≤ C|∂Ωi ∩ ∂ΩD|
∑

j

Hs|v|
2
H1(Ωi,j)

≤ CHbHs

∑

j

|v|2H1(Ωi,j)
. (3.26)

Combining (3.25), (3.26), (3.23), and (3.24), we obtain (3.14).

We note that |
∫

Ωi
vdx|2 and |

∫
∂Ωi∩∂ΩD

vds|2 of (3.13) and (3.14), respectively,

can be replaced by
∑L

i=1 |fi(u)|2 (with a proper scaling factor), where fi, i =
1, · · · , L, L ≥ 1 are functionals in H1(Ω), such that, if u is constant in Ω,

L∑

i=1

|fi(u)|2 = 0 ⇔ v = 0;

see Theorem 1.2.1.
We provide a trace theorem for functions in W̃ (i), for Ωi ∈ R2 with Lipschitz

subdomains, Ωi,j, j = 1, · · · , Ni.
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Lemma 3.3.12. Let u ∈ W̃ (i) = W
(i)
I ⊕ W̃

(i)
Γ . Then we have

||u||2L2(∂Ωi)
≤ C

(
Hb(1 + log(Hs/h))2

Ni∑

j=1

|u|2H1(Ωi,j)
+

1

Hb

||u||2L2(Ωi)

)
. (3.27)

Proof. We follow the framework of the proof of Lemma 3.3.11. Let c be piecewise
constant in each subdomain of Ωi, i.e., c(x) = ci,j,∀x ∈ Ωi,j, j = 1, · · · , Ni. We
define the function Ec as before, i.e., Ec is defined to be the average of c on
Γ

(i)
loc, Ec|∂Ωi

= c|∂Ωi
, and discrete harmonic in each subdomain of Ωi. Then,

||c||2L2(∂Ωi)

= ||Ec||2L2(∂Ωi)

≤ C

(
Hb|Ec|2H1(Ωi)

+
1

Hb

||Ec||2L2(Ωi)

)

≤ C

(
Hb

∑

j

|Ec|2H1(Ωi,j)
+

1

Hb

||c||2L2(Ωi)
+

1

Hb

||c − Ec||2L2(Ωi)

)

≤ C
(
Hb

∑

j

|Ec|2H1(Ωi,j)
+

1

Hb

||c||2L2(Ωi)
+

1

Hb

H2
s

∑

j

|c − Ec|2H1(Ωi,j)
+

1

Hb

Hs

∑

e∈Ei(Ωi)

||[[c]]e||
2
L2(e)

)

≤ C


HbH

−1
s (1 + log(Hs/h))

∑

e∈Ei(Ωi)

||[[c]]e||
2
L2(e) +

1

Hb

||c||2L2(Ωi)


 , (3.28)

where the second, fourth, and fifth inequalities follow from a trace theorem with
scaling, (3.16), and (3.20), respectively. Now let v satisfy the assumption of the
lemma and v̄ be a piecewise constant function which is the average of v in each
subdomain of Ωi. Then,

||v||2L2(∂Ωi)

≤ 2||v − v̄||2L2(∂Ωi)
+ 2||v̄||2L2(∂Ωi)

≤ C
(
HbH

−1
s (1 + log(Hs/h))

∑

e∈Ei(Ωi)

||[[v̄]]e||
2
L2(e) +

1

Hb

||v||2L2(Ωi)
+

||v − v̄||2L2(∂Ωi)

)
. (3.29)

Using a trace theorem with scaling at the subdomain level, we obtain

||v − v̄||2L2(∂Ωi)
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≤
∑

j

||v − v̄||2L2(∂Ωi,j)

≤ C
∑

j

(
Hs|v − v̄|2H1(Ωi,j)

+
1

Hs

||v − v̄||2L2(Ωi,j)

)

≤ C
∑

j

Hs|v|
2
H1(Ωi,j)

. (3.30)

Bounding
∑

e∈Ei(Ωi)
||[[v̄]]e||

2
L2(e) as in (3.23) and (3.24), we have

||v||2L2(∂Ωi)

≤ C

(
Hb(1 + log(Hs/h))2

∑

j

|v|2H1(Ωi,j)
+

1

Hb

||v||2L2(Ωi)

)
. (3.31)

Before we complete this section, we comment on the analysis of linear elasticity
problems in two and three dimensions. Korn inequality is essential in any such
analysis and here we present a version for Jones (i.e., uniform) domains. For a
proof, see Durán and Muschietti [19].

Lemma 3.3.13 (Korn inequality for uniform domains). Let Ω ⊂ Rn be a bounded
uniform domain. Then, there exists C, which depends only on the Jones parameter
CU(Ω) and the dimension n, such that

|u|H1(Ω) ≤ C
∑

i,j

||ǫ(u)ij||
2
L2(Ω)

for all u ∈ {u ∈ H1(Ω) :
∫

Ω
( ∂ui

∂xj
− ∂uj

∂xi
)dx = 0, i, j = 1, · · · , n}.

We would also need to consider different primal constraints on each body, es-
pecially for the case of three-dimensional problem; see [36] for details.

Using this Korn inequality, the analysis for a two-dimensional linear elasticity
problem with Jones domains can be carried out without much difficulty. However,
we do not have enough technical tools for the three-dimensional case at this point.
For instance, face and edge lemmas similar to those of Lemma 3.3.5 would be
essential; for such results for regular subdomains, see [43, Section 4.6]

3.4 Algorithm

In the formulation of the FETI-FETI method in two dimensions, we will use
the spaces W̃c :=

∏N
i=1 W̃ (i) :=

∏N
i=1 W

(i)
I ⊕ W̃

(i)
Γ and W̃Γ,c :=

∏N
i=1 W̃

(i)
Γ . See

Figure 3.1(a).
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Figure 3.1: W̃c for FETI-FETI, Ŵc for Hybrid
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First, we introduce some notation which is very similar to those of the previous
chapters. We introduce the matrices A(i), which are direct sums of the stiffness
matrices A(i,j), j = 1, · · · , Ni, for individual subdomains:

A(i) =




A(i,1)

. . .

A(i,Ni)


 , i = 1, · · · , N. (3.32)

We also introduce the matrices Ã(i), which are analogous to the matrix Ã intro-
duced in (2.17). They are the restrictions of A(i) to W̃ (i) = W

(i)
I ⊕ W̃

(i)
Γ :

Ã(i) =




A
(i,1)
II A

(i,1)T

∆I Ã
(i,1)T

ΠI

A
(i,1)
∆I A

(i,1)
∆∆ Ã

(i,1)T

Π∆
. . .

...

A
(i,Ni)
II A

(i,Ni)
T

∆I Ã
(i,Ni)

T

ΠI

A
(i,Ni)
∆I A

(i,Ni)
∆∆ Ã

(i,Ni)
T

Π∆

Ã
(i,1)
ΠI Ã

(i,1)
Π∆ · · · Ã

(i,Ni)
ΠI Ã

(i,Ni)
Π∆ Ã

(i)
ΠΠ




.

Here,

Ã
(i,j)
ΠI = R

(i,j)T

Π A
(i,j)
ΠI , Ã

(i,j)
Π∆ = R

(i,j)T

Π A
(i,j)
Π∆ , i = 1, · · · , Ni,

and

Ã
(i)
ΠΠ =

Ni∑

j=1

R
(i,j)T

Π A
(i,j)
ΠΠ R

(i,j)
Π ,

where R
(i,j)
Π : Ŵ

(i)
Π −→ W

(i,j)
Π , j = 1, · · · , Ni.

A Schur complement S̃
(i)
Γ on W̃

(i)
Γ is obtained by eliminating the interior unknowns

in each subdomain from Ã(i); see (2.20). Note that S̃
(i)
Γ can also be regarded as

the restriction of S(i) to W̃
(i)
Γ , i.e.,

S̃
(i)
Γ = R̃

(i)T

Γ S(i)R̃
(i)
Γ ,

where

S(i) =




S(i,1)

. . .

S(i,Ni)


 , S(i,j) = A

(i,j)
ΓΓ −A

(i,j)T

ΓI A
(i,j)−1

II A
(i,j)T

ΓI , j = 1, · · · , Ni,

and R̃
(i)
Γ : W̃

(i)
Γ → W

(i)
Γ , defined similarly as R̃Γ of Section 2.3.

Recalling that we are using an active set method to deal with the inequality
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conditions, we formulate the minimization problem on the current active set:

min
u∈fWc

1

2
uT Ãcu − f̃T

c u, with ZkB̃cu = 0, (3.33)

where

Ãc =




Ã(1)

. . .

Ã(N)


 , u =




u(1)

...
u(N)


 , f̃c =




f̃ (1)

...

f̃ (N)


 ,

u(i) ∈ W̃ (i) = W
(i)
I ⊕ W̃

(i)
Γ , i = 1, · · · , N,

and

B̃c =

[
Bloc

Bgl

]
=




B
(1)
loc · · · 0

0
. . . 0

0 · · · B
(N)
loc

B
(1)
gl · · · B

(N)
gl


 ,

B
(i)
loc =

[
B

(i,1)
loc · · ·B(i,Ni)

loc

]
, i = 1, · · · , N,

Zk =

[
I 0
0 Zk

gl

]
.

ZkB̃cu = 0 in (3.33) indicates the continuity constraint across the local sub-

domain interface Γ
(i)
loc, i = 1, · · · , N , as well as the continuity constraint across the

global area of contact Γk
gl. Zk

gl is a square matrix obtained by replacing some of the
diagonal entries of the identity matrix with zeros; only the entries corresponding
to the nodes at which an equality is imposed are retained. We use the superscript
k to remind us that Zk

gl and Zk change in each iteration of the active set method.

We have B
(i)
locu

(i) = 0, u(i) ∈ W̃ (i) = W
(i)
I ⊕ W̃

(i)
Γ , exactly when the values associ-

ated with more than one subdomain on the body Ωi coincide. Note that B
(i)
loc has

nonzero columns only for the components of W
(i)
∆ .

We also introduce a scaled jump operator, B̃D,c:

B̃D,c =

[
Bloc,D

Bgl,D

]
=




B
(1)
loc,D · · · 0

0
. . . 0

0 · · · B
(N)
loc,D

B
(1)
gl,D · · · B

(N)
gl,D
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and
B

(i)
loc,D =

[
B

(i,1)
loc,D · · ·B(i,Ni)

loc,D

]
, i = 1, · · · , N.

B
(i)
loc,D and B

(i)
gl,D are obtained in the same manner as BD,Γ of the one-level FETI

method (see Section 2.5). The nonzero entry of B
(i,j)
loc associated with the La-

grange multipliers for the continuity at the node x ∈ ∂Ωi,j ∩ Ωi,k is multiplied by

δ†i,k(x) = ργ
i,k(x)/

∑
s∈N

(i)
x,loc

ργ
i,s(x), where N (i)

x,loc is the set of indices of the subdo-

mains of Ωi with x on their boundary. The nonzero entry of B
(i)
gl associated with

the Lagrange multiplier for the continuity at the node x ∈ ∂Ωi ∩ ∂Ωj is multiplied

by δ†j(x) =
∑

s∈N
(j)
x,loc

ργ
j,s(x)/

∑
k∈Nx,gl,t∈N

(k)
x,loc

ργ
k,t(x), where Nx,gl is the set of indices

of the subdomains of any body which share the node x on their boundary.
Eliminating the interior unknowns in all subdomains of each body, we obtain

the following reduced minimization problem,

min
uΓ∈fWΓ,c

1

2
uT

Γ S̃cuΓ − g̃T
c uΓ, with Zk

ΓB̃Γ,cuΓ = 0, (3.34)

where

S̃c =




S̃
(1)
Γ

. . .

S̃
(N)
Γ


 , uΓ =




u
(1)
Γ
...

u
(N)
Γ


 , u

(i)
Γ ∈ W̃

(i)
Γ , i = 1, · · · , N.

