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Abstract

In this thesis we prove that probably approximately correct (PAC) learning

is guaranteed for the framework of energy-based models. Starting from the very

basic inequalities, we establish our theory based on the existence of metric between

hypothesis, to which the energy function is Lipschitz continuous. The result of

the theory provides a new scheme of regularization called central regularization,

which puts the effect of deep learning and feature learning in a new perspective.

Experiments of this scheme shows that it achieved both good generalization error

and testing error.
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Introduction

The idea of energy-based models[11] is centered around the concept energy,

which is the objective to be minimized during inference. This provides a very

general framework for dealing with learning systems, and it immediately puts

machine learning to the scope of mathematical optimization. In this thesis we

provide a rigorous formulation of energy based models, with its three components

– energy, discrimination and regularization – carefully studied.

The intention of PAC-learning[24] is to solve fundamental questions in learning

such as what can be learnt and how many examples are needed to learn successfully.

In the view of statistics, the formulation of PAC-learning is very much like a prob-

lem of seeking for a concentration inequality[3]. There are several of them, namely

Chebyshev’s inequality[3], Hoeffding’s inequality[6], McDiarmid’s inequality[17],

and Bernstein’s inequality[2]. They differ in terms of assumption and tightness of

bounding.

Previous formulations of PAC-learning[9][25][18] use Hoeffding’s inequality or

McDiarmid’s inequality to give polynomial bounds to sample size m, based on the

assumption that both the risk and the hypotheses are in finite range. Similarly, in

this thesis we formulate the bounds based on the assumption that the energy is in

finite range.

If the hypotheses are parameterized by unbounded parameters, as in most

energy-based models, it is likely that a maximum bound for all of the hypotheses

does not exist. However, one can observe that if we are using minimization algo-

rithms (empirical or structural), the hypotheses that the algorithm could explore

are actually confined to a sublevel set of the hypothesis class at each step of the

algorithm. This gives strong indication for combining algorithmic behaviour with
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PAC analysis, which results in a novel concept sublevel hypothesis class.

The result of this thesis also provides a noval regularization approach, by the

means that we establish our theory based on the existence of a metric between

hypothesis, to which the loss function is Lipschitz continuous. The new scheme

is to regularize around a center, which should be a good approximation of the

true parameters of the best hypothesis. One good way of achieving such good

approximation is by deep learning and feature learning techniques, for which this

thesis provides some good experimental results.

For the purpose of conciseness, this thesis did not provide a complete example

study of common used models and energy formulations used in energy-based mod-

els, but the reader can easily verify that all examples fit into this thesis by LeCun

et al’s tutorial paper[11].
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Chapter 1

Elements of Energy-based Models

In this chapter we study the three elements of energy-based models: energy,

discrimination and regularization. Following the convention of LeCun et al[11], en-

ergy is defined as the objective to be minimized during inference. In learning, the

loss function would be more complicated than just the energy since mere energy

neither distinguishes between correct and incorrect answers[13], nor provides effec-

tive generalization on the data the algorithm has not seen yet. Thus, the concepts

of discrimination and regularization were introduced to justify these two necessi-

ties in a learning algorithm. A more comprehensive theory of machine learning

was given in chapter 2, to study the theories behind regularization by examing

different kinds of assumptions we could have over the energy and the hypothesis

class.

1.1 Energy

The entire framework of energy-based models[11][13], by its name, is centered

around the concept of energy. It captures dependencies by associating a scalar
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energy (a measure of compatibility) to each configuration of the variables. Infer-

ence, i.e., making prediction or decision, consists in setting the value of observed

variables and finding values of remaining variables that minimize the energy. As a

result, learning consists in finding an energy function that associates low energies

to correct values of the remaining variables, and higher energies to incorrect values.

A loss functional, minimized during learning, is used to measure the quality of the

available energy functions. Within this common inference/learning framework, the

wide choices of energy functions and loss functionals allow for the design of many

types of learning models, both probabilistic and non-probabilistic.

In order to better formulate our introduction, we place several definitions here,

the first of which are the concept, hypothesis and decision.

Definition 1 (concept). A concept c : X → Z is a function from X to Z, where

X is the set of all possible inputs. A concept class C is a set of concepts.