Zk
Γ is obtained by removing some of the rows and columns of Zk. This minimization

problem is equivalent to the following KKT system:

[
S̃c (Zk

ΓBΓ,c)
T

Zk
ΓB̃Γ,c 0

] [
uΓ

λ

]
=

[
g̃c

0

]
. (3.35)

It is natural to reduce this system to an equation for λ as in the one-level FETI
method and solve it with the PCG method in a proper subspace, using the following
preconditioner:

M−1
D := Zk

ΓB̃D,ΓcS̃B̃T
D,Γc

Zk
Γ.

The resulting method, which we name the FETI-FETI method, turns out not
to be scalable with respect to the number of subdomains. We present a partial
explanation for this phenomenon, following the framework of [43, Section 6.3].

Let PD := BT
D,ΓBΓ, where BΓ and BD,Γ are the jump operator and the scaled

jump operator for the one-level FETI method, respectively, defined in Section 2.3.
At the core of the eigenvalue analysis for the one-level FETI method is the following
result:
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Lemma 3.4.1. For any w ∈ range(S), we have

|PDw|2S ≤ C(1 + log(H/h))2|w|2S,

where C is independent of H, h.

For a proof, see [43, Section 6.2.3]. This lemma is used for bounding λmax(M−1
D F )

from above. It is easy to show that λmin(M−1
D F ) ≥ 1, and therefore that the condi-

tion number of the preconditioned operator for the one-level FETI method grows
like C(1 + log(H/h))2. In order to prove the existence of a convergence bound of

the FETI-FETI method with a similar technique, we would need to bound |P̃ k
Dw|eSc

from above by |w|eSc
, for w ∈ range(S̃c). Here, P̃ k

D := B̃T
D,Γc

Zk
ΓB̃Γc . We do this in

the next section.

3.5 Condition Number Estimates

3.5.1 Convergence bound for the FETI-FETI method

In this section, we assume that our two-dimensional subdomains have Lipschitz
boundaries. Recall that P̃ k

D := B̃T
D,Γc

Zk
ΓB̃Γ,c, and thus the operator P̃ k

D changes in
each step of the active set method; see Section 3.2 and Section 3.4. We prove

Lemma 3.5.1. For any w ∈ range(S̃c), we have

|P̃ k
Dw|2eSc

≤ C
Hb

Hs

(1 + log(Hs/h))2|w|2eSc
,

where C > 0 is a constant independent of Hb, Hs, h.

We first make some observations. We obtain the following formulae by modi-
fying [43, (6.42)]:

(P̃ k
Dw(x))i,j =

∑

s∈N
(i)
x,loc

δ†i,s(x)(wi,j(x) − wi,s(x)), if x ∈ ∂Ωi,j ∩ Γ
(i)
loc, (3.36)

(P̃ k
Dw(x))i =

∑

k∈Nx,gl

δ†k(x)(wi(x) − wk(x)), if x ∈ ∂Ωi ∩ Γk
gl. (3.37)

Also, recalling that P̃ k
D := B̃T

D,Γc
Zk

ΓB̃Γc ,

(P̃ k
Dw(x))i = 0, if x ∈ ∂Ωi ∩ Γgl \ Γk

gl. (3.38)

The above equality is due to the fact that the nodes which do not belong to the
current active set Γk

gl are deactivated. In (3.37) and (3.38), we do not specify
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subdomain indices since we are considering nodes belonging to only one subdo-
main. However, in the following discussion, we sometimes do specify the relevant
subdomain indices when necessary.

We follow the proof of [43, Lemma 6.3] very closely. However, one of the main
differences between the proof there and the proof we present here is that we mainly
work with H1- seminorms instead of H1/2- seminorms. Also, we do not have a
Poincaré-type inequality such as [43, Lemma 6.2] for individual subdomains, since
in our algorithm subdomains of the same body are connected by certain continuity
constraints; instead, we use a Poincaré-type inequality (Lemma 3.3.11) for entire
bodies.

Proof. Recalling that

|P̃ k
Dw|2eSc

=
N∑

i=1

|(P̃ k
Dw)i|

2
eS
(i)
Γ

, |w|2eSc
=

N∑

i=1

|wi|
2
eS
(i)
Γ

,

it suffices to show that

|(P̃ k
Dw)i|

2
eS
(i)
Γ

≤ C
Hb

Hs

(1 + log(Hs/h))2|wi|
2
eS
(i)
Γ

, i = 1, 2, · · · , N.

Furthermore,

|(P̃ k
Dw)i|

2
eS
(i)
Γ

=

Ni∑

j=1

|(P̃ k
Dw)i,j|

2
Si,j ,

where (P̃ k
Dw)i,j is the restriction of (P̃ k

Dw)i ∈ W̃
(i)
Γ to W

(i,j)
Γ . Thus it suffices to

examine each |(P̃ k
Dw)i,j|S(i,j) separately. For notational simplicity, let vi,j(x) :=

(P̃ k
Dw)i,j. We can see that the coefficients in (3.36) and (3.37) are constant on

each individual edge while their values will differ between different edges. Also,
(P̃ k

Dw(x))i,j = 0 for a vertex node x ∈ Γ
(i)
loc, since we are imposing continuity at

all vertices of the same body. Therefore it makes sense to write vi,j as a sum of
functions each of which vanishes at all interface nodes outside a certain edge or
a vertex. We can accomplish this by using characteristic finite element functions
for individual edges and vertices; such characteristic functions for an edge and a
vertex, θE and θV , have already been introduced in Lemma 3.3.5 and Lemma 3.3.11,
respectively. Construction of these finite element functions and the proof of their
characteristics for three-dimensional problems can be found in [43, Chapter 4].
Construction of θE and θV for two-dimensional problems is analogous and here we
just present their characteristics without any proofs.
Two-dimensional Case
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Using the partition of unity,

vi,j =
∑

E⊂∂Ωi,j∩Γk
gl

Ih(θEvi,j) +
∑

E⊂∂Ωi,j∩Γ
(i)
loc

Ih(θEvi,j) +
∑

V⊂∂Ωi,j∩Γk
gl

Ih(θVvi,j).

We first consider the terms for the edges on the global boundary Γgl.
Edge Terms - Global Interface

Suppose E is shared by ∂Ωi,j and ∂Ωk,l, where i 6= k. Then,

Ih(θEvi,j) = Ih(θEδ
†
k(E)(wi,j − wk,l)),

where δ†k(E) is the constant value of δ†k(x) on the edge E .

|Ih(θEvi,j)|
2
S(i,j) = ρi,j|H(θEvi,j)|

2
H1(Ωi,j)

. (3.39)

We then have,

ρi,j|H(θEvi,j)|
2
H1(Ωi,j)

= ρi,j|H(θE(δ†k(E)(wi,j − wk,l)))|
2
H1(Ωi,j)

≤ 2ρi,jδ
†
k(E)2(|H(θE(wi,j))|

2
H1(Ωi,j)

+ |H(θE(wk,l))|
2
H1(Ωi,j)

)

≤ 2min(ρi,j, ρk,l)(|H(θE(wi,j))|
2
H1(Ωi,j)

+ |H(θE(wk,l))|
2
H1(Ωi,j)

).

Here, the second inequality follows from [36, Lemma 8.4]. We treat the first term
using Lemma 3.3.5:

2min(ρi,j, ρk,l)|H(θE(wi,j))|
2
H1(Ωi,j)

≤ 2ρi,j(1 + log(Hs/h))2||H(wi,j)||
2
H1(Ωi,j)

For the second term, we also need the extension lemma:

2min(ρi,j, ρk,l)|H(θE(wk,l))|
2
H1(Ωi,j)

≤ 2Cρk,l|E
h
kl,ij(H(θE(wk,l)))|

2
H1(Ωi,j)

≤ 2Cρk,l||H(θE(wk,l))||
2
H1(Ωk,l)

≤ 2Cρk,l(1 + log(Hs/h))2||H(wk,l)||
2
H1(Ωk,l)

.

We sum (3.39) over j, k and l, which indicate the indices of all subdomains of
Ωi intersecting the global boundary Γgl, the indices of all bodies sharing their
boundaries with Ωi and the collection of the indices of all their subdomains sitting
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on their boundaries, respectively:

∑
j
|Ih(θEv)|2S(i,j)

≤ C(1 + log(Hs/h))2
(∑

j
ρi,j||H(wi,j)||

2
H1(Ωi,j)

+
∑

k,l
ρk,l||H(wk,l)||

2
H1(Ωk,l)

)

= C(1 + log(Hs/h))2
(∑

j
ρi,j|H(wi,j)|

2
H1(Ωi,j)

+
∑

k,l
ρk,l|H(wk,l)|

2
H1(Ωk,l)

)

+ C(1 + log(Hs/h))2H−2
s

(∑
j
ρi,j||H(wi,j)||

2
L2(Ωi,j)

+
∑

k,l
ρk,l||H(wk,l)||

2
L2(Ωk,l)

)
. (3.40)

We control the L2- terms of (3.40) using a similar argument as in [43, Lemma 3.10].
Using a Friedrichs inequality for each subdomain of Ωi which intersects the global
boundary, we get

ρi,j||H(wi,j)||
2
L2(Ωi,j)

≤ C
(
H2

s ρi,j|H(wi,j)|
2
H1(Ωi,j)

+ Hsρi,j||wi,j||
2
L2(∂Ωi,j∩∂Ωi)

)
.

(3.41)
Summing over the boundary of Ωi, we get

∑
j
ρi,j||H(wi,j)||

2
L2(Ωi,j)

≤ C
(
H2

s

∑
j
ρi,j|H(wi,j)|

2
H1(Ωi,j)

+ Hsρi||H(wi)||
2
L2(∂Ωi)

)

≤ C
(
H2

s

∑
j
ρi,j|H(wi,j)|

2
H1(Ωi,j)

+ HbHs(1 + log(Hs/h))2ρi

Ni∑

s=1

|H(wi,s)|
2
H1(Ωi,s)

+

Hs

Hb

ρi

Ni∑

s=1

||H(wi,s)||
2
L2(Ωi,s)

)

≤ CHbHs(1 + log(Hs/h))2ρi

∑
j
|H(wi,j)|

2
H1(Ωi,j)

+

C
Hs

Hb

ρi · H
2
b (1 + log(Hs/h))2

∑
j
|H(wi,j)|

2
H1(Ωi,j)

≤ CHbHs(1 + log(Hs/h))2ρi

∑
j
|H(wi,j)|

2
H1(Ωi,j)

.

where the second inequality follows from Lemma 3.3.12 and the third from Lemma
3.3.11. We also note that we repeatedly use the fact that the PDE coefficients vary
only moderately within the same body, i.e., (3.2).
Edge Terms - Local Interface

Suppose E is shared by ∂Ωi,j and ∂Ωi,s. Then,

Ih(θEvi,j) = Ih(θEδ
†
i,s(E)(wi,j − wi,s)),

where δ†i,s(E) is the constant value of δ†i,s(x) on the edge E .
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With w̄i,j :=
∫
Ωi,j

wi,jdx/
∫

Ωi,j
1dx and w̄i,s :=

∫
Ωi,s

wi,sdx/
∫
Ωi,s

1dx, we have

|Ih(θEvi,j)|
2
S(i,j)

= ρi,j|H(θEvi,j)|
2
H1(Ωi,j)

= ρi,j|H(θEδ
†
i,s(E)(wi,j − wi,s))|

2
H1(Ωi,j)

= ρi,j|H(θEδ
†
i,s(E)((wi,j − w̄i,j) − (wi,s − w̄i,s) + (w̄i,j − w̄i,s)))|

2
H1(Ωi,j)

≤ 3ρi,j|H(θEδ
†
i,s(E)(wi,j − w̄i,j)|

2
H1(Ωi,j)

+ 3ρi,j|H(θEδ
†
i,s(E)(wi,s − w̄i,s)|

2
H1(Ωi,j)

+ 3ρi,j|θEδ
†
i,s(E)(w̄i,j − w̄i,s)|

2
H1(Ωi,j)

(3.42)

We can estimate the first term using Lemma 3.3.5, a Poincaré inequality and [36,
Lemma 8.4]:

ρi,j|H(θEδ
†
i,s(E)(wi,j − w̄i,j)|

2
H1(Ωi,j)

≤ Cρi,jδ
†
i,s(E)2(1 + log(Hs/h))2||H(wi,j) − w̄i,j||

2
H1(Ωi,j)

≤ Cρi,j(1 + log(Hs/h))2|H(wi,j)|
2
H1(Ωi,j)

. (3.43)

For the second term, we need to use Lemma 3.3.2 in addition to the other lemmas:

ρi,j|H(θEδ
†
i,s(E)(wi,s − w̄i,s)|

2
H1(Ωi,j)

≤ ρi,sδ
†
i,s(E)2|Eh

is,ij(H(θE(wi,s − w̄i,s))|
2
H1(Ωi,j)

≤ Cρi,sδ
†
i,s(E)2||H(θE(wi,s − w̄i,s)||

2
H1(Ωi,s)

≤ Cρi,s(1 + log(H/h))2|H(wi,s)|
2
H1(Ωi,s)

. (3.44)

For the last term,

|θE(w̄i,j − w̄i,s)|
2
H1(Ωi,j)

= |θE |
2
H1(Ωi,j)

|(w̄i,j − w̄i,s)|
2.

The energy of θE can be estimated using Lemma 3.3.5. Adding and subtracting
the common value wi,j(V) = wi,s(V), where V is an end point of the edge E , we
find that

|(w̄i,j − w̄i,s)|
2 ≤ 2|(w̄i,j − wi,j(V))|2 + 2|(w̄i,j − wi,s(V))|2.

We can estimate the first term on the right hand side using Lemma 3.3.3:

|(w̄i,j − wi,j(V))|2 ≤ ||wi,j − w̄i,j||
2
L2(Ωi,j)

+ C(1 + log(Hs/h))|wi,j|
2
H1(Ωi,j)

.

The second term can be estimated in the same manner.
Vertex Terms
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We note that

|θVvi,j(V)|2S(i,j) = ρi,j|H(θVvi,j(V))|2H1(Ωi,j)
= ρi,j|θVvi,j(V)|2H1(Ωi,j)

, (3.45)

where the second equality follows from the fact that vi,j(V) is a constant and θV
is a discrete harmonic function. Denoting an auxiliary function which vanishes at
every node in Ω̄i,j,h except at V where it assumes the value 1 by ϑV , we have

ρi,j|θVvi,j(V)|2H1(Ωi,j)

= ρi,j|vi,j(V)|2|θV |
2
H1(Ωi,j)

≤ ρi,j|vi,j(V)|2|ϑV |
2
H1(Ωi,j)

≤ Cρi,j|vi,j(V)|2, (3.46)

where the first inequality follows from the minimality of the energy of the discrete
harmonic functions and the second inequality from the fact that a nodal basis
function in two dimensions has O(1) energy. Using the formula (3.37) and Lemma
3.3.3,

ρi,j|vi,j(V)|2

= ρi,j

∣∣∣∣∣∣
wi(V) −

∑

k∈NV,gl\{i}

δ†k(V)wk(V)

∣∣∣∣∣∣

2

≤ ρi,j|NV,gl|


|wi(V)|2 +

∑

k∈NV,gl\{i}

δ†k(V)2|wk(V)|2




≤ ρi,j|NV,gl|


||H(wi,j)||

2
L∞(Ωi,j)

+
∑

k∈NV,gl\{i}

δ†k(V)2||H(wk,l)||
2
L∞(Ωk,l)




≤ Cρi,j|NV,gl|(1 + log(Hs/h))2

(
||H(wi,j)||

2
H1(Ωi,j)

+

∑

k∈NV,gl\{i}

δ†k(V)2||H(wk,l)||
2
H1(Ωk,l)

)
. (3.47)

And we proceed as usual.

We now present a condition number estimate for the FETI-FETI method. We
denote the subspace of Lagrange multipliers in which the preconditioned conjugate
gradient method is performed by V k:

V k := {λ ∈ range(Zk
ΓB̃Γc : Zk

ΓB̃Γcλ ∈ range(S̃c)}.

Recall that M−1
D := Zk

ΓB̃D,ΓcS̃cB̃
T
D,Γc

Zk
Γ. Also, let F := Zk

ΓB̃ΓcS̃
†
cB̃

T
Γc

Zk
Γ. Then we
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have the following result:

Theorem 3.5.2. For any λ ∈ V k, we have

〈MDλ, λ〉 ≤ 〈Fλ, λ〉 ≤ C
Hb

Hs

(1 + log(Hs/h))2〈MDλ, λ〉,

where C > 0 is a constant independent of Hb, Hs, h.

In Section 4.4, we will present numerical results which imply that the the
algebraic factor Hb/Hs in Theorem 3.5.2 cannot be removed.
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Chapter 4

Hybrid method

In this chapter, we consider the hybrid method, which is a scalable alternative
to the FETI-FETI method of Chapter 3. The hybrid method relies on the use of
an inexact solver; before we start the description of the algorithm, we review other
algorithms which use an inexact solver.

4.1 Some Algorithms Using Inexact Solvers

In FETI methods, we use a subdomain structure for which the continuity of
the solution across the subdomain boundaries is achieved only at the convergence
of the solution; see Figure 2.1. Thus the continuity condition needs to be enforced
explicitly, which results in an energy minimization problem with an equality con-
straint, which is equivalent to a KKT system with displacement unknowns as
primal variables and Lagrange multipliers as dual variables. This KKT system is
reduced to an equation in Lagrange multipliers alone, and this reduction process
amounts to solving a Neumann problem exactly on each subdomain. As this prob-
lem is solved by a CG method, an additional Dirichlet problem is solved exactly
on each subdomain in the preconditioning step, which makes the convergence rate
less sensitive to the number of unknowns in each subdomain.

The use of inexact Dirichlet solvers is possible without a radical change to the
algorithm. However, the use of exact Neumann solvers is inherent to the struc-
ture of the KKT system and the use of inexact Neumann solvers would lead to a
different problem to be solved. We can choose to keep the original KKT system
the way it is and solve it with a suitable Krylov subspace method, for instance the
preconditioned conjugate residual (PCR) method, with an efficient preconditioner.

The aforementioned approach was taken and successfully analyzed for the one-
level FETI method by Klawonn and Widlund in [34]. In it, they solve a KKT
system using the PCR method. They extended the convergence analysis of Man-
del and Tezaur [40] for scalar, second-order elliptic equations to the system of
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equations of linear elasticity, using the Korn’s inequalities. Also, they analyzed
the convergence rate of the PCR method using some of the results of Brezzi [9].

In FETI-DP methods, the continuity coupling between subdomains (primal
constraints) results in a nonsingular system matrix and also provides a coarse
solver which guarantees the scalability of the algorithm with respect to the num-
ber of subdomains. The coarse problem is solved exactly with a direct solver.
However, the size of the coarse problem is usually proportional to the number of
subdomains and can be very large when the number of subdomains is large, or the
PDE coefficients are badly distributed and a large number of primal constraints is
needed. In such a case solving the coarse problem can be quite costly. The BDDC
method is very closely related to the FETI-DP method, and suffers from the same
disadvantage when the size of the coarse problem is large.

This issue has been addressed by Xuemin Tu for the BDDC method in [45] for
two dimensions and in [44] for three dimensions, and by Klawonn and Rheinbach
in [30] for the FETI-DP method. In [45], Tu solves the coarse problem inexactly
by grouping subdomains into subregions , i.e., introducing a higher level of hierar-
chy. The same strategy would not work for the FETI-DP method since the coarse
problem is inherent to the formulation of the FETI-DP method, whereas in the
BDDC method the coarse problem is solved in the preconditioning step. Therefore
Klawonn and Rheinbach take a similar approach as in [34] and consider several
different KKT systems, which allow the use of inexact solvers, using the subdo-
main structure of the FETI-DP method.

4.2 Algorithm and the Finite Element Space

We use the notation introduced in Chapter 3. We use finite element functions
in the space ŴΓ,c :=

∏N
i=1 Ŵ

(i)
Γ ; see Figure 3.1(b). W

(i)
ΓOL

denotes a finite element

space on ∂Ωi ∩ Γgl. Here, OL stands for One-Level; this is because we will use
one-level FETI type preconditioners, which is obtained by regarding each body as
a single subdomain. See Figure 4.1.

We introduce the Schur complement Ŝ
(i)
Γ on Ŵ

(i)
Γ , which can be obtained by

restricting S(i) to Ŵ
(i)
Γ :

Ŝ
(i)
Γ = R̂

(i)T

Γ S(i)R̂
(i)
Γ , i = 1, · · · , N,
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Figure 4.1: Subdomain structure of the hybrid and the one-Level FETI methods.
In (a), the domain consists of 4 bodies (Ωi, i = 1, 2, 3, 4), each of which is divided
into 4 subdomains (Ωi,j, j = 1, 2, 3, 4). In (b), the domain consists of 4 bodies, each
of which is a single subdomain. Small and hollow dots in both (a) and (b) indicate
interior nodes at which unknowns are eliminated; medium dots in (a) indicate
nodes on the local interface between subdomains of the same body; big and solid
dots in both (a) and (b) indicate the nodes on the global interface between the
bodies. In both (a) and (b), arrows indicate Lagrange multipliers. Dotted lines
indicate the Dirichlet boundary of the Poisson problem.

λ

 h
HS

Hb

(a) Hybrid

λ

h
H H = b

(b) One-Level FETI
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where R̂
(i)
Γ : Ŵ

(i)
Γ −→ W

(i)
Γ , the direct sum of the restrictions R̂

(i,j)
Γ : Ŵ

(i)
Γ −→

W
(i,j)
Γ , j = 1, · · · , Ni. We also introduce restriction operators R̄

(i)
Γ : Ŵ

(i)
Γ −→ W̃

(i)
Γ ,

R̄
(i)
Γ =




R
(i,1)
Γ∆
...

R
(i,Ni)
Γ∆

R
(i)
ΓΠ


 ,

where R
(i,j)
Γ∆ extracts from a vector in Ŵ

(i)
Γ the part that belongs to W

(i,j)
∆ and

R
(i)
ΓΠ : Ŵ

(i)
Γ −→ Ŵ

(i)
Π is defined similarly. We also define the scaled versions R̄

(i)
D,Γ:

R̄
(i)
D,Γ =




R
(i,1)
D,Γ∆
...

R
(i,Ni)
D,Γ∆

R
(i)
ΠΓ




.

Here, R
(i,j)
D,Γ∆ is obtained as follows: a nonzero entry of R

(i,j)
Γ∆ , which corresponds to

a node x ∈ ∂Ωi,j,h \ ∂Ωi,h, is multiplied by δ†i,j(x), where

δ†i,j(x) :=
ργ

i,j(x)∑
k∈N

(i)
x,loc

ργ
i,k(x)

.

The restriction of the minimization problem (3.34) in W̃Γ,c to the subspace ŴΓ,c is
as follows:

min
uΓ∈cWΓ,c

1

2
uT

Γ ŜcuΓ − ĝT
c uΓ, with Ẑk

ΓB̂Γ,cuΓ = 0, (4.1)

where

Ŝc =




Ŝ
(1)
Γ

. . .

Ŝ
(N)
Γ


 ,

and Ẑk
Γ is obtained by removing irrelevant rows and columns from Zk

Γ of (3.34).

We remind the reader that we use the superscript k to indicate that Zk
Γ and Ẑk

Γ

change in each iteration of the active set method. Note that since the problem
has been formulated in ŴΓ,c, we do not need to impose continuity across the local

subdomain interface, Γ
(i)
loc; continuity is already built into the structure. Therefore

B̂Γ,c has nonzero entries only in the columns which correspond to a node on the
global area of contact, Γgl.
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In addition to B̂Γ,c we define BΓOL
, which acts on vectors in the space∏N

i=1 W
(i)
ΓOL

. This operator is needed in the preconditioner for the hybrid method.