Definition 2 (hypothesis). A hypothesis h is also a concept. A hypothesis class

H is a set of hypotheses.

Definition 3 (decision). A decision is a functional g : {H ∪ C} × X → Y, where

Y is the set of all possible outputs.

In machine learning, we are given samples (x, y) ∈ X × Y from which we wish

to learn a hypothesis h ∈ H of a given hypothesis class H to approximate the

concept class C associated with a decision g. Usually the concept class C is not

known explicitly during learning, but still it can be conceptually defined as follows.

Definition 4 (concept class associated with a decision). A concept class Cg asso-

ciated with a decision g is a set of all possible concepts such that for any concept

c ∈ Cg and any input x ∈ X , the value y = g(c, x) is always the correct output.
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Although these definitions seem tedious, they will help us greatly in later illus-

tration of the theorems. As we said before, energy is a function upon minimizing

which we would be able to make decision. The definition below thus follows.

Definition 5 (energy). An energy is a functional E : {H ∪ C} × X × Y → R,

minimizing which could give a decision. There is a decision gE associated with the

energy E such that

gE(h, x) = argmin
y∈Y

E(h, x, y). (1.1)

Definition 6 (well-defined energy). If an energy E is lower bounded at 0, that is

inf
h∈{H∪C}, x∈X , y∈Y

E(h, x, y) = 0, (1.2)

then E is well-defined. We can say E is badly-defined if E is not well-defined.

The definition well-defined energy will be extensively useful in both the idea

of discrimination and the proofs of the theorems in chapter 2. In fact, our entire

theory resides in the existence of a well-defined energy. Given some badly-defined

energy, it is usually possible to transform it to a well-defined energy with an equiv-

alent decision.

Since we defined the decision associated with an energy, it is then often useful

to define a concept class associated with an energy.

Definition 7 (concept class associated with an energy). The concept class CE

associated with an energy E is the concept class associated with gE, which is the

decision associated with E.

One may wonder why unlike the previous theories, we defined concept class

rather than just admit a single concept. This is actually self-explanatory from
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the definitions above: a concept is not a mapping from the inputs to the outputs,

rather, it is a mapping from the inputs to some intermediate values in Z, and

then taken by a decision g to make outputs. Thus, it is possible that multiple

intermediate values in Z could associate with a particular output in Y . Seen

in this way, the intermediate value associated with an input of a concept is not

unique, so it could not be a function. Using the definition concept class avoids

this trouble, and later we will see it will make the definition of a metric between

hypotheses and concepts easier. One example is binary classification, in which the

decision function is usually g(c, x) = sign(c(x)).

It is however possible that a concept c directly makes outputs, in which case

the function g merely returns c(x). In this case the concept class may refer to

the possibility that there are multiple forms of c. One example is polynomial re-

gression, in which conceptually speaking a higher-order polynomial function could

be equivalent to a lower-order polynomial if its higher order coefficients are zero,

but it may be referred to as a different concept than the lower-order one. This

difference is usually important if we were to discuss the concistency between the

hypothesis class and the concept class.

1.2 Discrimination and Margin

Rather than speaking of discrimination as a definition, it is better to say that

it is an idea to measure the difference of energy between the incorrect outputs

and the correct output. This is by virtue of the purpose of energy: it is to be

minimized to make an inference. Thus, in learning, we may not want to choose

a hypothesis that results in a flat or small-discrimination energy in the input
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space. Rather, in machine learning we bear in our minds that it is perhaps best

to maximize the discrimination. However, it is usually ill-posed or not always

possible to maximize the discrimination to infinity. What we do in practice is try

to optimize the discrimination to a target value, which is defined as the margin, or

if we want the margin to be infinity, the optimization objective is penalized less as

the discrimination goes larger. That being said, it is still possible for us to make

some example definitions of discrimination. The reader should keep in mind that

these definitions are not the unique ways.

Definition 8 (discrete discrmination). The discrimination associated with an en-

ergy E where Y is a discrete set can be defined as a functional ρ : {H∪C}×X×Y →

R in which

ρ(h, x, y) = min
ỹ 6=y

E(h, x, ỹ)− E(h, x, y). (1.3)

It is also possible to define the discrimination for a continuous Y if we contrain

ourselves to a neighbourhood ε away from y.