Recall that B̂Γ,c acts on vectors in the space
∏N

i=1 Ŵ
(i)
Γ and only has rows corre-

sponding to the Lagrange multipliers enforcing the continuity between different
bodies, i.e., continuity across Γgl. Thus BΓOL

and B̂Γ,c differ only in that B̂Γ,c has
a number of zero columns which correspond to the nodes on Γloc,h. We note that
BΓOL

can be regarded as the jump operator for the one-level FETI method viewing
each body as a subdomain. We can define the scaled jump operator BΓOL,D in the
usual way.

Introducing a vector of Lagrange multipliers λ, we arrive at the following saddle
point problem:

Find (uΓ, λ) ∈ ŴΓ,c × range(Ẑk
ΓB̂Γ,c), such that

[
Ŝc (Ẑk

ΓB̂Γ,c)
T

Ẑk
ΓB̂Γ,c 0

] [
uΓ

λ

]
=

[
ĝc

0

]
. (4.2)

We can solve (4.2) by reducing the system to an equation in λ alone in a

proper subspace, but solving an equation of the form Ŝcx = b is expensive. In-
stead, we keep the saddle point problem (4.2) the way it is and solve it by a
Krylov subspace method which can deal with indefinite systems, such as the pre-
conditioned conjugate residual (PCR) method. Due to the singularity of the ma-

trix Ŝc, the solution of the upper part of the system (4.2) exists if and only if

ĝc− (Ẑk
ΓB̂Γ,c)

T λ ∈ range(Ŝc). Most of the discussion here concerning this issue will
be very similar to that of Section 2.5 on the one-level FETI method. As in the
one-level FETI method, we introduce a matrix Rc such that range(Rc) = ker(Ŝc):

Rc =




R̂(1)

. . .

R̂(N)


 ,

where R̂(i) consists of the null vectors of Ŝ
(i)
Γ , i = 1, · · · , N . In the PCR iter-

ations, we will use an initial vector of Lagrange multipliers λ0 which satisfies
ĝc − (Ẑk

ΓB̂Γ,c)
T λ0 ∈ range(Ŝc), and increments µi with Ẑk

ΓB̂T
Γ,cµi ∈ range(Ŝc), i =

1, 2, · · · . Therefore the space of admissible increments is defined as follows:

V k := {µ ∈ range(Ẑk
ΓB̂Γ,c) : (Ẑk

ΓB̂Γ,c)
T µ ∈ range(Ŝc)} = ker(GkT

),

where Gk := Ẑk
ΓB̂Γ,cRc.

We introduce a projection operator P k for the Lagrange mulipliers which is an
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orthogonal projection from range(Ẑk
ΓB̂Γ,c) to V k = ker(GkT

):

P k := I − Gk(GkT

Gk)−1GkT

.

We also introduce a subspace of ŴΓ,c, ŴΓ,R := range(Ŝc). We rewrite (4.2) in terms

of vectors in the subspace ŴΓ,R × V k. First, noting that any admissible λ can be
written as λ = λ0 + µ, µ ∈ V k, we rewrite the leading equation of (4.2) as

ŜcuΓ + (Ẑk
ΓB̂Γ,c)

T µ = ĝc − (Ẑk
ΓB̂Γ,c)

T λ0. (4.3)

Using (4.3) and P kT
µ = P kµ = µ, we can rewrite (4.2):

[
Ŝc (P kẐk

ΓB̂Γ,c)
T

Ẑk
ΓB̂Γ,c 0

] [
uΓ

µ

]
=

[
ĝc − (Ẑk

ΓB̂Γ,c)
T λ0

0

]
. (4.4)

The solution of (4.4) satisfies

[
Ŝc (P kẐk

ΓB̂Γ,c)
T

P kẐk
ΓB̂Γ,c 0

] [
uΓ

µ

]
=

[
ĝc − (Ẑk

ΓB̂Γ,c)
T λ0

0

]
. (4.5)

We use the system (4.5) in order to make sure that our iterates are in the sub-

space ŴΓ,R × V k. However, the displacement variable is not uniquely defined

by the system (4.5) since we are enforcing P kẐk
ΓB̂Γ,cuΓ = 0, but not the orig-

inal no-jump condition Ẑk
ΓB̂Γ,cuΓ = 0; in this case, we can obtain a solution

uΓ − Rc(G
kT

Gk)−1GkT
Ẑk

ΓB̂Γ,cuΓ which satisfies all necessary requirements, with
any given solution uΓ of (4.5).

We now discuss our choice of the preconditioner. Let A
(i)
OL denote the stiffness

matrix for the entire body Ωi: this needs to be distinguished from A(i), which is a
direct sum of stiffness matrices for individual subdomains (see (3.32)). We have

A
(i)
OL =

[
A

(i)
II A

(i)T

ΓI

A
(i)
ΓI A

(i)
ΓΓ

]
, i = 1, · · · , N,

where A
(i)
ΓΓ is for the nodes on ∂Ωi∩Γgl and A

(i)
II is for all other nodes on Ωi, etc. We

define the corresponding Schur complement S
(i)
OL := A

(i)
ΓΓ −A

(i)
ΓIA

(i)−1

II A
(i)T

ΓI and also
a block-diagonal matrix for the entire system consisting of the Schur complement
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matrices for each body:

SOL :=




S
(1)
OL

. . .

S
(N)
OL


 .

Noting that A
(i)
II can be a large matrix and solving an equation of the form A

(i)
II x = b

can be quite expensive, we also introduce an inexact Schur complement

S̃
(i)
OL := A

(i)
ΓΓ − A

(i)
ΓIÃ

(i)−1

II A
(i)T

ΓI , i = 1, · · · , N,

and their direct sum, S̃OL := diagNi
i=1S̃

(i)
OL, where Ã

(i)−1

II is an inexact Dirichlet solver,

which is defined as follows. Let Ŵ
(i)
Γ0

and W
(i,j)
Γ0

denote the space of continuous

finite element functions on Γ
(i)
loc and ∂Ωi,j ∩ Γ

(i)
loc, which are similar to Ŵ

(i)
Γ and

W
(i,j)
Γ , respectively. Also, we define a restriction operator R

(i)
Γ0

: Ŵ
(i)
Γ0

→ W
(i,j)
Γ0

.
After some symmmetric permutation, we can obtain

A
(i)
II =




A
(i,1)
II A

(i,1)T

Γ0I R
(i,1)
Γ0

A
(i,2)
II A

(i,2)T

Γ0I R
(i,2)
Γ0

. . .
...

A
(i,Ni)
II A

(i,Ni)
T

Γ0I R
(i,Ni)
Γ0

R
(i,1)T

Γ0
A

(i,1)
Γ0I R

(i,2)T

Γ0
A

(i,2)
Γ0I · · · R

(i,Ni)
T

Γ0
A

(i,Ni)
Γ0I

∑
R

(i,j)T

Γ0
A

(i,j)
Γ0Γ0

R
(i,j)
Γ0




.

(4.6)

The solution of A
(i)
II x = b can be found by a block factorization. More precisely,

with Ŝ
(i)
Γ0

:=
∑Ni

j=1 R
(i,j)T

Γ0
(A

(i,j)
Γ0Γ0

− A
(i,j)
Γ0I A

(i,j)−1

II A
(i,j)T

Γ0I )R
(i,j)
Γ0

, we have

x
(j)
I = A

(i,j)−1

II (b
(j)
I − A

(i,j)T

Γ0I R
(i,j)
Γ0

xΓ0), j = 1, · · · , Ni, (4.7)

where

Ŝ
(i)
Γ0

xΓ0 = bΓ0 −
Ni∑

j=1

R
(i,j)T

Γ0
A

(i,j)
Γ0I A

(i)−1

II b
(j)
I . (4.8)

Solving (4.8) can be expensive; the solution of Ã
(i)
II x̃ = b is defined as

x̃
(j)
I = A

(i,j)−1

II (b
(j)
I − A

(i,j)T

Γ0I R
(i,j)
Γ0

x̃Γ0), j = 1, · · · , Ni, (4.9)

where

x̃Γ0 = R̃
(i)T

D,Γ0
S̃

(i)†

Γ0
R̃

(i)
D,Γ0

(
bΓ0 −

Ni∑

j=1

R
(i,j)T

Γ0
A

(i,j)
Γ0I A

(i)−1

II b
(j)
I

)
, (4.10)
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with R̃
(i)
D,Γ0

and S̃
(i)
Γ0

defined similarly as R̃
(i)
D,Γ and S̃

(i)
Γ , respectively. We now

introduce the following block-diagonal preconditioner for the system:

B−1 =

[
PRM−1

BDDCPR 0
0 P kM−1

D P k

]
(4.11)

where PR := I − Rc(R
T
c Rc)

−1RT
c is an orthogonal projection operator onto

range(Ŝc) and

M−1
BDDC =




R̄
(1)T

D,Γ S̃
(1)†

Γ R̄
(1)
D,Γ

. . .

R̄
(N)T

D,Γ S̃
(N)†

Γ R̄
(N)
D,Γ


 ,

M−1
D = Ẑk

ΓBΓOL,DS̃OLBT
ΓOL,DẐkT

Γ .

We rewrite the KKT system (4.5):

Ax = F , (4.12)

where

A :=

[
Ŝc (P kẐk

ΓB̂Γ,c)
T

P kẐk
ΓB̂Γ,c 0

]
, x :=

[
uΓ

λ

]
and F :=

[
ĝc

0

]
. (4.13)

Our hybrid method is the preconditioned conjugate residual (PCR) method, to
solve the preconditioned system

B−1Ax = B−1F . (4.14)

4.3 Convergence Number Estimates

The preconditioned system (4.14) is solved using the preconditioned conjugate
residual (PCR) method. Suppose the following system is solved with the PCR
method with the preconditioner B−1:

Au = F . (4.15)

According to Lemma 1.3.2, we need to study the spectrum of the preconditioned
operator B−1A, which has the same spectrum as B−1/2AB−1/2.
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General Case We first study a general case, where

A =

[
A BT

B 0

]
, B−1 =

[
Â−1 0

0 Ĉ−1

]
,

assuming that
α0u

T Âu ≤ uT Au ≤ α1u
T Âu, ∀u. (4.16)

We assume A, Â, Ĉ are real symmetric and positive definite, and B has full rank.
Then,

B−1/2AB−1/2 =

[
Â−1/2AÂ−1/2 Â−1/2BT Ĉ

Ĉ−1/2BÂ−1/2 0

]
.

In the following, we use the notation Ã := Â−1/2AÂ−1/2 and B̃ := Ĉ−1/2BÂ−1/2.
Note that

α0u
T u ≤ uT Ãu ≤ α1u

T u, ∀u. (4.17)

We study the cases where Â = A and Â 6= A separately. When Â = A, Ã is
simply the identity matrix and

B−1/2AB−1/2 =

[
I B̃T

B̃ 0

]
. (4.18)

Lemma 4.3.1. Let B−1/2AB−1/2 be defined as in (4.18). We then have

K(B−1A) = K(B−1/2AB−1/2) =
1/2 +

√
1/4 + λmax

−1/2 +
√

1/4 + λmin

,

where λmax and λmin are the largest and smallest eigenvalues of B̃T B̃, respectively.

Proof. We consider the following eigenvalue problem:

[
I B̃T

B̃ 0

] [
u
λ

]
= t

[
u
λ

]
,

which is equivalent to

u + B̃T λ = tu

B̃u = tλ
(4.19)

Substituting the second equation of (4.19) into the first, we obtain

u + t−1B̃T B̃u = tu.
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Denoting the eigenvalues of B̃T B̃ by λi, i = 1, · · · , n, we obtain

(1 + λi/t − t)u = 0, i = 1, · · · , n.

Since u = 0 leads to λ = 0, we need to solve 1 + λi/t − t = 0, i = 1, · · · , n, which
are equivalent to the quadratic equations t2 − t − λi = 0. Their solutions are
1/2 ±

√
1/4 + λi and thus

σ(B−1A) = {1/2 ±
√

1/4 + λi : i = 1, · · · , n}.

Clearly,

max{|λ| : λ ∈ σ(B−1A)} = 1/2 +
√

1/4 + λmax and

min{|λ| : λ ∈ σ(B−1A)} = −1/2 +
√

1/4 + λmin,

where λmax := maxn
i=1λi and λmin := minn

i=1λi.

We now consider the case Â 6= A. Then the eigenvalue analysis of A1 :=

B−1/2AB−1/2 =

[
Ã B̃T

B̃ 0

]
is not as easy, and we left- and right- multiply this

symmetrized preconditioned operator with C−1/2 =

[
Ã−1/2 0

0 I

]
to obtain

A2 := C−1/2A1C
−1/2 =

[
I Ã−1/2B̃T

B̃Ã−1/2 0

]
. (4.20)

Eigenvalues of A2 can be analyzed in the same manner as in Lemma 4.3.1.
To relate the spectrum of A1 to the spectrum of A2, we use the Courant-Fischer
Minimax Theorem.

Theorem 4.3.2 (Courant-Fischer). Let A ∈ Rn×n be a symmetric matrix with
real eigenvalues λi, i = 1, · · · , n, which are ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn.
Then

λk = max
dim(V )=k

min
x∈V
x 6=0

xT Ax

xT x
(4.21)

λk = min
dim(V )=n−k+1

max
x∈V
x 6=0

xT Ax

xT x
(4.22)

Let λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of A2, and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n

the eigenvalues of A1. Suppose λk > 0 and λk+1 < 0, where λk is the smallest
positive eigenvalue of A2 and λk+1 the largest negative eigenvalue of A2. Also, let
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qi, i = 1, · · · , n denote the eigenvectors of A2 such that A2qi = λiqi and qT
i qj =

δij, i, j = 1, · · · , n. Using (4.21) and the fact that A1 = C1/2A2C
1/2 we have

λ̃k = max
dim(V )=k

min
x∈V
x 6=0

xTA1x

xT x
= max

dim(V )=k
min
x∈V
x 6=0

(C1/2x)TA2(C
1/2x)

(C1/2x)T (C1/2x)

(C1/2x)T (C1/2x)

xT x

For V := C−1/2span{q(1), q(2), · · · , q(k)}, we have

min
x∈V
x 6=0

(C1/2x)TA2(C
1/2x)

(C1/2x)T (C1/2x)
≥ λk.

Noting that
α0x

T x ≤ xTCx ≤ α1x
T x, ∀x (4.23)

due to the definition of C and (4.17), we have

min
x∈V
x 6=0

(C1/2x)TA1(C
1/2x)

(C1/2x)T (C1/2x)

(C1/2x)T (C1/2x)

xT x
≥ λkα0.

Taking the maximum over all k-dimensional subspaces on the left hand side of the
previous equation, we obtain

λ̃k ≥ λkα0.

Similarly, using (4.22), we have

λ̃k+1 = min
dim(V )=n−k

max
x∈V
x 6=0

xTA1x

xT x
= min

dim(V )=n−k
max
x∈V
x 6=0

(C1/2x)TA2(C
1/2x)

(C1/2x)T (C1/2x)

(C1/2x)T (C1/2x)

xT x

For V := C−1/2{q(k+1), · · · , q(n)}, we have

max
x∈V
x 6=0

(C1/2x)TA2(C
1/2x)

(C1/2x)T (C1/2x)
≤ λk+1

and

max
x∈V
x 6=0

(C1/2x)TA2(C
1/2x)

(C1/2x)T (C1/2x)

(C1/2x)T (C1/2x)

xT x
≤ λk+1α1.

Taking the minimum on the left hand side of the previous equation, we obtain

λ̃k+1 ≤ λk+1α1.

By a similar argument,

λ̃1 ≤ λ1α1 and λ̃n ≥ λnα0.
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Letting λ′
max and λ′

min denote the maximum and the minimum eigenvalues of

Ã−1/2B̃T B̃Ã−1/2, respectively, we obtain

K(A1) =
max{λ̃1, |λ̃n|}

min{λ̃k, |λ̃k+1|}
≤

α1

α0

max{λ1, |λn|}

min{λk, |λk+1|}

=
α1

α0

K(A2) ≤
α1

α0

1/2 +
√

1/4 + λ′
max

−1/2 +
√

1/4 + λ′
min

, (4.24)

where the second inequality follows from the definition of A2 in (4.20) and Lemma 4.3.1.
Noticing that

λmax(Ã−1/2B̃T B̃Ã−1/2) ≤ λmax(B̃T B̃)λmax(Ã−1)

λmin(Ã−1/2B̃T B̃Ã−1/2) ≥ λmin(B̃T B̃)λmin(Ã−1),

and
1

α1

uT u ≤ uT Ã−1u ≤
1

α0

uT u, ∀u,

we rewrite (4.24) in terms of λmax and λmin, the maximum and the minimum

eigenvalues of B̃T B̃ and obtain:

K(A1) ≤
α1

α0

1/2 +
√

1/4 + λmax/α0

−1/2 +
√

1/4 + λmin/α1

. (4.25)

Special Case We now use these results to study the convergence bound of our
preconditioned system B−1A, where B−1 and A are defined in (4.11) and (4.13),
respectively. We have

A = ŜΓ, B = P kẐk
ΓB̂Γ,c, Â−1 = PRM−1

BDDCPR, Ĉ−1 = P kM−1
D P k.

Notice that A, Â and Ĉ are now singular. However, this does not pose any problem,
since in the application of the PCR method our iterates will be in a proper subspace
in which those matrices will be nonsingular. From (4.25), we can see that the

extreme eigenvalues of B̃T B̃ and α0, α1 in (4.16) are important parameters, where

B̃T B̃ = Â−1/2BT Ĉ−1BÂ−1/2, which has the same spectrum as BÂ−1BT Ĉ−1. In
our case, BÂ−1BT Ĉ−1 becomes P kẐk

ΓB̂ΓPRM−1
BDDCPRB̂T

Γ ẐkT

Γ P k · P kM−1
D P k. For

a proof of the following lemma, see [38].

Lemma 4.3.3.

xT Ŝ
(i)†

Γ x ≤ xT R̃
(i)T

D,Γ S̃
(i)−1

Γ R̃
(i)
D,Γx ≤ C

(
1 + log

(
Hs

h

))2

xT Ŝ
(i)†

Γ x, (4.26)
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for all x ∈ range(Ŝ
(i)
Γ ), i = 1, · · · , N .

Thus, we can study the spectrum of

P kẐk
ΓB̂ΓPRŜ†

ΓPRB̂T
Γ ẐkT

Γ P k · P kM−1
D P k

= P kẐk
ΓB̂ΓŜ†

ΓB̂T
Γ ẐkT

Γ P k · P kẐk
ΓBΓOL,D

S̃OLBT
ΓOL,D

ẐkT

Γ P k

instead of that of P kẐk
ΓB̂ΓPRM−1

BDDCPRB̂T
Γ ẐkT

Γ P k · P kM−1
D P k, where

Ŝ†
Γ =




Ŝ
(1)†

Γ
. . .

Ŝ
(N)†

Γ


 .

Lemma 4.3.4.

B̂ΓŜ†
ΓB̂T

Γ ẐkT

Γ P k = BΓOL
S†

OLBT
ΓOL

ẐkT

Γ P k.

Proof. Note that the solution of Ŝ
(i)
Γ u

(i)
Γ = B̂

(i)T

Γ v, where B̂
(i)T

Γ v ∈ range(Ŝ
(i)
Γ ), can

be obtained from the following equation:




A
(i,1)
II A

(i,1)T

ΓI R
(i,1)
Γ

A
(i,2)
II A

(i,2)T

ΓI R
(i,2)
Γ

. . .
...

A
(i,Ni)
II A

(i,Ni)
T

ΓI R
(i,Ni)
Γ

R
(i,1)T

Γ A
(i,1)
ΓI R

(i,2)T

Γ A
(i,2)
ΓI · · · R

(i,Ni)
T

Γ A
(i,Ni)
ΓI

∑Ni

j=1 R
(i,j)T

Γ A
(i,j)
ΓΓ R

(i,j)
Γ







u
(i,1)
I

u
(i,2)
I
...

u
(i,Ni)
I

û
(i)
Γ




=




0
0
...
0

B̂
(i)T

Γ v




, (4.27)

where R
(i,j)
Γ : Ŵ

(i)
Γ −→ W

(i,j)
Γ is a restriction operator. Noting that all entries of

B̂
(i)T

Γ v, corresponding to the nodes on Γ
(i)
loc, are zero and eliminating those entries

results in B
(i)T

ΓOL
v, we can rearrange the system (4.27):

A
(i)
OLu(i) =

[
A

(i)
II A

(i)T

ΓI

A
(i)
ΓI A

(i)
ΓΓ

][
u

(i)
I

u
(i)
Γ

]
=

[
0

B
(i)T

ΓOL
v

]
(4.28)

where u
(i)
Γ is the displacement on Γgl ∩ ∂Ωi. The equivalence of (4.27) and (4.28)

shows that B̂
(i)
Γ Ŝ

(i)†

Γ B̂
(i)T

Γ ẐkT

Γ P k = B
(i)
ΓOL

S
(i)†

OL B
(i)T

ΓOL
ẐkT

Γ P k.
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Due to Lemma 4.3.4, the operator that we need to study can be written as

P kẐk
ΓBΓOL

S†
OLBT

ΓOL
ẐkT

Γ P k · P kẐk
ΓBΓOL,D

S̃OLBT
ΓOL,D

ẐkT

Γ P k.

The proof of the following lemma proceeds, line by line, as the proof of [43, Theorem
6.15].

Lemma 4.3.5. For ∀λ ∈ range(P k),

〈λ, λ〉

≤ 〈P kẐk
ΓBΓOL

S†
OLBT

ΓOL
ẐkT

Γ P k · P kẐk
ΓBΓOL,D

S̃OLBT
ΓOL,D

ẐkT

Γ P kλ, λ〉

≤ C(1 + log(Hb/h))2(1 + log(Hs/h))2〈λ, λ〉.

We now can derive a concrete bound for (4.25), using Lemma 4.3.3 and 4.3.4.
In our case, λmax = C(1 + log(Hb/h))2(1 + log(Hs/h))2, λmin = 1, α1 = C(1 +
log(Hs/h))2, and α0 = 1. Assuming Hb/h and Hs/h are large enough, we have

1

2
+

√
1

2
+

λmax

α0

≈

√
λmax

α0

, (4.29)

and

−
1

2
+

√
1

4
+

λmin

α1

= −
1

2
+

1

2

√
1 + 4

λmin

α1

= −
1

2
+

1

2

(
1 + 2

λmin

α1

+ O

((
4
λmin

α1

)2
))

.

(4.30)
Combining (4.25), (4.29), and (4.30), we have

K(A1) ≤ C(1 + log(Hb/h))(1 + log(Hs/h))5. (4.31)

We obtain

Theorem 4.3.6. Let B−1,A, and K(B−1A) be defined as in (4.11), (4.13), and
(1.9), respectively. Then we have the following bound:

K(B−1A) ≤ C(1 + log(Hb/h))(1 + log(Hs/h))5.

4.4 Numerical Experiments

Recall that an active set method consists of outer iterations, in which the ac-
tive set is updated, and inner iterations, in which auxiliary equality constrained
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Table 4.1: Results for the FETI-FETI method. cond, iter denote condition num-
ber estimates and the iteration counts, respectively. Area on which continuity is
imposed between bodies: Γ, i.e., the entire interface for (I), and only a proper
subset of Γ, Γ0 for (II)

(I) (II)
1/Hb Hb/Hs Hs/h cond iter cond iter

2 2 2 2.5536 7 1.9940 7
4 3.6188 12 2.8136 10
6 3.9929 13 2.8718 10
8 3.9004 13 2.7254 10
10 3.7063 13 2.6951 10
12 4.0142 13 2.7227 10
2 4 2 7.1076 10 4.9790 9

6 12.07490 12 7.1625 10
8 17.1343 13 7.7988 10
10 22.2380 15 8.6543 11
12 27.3672 14 12.2114 12
14 32.5125 17 12.0330 12
16 37.6688 19 15.4197 12
18 42.8328 20 16.4836 12

2 2 4 4.5201 9 4.2654 9
8 6.9059 10 6.3238 10
16 9.8320 12 9.1107 12
32 13.2897 13 12.1263 13
64 17.2765 16 15.6644 14
128 21.7917 18 23.3692 17

problems are solved on the current active set. In this section, we solve such auxil-
iary equality constrained problems using the FETI-FETI method and the hybrid
method.