Definition 9 (continuous discrimination). The ε-discrimination associated with

an energy E where Y is a continuous set can be defined as a functional ρ : {H ∪

C} × X × Y → R in which

ρ(h, x, y) = min
‖ỹ−y‖≥ε

E(h, x, ỹ)− E(h, x, y). (1.4)

It is worth noting that usually it would not be possible to calculate an op-

timization objective associated with a discrimination if Y is continuous, because

it may consist of some integration over y. In such cases, we may want to get a

discretization Ỹ of the space of Y with respect to the given output y, such that the
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optimization is computationally feasible. For cases like this, the discrimination is

essentially discrete over set Ỹ .

As we have said, these are not the only ways to define discrimination. We will

examine more kinds of discrimination as we discuss each of the algorithms along

the way.

With the idea of discrimination, we could discuss a kind of transformation of

energy such that it would bear with some form of discrimination. Spoken in a

more mathematical way, the new energy E would be best if it could bear a margin

of the discrimination ρ defined over an energy E, in which the margin is a target

value of the discrimination if we would be able to minimize E . In the context of

our theory we will assume that E is a well-defined energy, such that its infimum is

0. Then, the following definition holds.

Definition 10 (margin). The margin of a well-defined energy E associated with a

discrimination ρ defined with some other energy E is

p = min {m |ρ(h, x, y) ≥ m =⇒ E(h, x, y) = 0} . (1.5)

Note that to make sense of the definition above, E(h, x, y) has to be a functional

of ρ(h, x, y). We wrote it in the above ways just to indicate that E(h, x, y) is also

an energy.

Sometimes it is convenient to talk about a concept class associated with a

marginal energy, in which each concept does not only gives the correct output for

every energy term, but also embedding within itself the margin. For this we give

the following definiton

Definition 11 (marginal concept class). The marginal concept class CE of a well-
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defined energy E with margin m, associated with a discrimination ρ(h, x, y) defined

with some other energy E, is a subclass of CE satisfying infc∈CE ρ(c, x, y) = m.

Although the energies E and E should be different, it is still possible for them

to be equivalent, that is, they produce the same decision g. Since E has the margin,

it could be a good term to be used in a loss function. And since E is well-defined,

all of our theories later could be applied to it.

1.3 Regularization

There has long been the discussion of generability in machine learning. A

good generability indicates consistency between the empirical expectation of the

energy and the true expectation, which means that it is of high probability that

the empirical expectation of the energy calculated from a set of samples is close

to the true expectation, assuming the samples are drawn in an independent and

identical fashion from some distribution.

In machine learning the samples were assumed to be drawn from a true concept

(the oracle) with or without some unbiased noise on the outputs, thus by definition

the true expectation of the energy should be low. As a result, it is a good way

to formulate a learning algorithm if we could have been able to minimize the true

expectation. However, generally the true expectation is not computable, because

in reality we are usually given just a finite number of samples. So we turn into

minimizing the empirical expectation.

Unfortunately, such a minimization bears with the risk of overfitting, that is,

the blindly minimized empirical expectation may be too low to represent the true

expectation. Fortunately, there are statistical guarnatees to upper-bound the true
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expectation with a high probability, using the empirical expectation plus some

extra term. This extra term, in turn, will shed light on a regularization term

to be added to the minimization objective to guarantee minimization of the true

expectation, with a high probabiliy. This will be studied more extensively in the

next chapter. For now, we will just define the regularization term as a functional

of the hypotheses.

Definition 12 (regularization). A regularization term is a functional r : H → R.

A machine learning problem in the scope of energy-based models could then be

thought of as a minimizing procedure of the empirical expectation of the energy

plus the regularizatoin term. Naturally, we will call this objective the loss of the

model.

Definition 13 (loss). Given a set of samples S = {(x, y)|(x, y) ∈ X ×Y}, the loss

is a functional L : H → R defined as

L(h) =

 1

|S|
∑

(x,y)∈S

E(h, x, y)

+ λ · r(h), (1.6)

where E is an energy and r is a regularization term.