We solve the following minimization problem:

min

Nb×Nb∑

i=1

(
1

2

∫

Ωi

|∇ui|2dx −

∫

Ωi

fuidx

)
, (4.32)

where Ωi ⊂ R2, i = 1, · · · , Nb × Nb are square bodies with side length Hb :=

1/Nb which form the system Ω =

Nb×Nb⋃

i=1

Ωi = [0, 1] × [0, 1]. We require ui ∈
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Table 4.2: Results for the hybrid method. iter denotes the iteration counts. Area
on which continuity is imposed between bodies: Γ, i.e., the entire interface for (I),
and only a proper subset of Γ, Γ0 for (II)

(I) (II)
1/Hb Hb/Hs Hs/h iter iter

2 2 2 10 10
4 12 11
6 12 11
8 11 11
10 11 11
12 11 11
2 4 2 10 10

6 8 10
8 8 10
10 8 10
12 8 9
14 8 8
16 7 8
18 7 7

2 2 4 11 13
8 13 15
16 14 16
32 15 17
64 16 19
128 17 20

H1(Ωi), u
i|∂Ωi∩∂Ω = 0. Each Ωi is decomposed into Ns × Ns square subdomains,

each of which is discretized by square bilinear elements of side length h. Also,
Γ := ∪i6=j∂Ωi ∩ ∂Ωj denotes the interface between the bodies.

We consider two linearized problems, each with a different contact area between
the bodies. In the first problem, the entire Γ is considered as the contact area, i.e.,
we require the continuity of the displacement vector across the entire Γ; see Figure
4.1. In the second problem, continuity is imposed only on the middle third of the
faces between the bodies. The Krylov subspace methods of choice are the precon-
ditioned conjugate gradient method for the FETI-FETI method and the precondi-
tioned conjugate residual method for the hybrid method. All our experiments have
been performed in MATLAB, and the stopping criterion is ||rn||2/||r0||2 < 10−6,
where rn and r0 are the n th and initial residuals, respectively.
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In Table 4.1, the results obtained with the FETI-FETI method are presented.
We have three parameters; the number of bodies across Ω (Nb = 1/Hb), the num-
ber of subdomains across each body (Ns = Hb/Hs), and the number of elements
across each subdomain (Hs/h). We vary one parameter while keeping the other
two fixed. The results for the first set of experiments, with the entire Γ as the
contact surface, are shown in Column (I); those for the second set of experiments
with a reduced contact area shown in Column (II). We observe that the condition
number estimates and the iteration counts are indepedent of 1/Hb, linearly depen-
dent on Hb/Hs, and logarithmically dependent on Hs/h. The condition numbers
from Table 4.1 are also plotted in Figure 4.2.

The same numerical results have been obtained independently by Klawonn and
Rheinbach; see [32] and [28].

In Table 4.2, the results for the hybrid method are shown. We vary the pa-
rameters the same way we did for the FETI-FETI method. We observe that the
iteration counts are independent of 1/Hb and logarithmically dependent on Hs/h.
The iteration counts from Table 4.2 are also plotted in Figure 4.3.
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Figure 4.2: Condition number estimates for the FETI-FETI method. Area on
which continuity is imposed between bodies: Γ, i.e., the entire interface for (I),
and only a proper subset of Γ, Γ0 for (II)
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Figure 4.3: Iteration counts for the hybrid method. Area on which continuity is
imposed between bodies: Γ, i.e., the entire interface for (I), and only a proper
subset of Γ, Γ0 for (II)
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Part III

Solving a Nonlinear Contact

Problem
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Chapter 5

Active set method combined with

the hybrid method

An active set method can often be slow due to a poor guess of the optimal
active set. We discuss how to find a reasonably good initial active set. We first
recall that our minimization problem (3.1) can be written as

min
uΓ∈cWΓ,c

1

2
uT

Γ ŜcuΓ − ĝT
c uΓ, with B̂Γ,cuΓ ≤ 0, (5.1)

in terms of the primal variables. We can also reformulate (5.1) in terms of the dual
variables:

min
1

2
λT B̂Γ,cŜ

†
cB̂

T
Γ,cλ − d̂T

c λ, with λ ≥ 0, (5.2)

where d̂c = B̂T
Γ,cŜ

†
c ĝc.

In our experiments, we solve the dual problem (5.2) approximately and use the
resulting solution, denoted by λ̂, to obtain the initial active set.

More precisely, we inexactly solve the unconstrained version of (5.2)

min
1

2
λT B̂Γ,cŜ

†
cB̂

T
Γ,cλ − d̂T

c λ (5.3)

with the preconditioned conjugate gradient method, with B̂D,Γ,cŜcB̂
T
D,Γ,c as the

preconditioner, where B̂D,Γ,c is the scaled version of B̂Γ,c. We denote the resulting
solution by λ∗. Subsequently, we orthogonally project λ∗ onto the feasible region
in the transformed coordinate system, which is associated with the preconditioner
B̂D,Γ,cŜcB̂

T
D,Γ,c, and denote such a projection by λ̂.

In Figure 5.1, we illustrate the projection of λ∗ in the original and the trans-
formed coordinate systems. The concentric ellipses on the left of Figure 5.1 indicate
the level sets of f(λ) := 1

2
λT B̂Γ,cŜ

†
cB̂

T
Γ,cλ − d̂T

c λ, whereas the concentric circles on
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the right of Figure 5.1 indicate the level sets of the transformed function

f̄(λ̄) :=
1

2
λ̄T M−1/2B̂Γ,cŜ

†
cB̂

T
Γ,cM

−1/2λ̄ − d̂T
c M−1/2λ̄ =

1

2
λ̄T λ̄ − d̂T

c M−1/2λ̄,

where M−1 is the pseudoinverse of the system matrix, i.e., M−1 := (B̂Γ,cŜcB̂
T
Γ,c)

†.

The feasible region ΩB := {λ : λ ≥ 0} has been transformed into Ω̃B := {λ̄ :
M−1/2λ̄ ≥ 0}.

Whereas the projection of λ∗ onto ΩB in the original coordinate system does not
necessarily coincide with λ̃, the minimizer of the inequality constrained problem
(5.2), the projection of λ∗ onto Ω̃B in the transformed coordinate system coincides

with λ̃. When M−1 6= (B̂Γ,cŜcB̂
T
Γ,c)

† we cannot expect this to happen, but we can
expect the projection of λ∗ in the transformed coordinate system to be a better
approximation of λ̃ than the projection in the original coordinate system, and we
will use the projection in the transformed coordinate system as our initial vector.

However, we note that we do not solve (5.3) exactly in practice, due to the

presence of Ŝ†
c ; solving an equation of the form Ŝcx = b with a given right hand

side b can be expensive. Instead, we replace Ŝ†
c with M−1

BDDC , and solve the resulting
problem:

min
1

2
λT B̂Γ,cM

−1
BDDCB̂T

Γ,cλ − d̂T
c λ. (5.4)

We still denote the solution of (5.4) by λ∗ and the projection of λ∗ onto the feasible

region Ω̃B := {λ̄ : M−1/2λ̄ ≥ 0} by λ̂, where M−1 := B̂D,Γ,cŜcB̂
T
D,Γ,c.

We recall the KKT conditions for (5.1), which are satisfied by an optimal pair
(uΓ, λ):

B̂Γ,cuΓ ≤ 0
λ ≥ 0

λT (B̂Γ,cuΓ) = 0

ŜcuΓ − ĝc + B̂T
Γ,cλ = 0

(5.5)

The second and the third equations of (5.5) indicate that λi > 0 implies

(B̂Γ,cuΓ)i = 0. This motivates us to set

initial active set = {i : λ̂i > 0}. (5.6)

This turns out to be a good estimate of the optimal active set. Once the initial
active set is chosen, we solve the corresponding saddle point problem of the form
(4.2) with the preconditioned conjugate residual method. If the resulting solution
is infeasible or does not satisfy the KKT conditions, we modify the active set and
repeat the process. In other words, we
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1. solve (5.4) with the PCG method, iterating until the norm of the residual
has been reduced by a factor of 10−5; denote the resulting solution by λ∗.

2. Project λ∗ onto Ω̃B in the transformed coordinate system as described above,
to obtain the projection λ̂, and the initial active set {i : λ̂i > 0}.

3. With xT
0 = [uT

0 λT
0 ] = [0 λ̂T ] as initial vectors, solve a saddle point problem

of the form (4.2), where Ẑk
Γ of (4.2) is determined by the current active set.

Iterate until the norm of the residual has been reduced by a factor of 10−5.

4. If the u part of the resulting solution is not feasible or not optimal, modify
the active set accordingly, following Figure 6.3, and repeat the process.

We have solved the nonlinear model problem (3.1) with the method described
above; the results are reported in Table 5.1.

Figure 5.1: Projection of λ∗ onto the feasible region in original and transformed
coordinates, respectively. When preconditioner = inverse of the system matrix (as
shown in right), projection of the solution of unconstrained problem, λ∗, onto the
feasible region is the solution of the constrained problem, λ̃. Therefore we can
expect proj(λ∗) ≈ λ̃ with a good preconditioner.

ΩB

λ∗ proj (λ∗ )

λ
 ~ ΩB

λ∗

proj (λ∗ )=λ
~

In Table 5.1, notice that the number of inner minimizations does not increase
rapidly as we increase the number of elements per subdomain or the number of
subdomains per body (or membrane, in the model problem), which is an indication
of the scalability of the hybrid algorithm.
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Table 5.1: Results: active set method + hybrid method. PCG it. denotes the
number of PCG iterations needed to solve (5.4) until the norm of the residual has
been reduced by 10−5. outer it. denotes the number of outer iterations of the
active set method; inner it. denotes the number of iterations needed to solve the
inner minimization problems via PCR method on the active faces identified in the
outer iterations. total it. denotes the sum of the number of inner iterations.

Nsub(1/H) H/h Ndof (λ) Ndof (total) PCG it. outer it. inner it. total it.
16(4) 4 17 561 5 2 16 16 32
16(4) 8 33 2145 6 2 21 19 40
16(4) 12 49 4753 6 1 25 21 21 67
16(4) 16 65 8385 7 4 29 24 22 22 97
16(4) 20 81 13041 7 4 27 25 23 22 97
64(8) 4 33 2145 7 2 19 19 38
64(8) 8 65 8385 8 1 25 25
64(8) 12 97 18721 8 1 28 28
64(8) 16 129 33153 9 1 31 31
64(8) 20 161 51681 9 2 32 28 60

144(12) 4 49 4753 8 1 21 21
144(12) 8 97 18721 10 2 26 24 50
144(12) 12 145 41905 11 3 30 26 27 83
144(12) 16 193 74305 11 4 32 30 28 28 118
144(12) 20 241 115921 11 4 35 31 29 29 124
256(16) 4 65 8385 9 1 21 21
256(16) 8 129 33153 11 1 29 29
256(16) 12 193 74305 13 2 33 27 60
256(16) 16 257 131841 13 2 35 30 65
256(16) 20 321 205761 14 3 39 32 32 103
400(20) 4 81 13041 10 2 23 22 45
400(20) 8 161 51681 12 3 29 27 25 81
400(20) 12 241 115921 14 3 33 32 30 95
400(20) 16 321 205761 14 4 38 34 31 31 134
400(20) 20 401 321201 15 5 39 38 32 32 32 173
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Figure 5.2: Solution of the model problem, from different angles. Nsub = 16, H/h =
8.
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Chapter 6

SMALBE Algorithm for Bound

and Equality Constraints

By the duality theorem of [14, Chapter 2], the nonlinear model problem (3.1)
can be reformulated in terms of Lagrange multipliers as a bound and equality con-
strained problem; we will give this reformulation in Section 6.4. We first describe
the SMALBE (Semi-Monotonic Augmented Lagrangians for Bound and Equality
constraints) algorithm for convex quadratic problems with bound and equality
constraints, developed by Dostal [13],[14, Chapter 6]. In Section 6.4, we will use
this algorithm to solve the problem (3.1).

We wish to solve a bound and equality constrained problem of the following
form:

min
u∈ΩBE

f(x), (6.1)

where f(x) = 1
2
xT Ax − bT x,A ∈ Rn×n is a positive definite, symmetric matrix,

b, l ∈ Rn, ΩBE := {x ∈ Rn : Bx = c and x ≥ l}, B ∈ Rm×n, and c ∈ ImB.
To allow the possibility that not all components of x are bound constrained, we
admit li = −∞. In the SMALBE algorithm, the equality constraints and the
bound constraints are treated separately. In particular, the SMALBE algorithm
has features of the SMALE (Semi-Monotonic Augmented Lagrangians for Equality
constraints) algorithm and the MPRGP (Modified Proportioning and Reduced
Gradient Projection) algorithm, which are methods for convex quadratic problems
with equality constraints and bound constraints, respectively. We first review these
two methods.
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6.1 SMALE Algorithm

The SMALE algorithm is for convex quadratic problems with equality con-
straints. Suppose we want to solve

min
u∈ΩE

f(x),

where 1
2
xT Ax − bT x,A ∈ Rn×n is a positive definite, symmetric matrix, b ∈

Rn, ΩE := {x ∈ Rn : Bx = c}, B ∈ Rm×n, and c ∈ ImB.
We introduce the augmented Lagrangian penalty function L : Rn+m+1 → R

which is defined by

L(x, λ, ρ) = f(x) + (Bx − c)T λ +
ρ

2
||Bx − c||2. (6.2)

and g, its gradient with respect to x, by

g(x, λ, ρ) := ∇xL(x, λ, ρ) = Ax − b + BT (λ + ρ(Bx − c)). (6.3)

The SMALE algorithm, described in Figure 6.1, can be viewed as an inexact

augmented Lagrangian method with adaptive precision control. In Step 2, we can

use any convergent algorithm for minimizing strictly convex quadratic functions,

such as the conjugate gradient method. The SMALE algorithm has both outer

(update of λ and ρ) and inner (finding x, given λ and ρ) loops, and the number of

iterations required for the convergence is bounded for both in terms of a few pa-

rameters, e.g., λmin(A), the smallest eigenvalue of the Hessian of the cost function.

Let T denote any set of indices and assume that for any t ∈ T we have a

minimization problem

minimize ft(x) s.t. x ∈ Ωt (6.4)

where Ωt = {x ∈ Rnt : Btx = 0}, ft(x) = 1
2
xT Atx − bT

t x, with At ∈ Rnt×nt positive

definite and symmetric, Bt ∈ Rmt×nt , and bt, x ∈ Rnt . Then we have the following
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1. Initialize: choose η > 0, β > 1,M > 0, ρ0 > 0, λ0 ∈ Rm, k = 0

2. Iterate k = 0, 1, 2, · · · , while ||g(xk, λk, ρk)|| > Mǫ||b|| or ||Bxk|| > ǫ||b||,
where ǫ > 0 is a given tolerance (inner iteration with adaptive precision
control):
find xk such that

||g(xk, λk, ρk)|| ≤ min{M ||Bxk − c||, η}.

3. Update the Lagrange multipliers:

λk+1 = λk + ρk(Bxk − c).

4. Update ρ provided the increase of the Lagrangian is not sufficient:
if k > 0 and

L(xk, λk, ρk) < L(xk−1, λk−1, ρk−1) +
ρk

2
||Bxk − c||2

ρk+1 = βρk

else
ρk+1 = ρk

Figure 6.1: SMALE algorithm
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result, [14, Theorem 4.21], which shows that the number of outer iterations required

for the convergence of the algorithm to a certain accuracy is bounded in terms of

λmin(At).

Theorem 6.1.1. Let {xk
t }, {λ

k
t } and {ρt,k} be generated by the SMALE algorithm

of Figure 6.1 for (6.4) with ||bt|| ≥ ηt > 0, β > 1,M > 0, ρt,0 = ρ0 > 0, λ0
t = 0. Let

0 < amin be a given constant. Finally, let the class of problems (6.4) satisfy

amin ≤ λmin(At),

where λmin(At) denotes the smallest eigenvalue of At, and denote

a = (2 + s)/(aminρ0)

where s ≥ 0 is the smallest integer such that βsρ0 ≥ M2/amin. Then for each ǫ > 0

there are indices kt, t ∈ T , such that

kt ≤ a/ǫ2 + 1

and xkt
t is an approximate solution of (6.4) satisfying

||gt(x
kt
t , λkt

t , ρt,kt)|| ≤ Mǫ||bt|| and ||Btx
kt
t || ≤ ǫ||bt||. (6.5)

We have another result, which shows that the number of inner iterations needed

to find xk which satisfies our requirements is bounded:

Theorem 6.1.2. Let {xk
t }, {λ

k
t } and {ρt,k} be generated by the SMALE algorithm

of Figure 6.1 for (6.4) with ||bt|| ≥ ηt > 0, β > 1,M > 0, ρt,0 = ρ0 > 0, λ0
t = 0. Let
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0 < amin < amax and 0 < Bmax be given constants. Let Step 2 be implemented by

the conjugate gradient method which generates the iterates xk,0
t , xk,1

t , · · · , xk,l
t = xk

t

starting from xk,0
t = xk−1

t with x−1
t = 0, where l = l(k, t) is the first index satisfying

either

||g(xk,l
t , λk

t , ρk)|| ≤ M ||Btx
k,l
t ||

or

||g(xk,l
t , λk

t , ρk)|| ≤ ǫM ||bt||.

Finally, let the class of problems (6.4) satisfy

amin ≤ λmin(At) ≤ λmax(At) = ||At|| ≤ amax and ||Bt|| ≤ Bmax.

Then the Algorithm generates an approximate solution xkt
t of any problem (6.4)

which satisfies (6.5) at O(1) matrix-vector multiplications by the Hessian of the

augmented Lagrangian Lt for (6.4).

6.2 MPRGP Algorithm

The MPRGP algorithm is used for convex quadratic problems with bound

constraints. Suppose we want to solve

min
u∈ΩB

f(x) (6.6)

where 1
2
xT Ax − bT x,A ∈ Rn×n is a positive definite, symmetric matrix, b, l ∈

Rn, ΩB := {x ∈ Rn : x ≥ l}. Again, we allow li = −∞. By the duality theorem of
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[14, Chapter 2], we know that an optimal KKT pair (x̂, λ̂) ∈ Rn × Rn satisfies

−x̂ + l ≤ 0

λ̂ ≥ 0

λ̂T (−x̂ + l) = 0

Lx(x̂, λ̂) = 0,

where

L(x, λ) :=
1

2
xT Ax − bT x + λT (−x + l).

These conditions are equivalent to

Ax̂ − b ≥ 0 and (Ax̂ − b)T (x̂ − l) = 0, (6.7)

or, componentwise,

x̂i = li ⇒ ĝi ≥ 0 and x̂i > li ⇒ ĝi = 0, i = 1, · · · , n, (6.8)

where ĝi = (Ax̂−b)i. The KKT conditions (6.8) determine some important subsets

of N = {1, 2, · · · , n}, the set of all indices. We define an active set of x as the set

of all indices for which xi = li;

A(x) := {i ∈ N : xi = li},

and a free set of x, as the complement of the active set:

F(x) := {i ∈ N : xi 6= li}.
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We also introduce two subsets of A(x),

B(x) = {i ∈ N : xi = li, gi > 0}, B0(x) = {i ∈ N : xi = li, gi ≥ 0},

which are called a binding set and a weakly binding set, respectively. We decompose

the part of the gradient g(x) = Ax− b which violates the KKT conditions into the

free gradient φ and the chopped gradient β, which are defined by

φi(x) = gi(x) for i ∈ F(x), φi(x) = 0 for i ∈ A(x),

βi(x) = 0 for i ∈ F(x), βi(x) = g−
i (x) for i ∈ A(x), (6.9)

where g−
i := min{gi, 0}. Introducing the projected gradient gP (x) := φ(x) + β(x),

we can rewrite the KKT condition as

gP (x) = 0.

Note that φ and β are orthogonal to each other and −φ and −β are feasible descent

directions for f ; see Figure 6.2.

Among the methods for convex quadratic problems with bound constraints such

as (6.6) are the active set method, Polyak’s algorithm, and the gradient projection

method. We will briefly describe these methods, since the MPRGP algorithm has

features borrowed from these methods.

In an active set method, also known as a working set method, we solve a

sequence of auxiliary equality constrained problems defined by a subset of the set

N . This task would have been very simple if we knew A(x̂) a priori, but since this

is usually not the case, we start out by guessing which inequalities would be active
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Figure 6.2: Gradient splitting: the projected gradient gP is decomposed into φ
and β. (a): the iterate is strictly inside the feasible region, so φ = g, β = 0.
(b),(c),(d),(e): the iterate lies on a face, and φ is always defined as the tangential
component of g to the face. The normal component of g to the face, if its negative
is a feasible direction, equals β; if not, β = 0.
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in the solution x̂.

Let I ⊂ N denote the set of indices of the bounds li which are predicted to be

active in the solution, and let

WI = {y ∈ Rn : yi = li, i ∈ I}.

In this dissertation, we will call the predicted set of active bounds I and WI an

active set and an active face, respectively. The complete active set method is

described in Figure 6.3.

Polyak’s algorithm, described in Figure 6.4, differs from the active set method

mainly in that we do not wait until an auxiliary, equality-constrained problem is

solved to test the feasibility of the intermediate solution. We perform conjugate

gradient iterations on A(xk), the active set of xk, k = 0, 1, 2, · · · , if ||φ(xk)|| > 0,

i.e., if it is worthwhile to stay on the current active set; ||φ(xk)|| = 0 indicates that
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1. Initialize: choose x0 ∈ ΩB, set I0 = B0(x
0), k = 0

2. Iterate k = 0, 1, 2, · · · while ||gP (xk)|| > 0
Minimize in face WIk :

ŷ = arg miny∈W
Ik

f(y)

if ŷ ∈ ΩB,
set xk+1 = ŷ, Ik+1 = B0(x

k+1).
else

set xk+1 as the cross point of the line segment xkŷ
and ΩB, and Ik+1 = A(xk+1).

Figure 6.3: Active set method

we have reached the optimal point on the active set and we either have reached

the solution or should leave the face. If the conjugate gradient iterate, say y, is

feasible, we accept it as the next iterate, i.e., set xk+1 = y, and if not, we take

the cross point of the line segment xkŷ and ΩB as xk+1. If ||φ(xk)|| = 0, we take

−β(xk) as the search direction and take xk+1 := xk − αcgβ(xk), where αcg is the

minimizer of f(xk − αβ(xk)).

In the gradient projection method, described in Figure 6.5, the next iterate

is always defined by xk+1 = PΩB
(xk − ᾱg(xk)), where PΩB

denotes the projection

operator onto ΩB, ᾱ is a fixed steplength, determined by the spectrum of the

matrix A, the Hessian of the cost function.

Polyak’s algorithm and the gradient projection method have different benefits.

A nice feature of the gradient projection method is that we have a convergence rate

bounded in terms of the spectrum of the matrix A, whereas Polyak’s algorithm does
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1. Initialize: choose x0 ∈ ΩB, set g = Ax0 − b, p = gP (x0), k = 0

2. Iterate k = 0, 1, 2, · · · , while ||gP (xk)|| > 0
if ||φ(xk)|| > 0

αcg = gT p/pT Ap, y = xk − αcgp
αf = max{α : xk − αp ∈ ΩB} = min{(xk

i − li)/pi : pi > 0}
if αcg ≤ αf (conjugate gradient step)

xk+1 = y, g = g − αcgAp,
β = φ(y)T Ap/pT Ap, p = φ(y) − βp

else (expansion step)
xk+1 = xk − αfp, g = g − αfAp, p = φ(xk+1)

end
else

d = β(xk), αcg = gT d/dT Ad,
xk+1 = xk − αcgd, g = g − αcgAd, p = φ(xk+1)

end

Figure 6.4: Polyak’s algorithm

Given a positive definite, symmetric matrix A ∈ Rn×n and b, l ∈ Rn

1. Initialize: choose x0 ∈ ΩB, ᾱ ∈ (0, 2||A||−1), k = 0

2. Iterate k = 0, 1, 2, · · · , while ||gP (xk)|| is not small
Gradient projection step:

xk+1 = PΩB
(xk − ᾱg(xk))

Figure 6.5: Gradient projection algorithm
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not come with such an upper bound. On the other hand, the gradient projection

method does not use the concept of active sets so it is prone to switch faces many

times before it gets close to the solution.

The MPRGP algorithm combines the good features of Polyak’s algorithm and

the gradient projection method. Some notable differences between the MPRGP

algorithm and Polyak’s algorithm are that the magnitude of the free gradient

φ(xk) and that of the chopped gradient β(xk) are compared in each iteration, and

if ||φ(xk)|| is considerably larger than β(xk), our search for the next iterate stays

on the current active face determined by A(xk). If not, we leave the face and take

−β(xk) as the search direction. The MPRGP algorithm is described in Figure 6.6.

The complete description of the MPRGP algorithm and the criterion for deciding

whether to leave the face or not requires a few more definitions, and we leave them

out to keep the exposition simple and refer the reader to [14, Chapter 5]. The

following theorem gives us a convergence rate for the MPRGP algorithm; see [13,

Theorem 5.9].

Theorem 6.2.1. Let Γ > 0 be a given constant, let λmin denote the smallest eigen-

value of A, and let {xk} denote the sequence generated by the MPRGP algorithm

of Figure 6.6 with ᾱ ∈ (0, ||A||−1]. Then

f(xk+1) − f(x̂) ≤ ηΓ(f(xk) − f(x̂)),

where x̂ denotes the unique solution of (6.6) and

ηΓ = 1 −
ᾱλmin

2 + 2Γ̂2
(6.10)
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Choose ᾱ ∈ (0, 2||A||−1)

1. Initialize: choose x0 ∈ ΩB, set g = Ax0 − b, p = φ(x0), k = 0

2. Iterate k = 0, 1, 2, · · · , while gP (xk) > 0
if φ(xk) dominates

αcg = gT p/pT Ap, y = xk − αcgp
αf = max{α : xk − αp ∈ ΩB} = min{(xk

i − li)/pi : pi > 0}

if αcg ≤ αf (conjugate gradient step)
xk+1 = y, g = g − αcgAp,
β = φ(y)T Ap/pT Ap, p = φ(y) − βp

else (expansion step)
xk+1 = PΩB

(xk − ᾱφ(xk))
g = Axk+1 − b, p = φ(xk+1)

end
else (proportioning step)

d = β(xk), αcg = gT d/dT Ad
xk+1 = xk − αcgd, g = g − αcgAd, p = φ(xk+1)

end

Figure 6.6: MPRGP algorithm

with Γ̂ = max{Γ, Γ−1}. The error in the A− norm is bounded by

||xk − x̂||2A ≤ 2ηk
Γ||x

0 − x̂||2A ≤ 2

(
1 −

1

4K(A)

)k

||x0 − x̂||2A. (6.11)

We note that for a typical unconstrained convex quadratic problem, the conju-

gate gradient method has the following relative error bound:

||xk − x̂||2A ≤ 2

(√
K(A) − 1√
K(A) + 1

)k

||x0 − x̂||2A, (6.12)
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see Section 1.3.1. We also note that

1 −
1

4K(A)
>

√
K(A) − 1√
K(A) + 1

and thus the MPRGP algorithm in general converges more slowly than the CG

method for the same cost function; this is because the MPRGP algorithm has the

expansion and the proportioning steps in addition to the CG steps (see Figure 6.6),

which are not as effective as the CG steps at decreasing the cost function.

6.3 SMALBE Algorithm

The SMALBE algorithm is for convex quadratic problems with bound and

equality constraints, such as (6.1). It is a modification of the SMALE algorithm;

the only difference is in Step 2. Not surprisingly, we use the same functions L and

g = ∇Lx as defined in (6.2) and (6.3) to describe the algorithm. From the KKT

conditions, a feasible vector x ∈ ΩBE is a solution of (6.1) if and only if

g ≥ 0 and gT (x − l) = 0,

or equivalently

gP = 0,

where gP is the projected gradient of g, as defined in Section 6.2. The SMALBE

algorithm for (6.1) is described in Figure 6.7. We have results concerning the upper

bound for the number of iterations required for the convergence of the outer and

the inner iterations, which are analogous to those of Section 6.1; see [14, Chapter

6].
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Given a symmetric positive definite matrix A ∈ Rn×n, B ∈ Rm×n, n-
vectors b, l.

1. Initialize: choose η > 0, β > 1,M > 0, ρ0 > 0, λ0 ∈ Rm, k = 0

2. Iterate k = 0, 1, 2, · · · ,
Find xk ≥ l such that

||gP (xk, λk, ρk)|| ≤ min{M ||Bxk||, η}

3. Update the Lagrange multipliers:

λk+1 = λk + ρkBxk

4. Update ρ provided the increase of the Lagrangian is not suffi-
cient:
if k > 0 and

L(xk, λk, ρk) < L(xk−1, λk−1, ρk−1) + ρk

2
||Bxk − c||2 then

ρk+1 = βρk

else
ρk+1 = ρk

end

Figure 6.7: SMALBE algorithm

6.4 Numerical Experiments with SMALBE

In this section, we reformulate the problem (3.1) in terms of the Lagrange multi-

pliers as a bound and equality constrained problem and solve it with the SMALBE

algorithm described in the previous section. Following [16], we decompose Ω1 and

Ω2 into subdomains in the style of FETI-DP methods, which is the approach taken

in the FETI-FETI method. Eliminating the interior unknowns of each subdomain
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as usual and using the notation of Chapter 3, we obtain

min
uΓ∈fWΓ,c

1

2
uT

Γ S̃cuΓ − g̃T
c uΓ, with BIuΓ ≤ 0 and BEuΓ = 0, (6.13)

where

S̃c =




S̃
(1)
Γ

S̃
(2)
Γ


 , uΓ =




u
(1)
Γ

u
(2)
Γ


 , u

(i)
Γ ∈ W̃

(i)
Γ , i = 1, 2,

and

B̃Γ,c =




BE

BI


 ,

such that BEuΓ = 0 enforces the continuity condition between the subdomains of

the same body and BIuΓ ≤ 0 enforces the nonpenetration condition between Ω1

and Ω2.

The primal problem (6.13) is equivalent to the following dual problem:

min θ(λ) subject to λI ≥ 0 and RT (g̃c − B̃T
Γ,cλ) = 0, (6.14)

where

range(R) = ker(S̃c),

θ(λ) =
1

2
λT Fλ − λT d̃

with

F := B̃Γ,cS̃
†
cB̃

T
Γ,c, d̃ = B̃Γ,cS̃

†
c g̃c.

We modify the dual problem (6.14) further to obtain a version more suitable for
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computations. We adopt the notation

G̃ = RT B̃T
Γ,c, ẽ = RT g̃c

and let T denote a matrix which defines the orthonormalization of the rows of G̃,

so that the matrix

G = TG̃

has orthonormal rows. With e = T ẽ, we can rewrite (6.14) as

min
1

2
λT Fλ − λT d̃ s.t. λI ≥ 0 and Gλ = e. (6.15)

The following lemma, taken from [15], allows us to reformulate the problem (6.15)

in a vector space, not an affine space:

Lemma 6.4.1. Let B̃Γ,c be such that the negative entries of BI are in the columns

that correspond to the nodes in the floating body Ω2. Then there is λ̃ such that

λ̃I ≥ 0 and Gλ̃ = e.

Using Lemma 6.4.1, (6.15) can be rewritten as

min
1

2
λT Fλ − λT d s.t. λI ≥ −λ̃I and Gλ = 0, (6.16)

where d = d̃ − Fλ̃. Finally, we observe that (6.16) is equivalent to the following

problem:

min
1

2
λT (PFP + ρ̄Q)λ − λT P d̃ s.t. λI ≥ 0 and Gλ = e, (6.17)
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where ρ̄ is an arbitrary positive constant and

Q = GT G and P = I − Q.

We now use the SMALBE algorithm to solve the problem (6.17), with the MPRGP

algorithm to solve auxiliary bound constrained problems; the results are presented

in Table 6.1.

Ω1, Ω2 are decomposed into N × N square subdomains, each of which is dis-

cretized by conforming piecewise quadratic elements with square elements of side-

length h. The computations were performed with the parameters

M = 1, ρ0 = 30, Γ = 1, and ǫ = 10−5,

and the stopping criterion for the outer iterations was

||gP (λk)|| ≤ ǫ||b|| and ||Bλk|| ≤ ǫ||b||.

We record the number of outer iterations, the number of inner iterations for each

outer iteration, and the total number of inner iterations. We note that in each

SMALBE iteration, the first outer iteration requires the largest number of inner

iterations. This is because in the beginning the iterate is normally on a wrong

active face and we end up taking many expansion steps and proportioning steps,

which slow down the convergence of the MPRGP algorithm; see the discussion at

the end of Section 6.2. After a while, however, the iterate settles down on the

right face and we mainly take CG steps, which explains smaller number of inner

iterations.
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Table 6.1: Results: SMALBE
Nsub(1/H) H/h Ndof (λ) Ndof (total) outer it. max(inner it.) total it.

16(4) 4 161 561 4 24 6 5 6 41
16(4) 8 369 2145 5 59 6 8 7 8 88
16(4) 12 577 4753 5 38 9 8 11 8 74
16(4) 16 785 8385 4 50 13 12 13 88
16(4) 20 993 13041 6 47 13 12 9 12 8 101
64(8) 4 705 2145 5 32 6 6 6 6 56
64(8) 8 1633 8385 6 49 9 8 9 7 7 89
64(8) 12 2561 18721 7 55 9 13 7 9 9 9 111
64(8) 16 3489 33153 8 84 11 13 11 11 9 9 9 157
64(8) 20 4417 51681 8 39 13 12 13 10 12 12 10 121

144(12) 4 1633 4753 6 50 10 7 7 7 5 86
144(12) 8 3793 18721 7 35 9 11 9 8 8 7 87
144(12) 12 5953 41905 8 39 13 12 7 8 8 8 8 103
144(12) 16 8113 74305 10 40 11 21 12 10 9 8 8 9 8 136
144(12) 20 10273 115921 11 44 8 21 14 12 12 10 8 13 8 8 158
256(16) 4 2945 8385 6 49 12 6 10 7 7 91
256(16) 8 6849 33153 8 32 13 10 11 12 8 8 8 102
256(16) 12 10753 74305 10 34 19 17 10 12 10 10 8 9 8 137
256(16) 16 14657 131841 11 12 17 12 13 8 9 11 8 8 160
256(16) 20 18561 205761 12 50 15 21 13 20 10 11 10 12 12 8 10 192
400(20) 4 4641 13041 7 40 11 10 10 6 8 6 91
400(20) 8 10801 51681 9 41 16 11 11 10 8 9 6 9 121
400(20) 12 16961 115921 11 34 8 15 15 11 11 10 9 6 9 9 137
400(20) 16 23121 205761 13 51 13 15 10 15 13 13 10 11 9 6 9 9 184
400(20) 20 29281 321201 14 230 10 16 18 15 22 11 11 10 13 9 11 9 11 396

We also compare the total iteration counts of Table 5.1 and Table 6.1; note that

for certain combinations of Nsub(1/H) and H/h the SMALBE algorithm requires

twice as many iterations as the combination of an active set method and the hybrid

method.
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