It is important to note that in pratice people always find some norm on the

parameters of the hypothesis h can be a good regularization term. This is indeed

the case, and our theory later will give a general proof of why it works. As of now,

the elements of energy-based model are completely introduced. These elements

will be used extensively in our later discussions of theories and practices.
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1.4 An Example on Classification

To facilitate the reader in understanding the three elements above, we present

two examples here which are (generalized) binary support vector machines and

multi-class support vector machines, with comparisons between them side-by-side.

The hypothesis we would use for the binary class is a function h1 : Rn → R,

whereas for a k-class multiclass hypothesis we use hk : Rn → Rk, where k ≥ 2.

In the illustration below, we will also use the subscript 1 to represent binary

classification and k for k-class multiclass classification. In the case that h1 or hk is

parameterized linearly with respect to the input, our derivition below will naturally

result in the classical binary or multi-class support vector machines[4][27].

Note that by definition 1 and 2, the construction above suggests that X1 =

Xk = Rn, and Z1 = R,Zk = Rk. Notice that differently from any theory we had

before, rather than producing class labels, a hypothesis produces real values that

can later be used as a input to a decision function. However, as in definition 5,

a decision is made upon minimizing some energy. Therefore, we first define the

energy functionals for each case

E1(h1, x, y) = −yh1(x), y ∈ Y1 = {−1,+1}, (1.7)

Ek(hk, x, y) = −(hk(x))y, y ∈ Yk = {1, 2, . . . , k}, (1.8)

where (h(x))y means the y-th element in the vector value h(x). Notice the

difference in which we have defined the output spaces Y1 and Yk. The energy
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constructions above suggest the following decision functions

g1(h1, x) = argmin
y∈Y1

E1(h1, x, y) = sign(h(x)), (1.9)

gk(hk, x) = argmin
y∈Yk

Ek(hk, x, y) = argmin
y∈Yk

− (hk(x))y. (1.10)

The decision function for binary classification means that we choose the sign of

h1(x), whereas for multiclass classification we choose the maximum component

in the vector hk(x). These are all very standard choices – but resulted from our

definition of energy functions.

However, neither of the energy functions above is well-defined. Both our learn-

ing problem formulation 13 and our main theorem 1 require that we have a well-

defined energy. There are many equivalent forms of energy functions that can

be used, including the Hinge loss function and Logistic loss function. They will

produce support vector machines and (binary or multinomial) Logistic regression,

repectively. As an example, we use Hinge function and its generalized form to con-

struct the well-defined energy for binary and multi-class classification problems.

E1(h1, x, y) = max

{
0,

1

2
− yh1(x)

}
(1.11)

Ek(hk, x, y) =
∑

ỹ∈Yk∧ỹ 6=y

max {0, 1− [(hk(x))y − (hk(x))ỹ]} (1.12)

It is easy to verify that the decision functions associated with the above well-

defined energies are exactly the same as the decision functions g1 and gk associated

with E1 and Ek respectively.

The advantage of them being well-defined is not only that we can apply our

later theorem 1 to it, but also that E1 and Ek bear a margin with respect to E1
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and Ek. Following definition definition 8, we can define the discriminations with

respect to E1 and Ek as

ρ1(E1, x, y) = min
ỹ∈Y1∧ỹ 6=y

E1(h1, x, ỹ)− E1(h1, x, y)

= E1(h1, x,−y)− E1(h1, x, y)

= 2yh1(x).

(1.13)

ρk(Ek, x, y) = min
ỹ∈Yk∧ỹ 6=y

Ek(hk, x, ỹ)− Ek(hk, x, y)

= min
ỹ∈Yk∧ỹ 6=y

(hk(x))y − (hk(x))ỹ.

(1.14)

Therefore, using equation 1.11 and 1.12, it easy to verify that there exist min-

imal m1 = 1,mk = 1 such that ρ1(E1, x, y) ≥ m1 =⇒ E1(h1, x, y) = 0, and

ρk(Ek, x, y) ≥ mk =⇒ Ek(hk, x, y) = 0. Therefore, by definition 10, the well-

defined energies E1 and Ek both have margin 1. The concept of margin was original

proposed to characterize how good a learning system is at distinguishing between

the correct and the incorrect answers. The algorithm both having margin 1 means

that by minimizing this well-defined energy, the algorithm will try its best to let

the correct and incorrect answers differ for at least 1, in terms of the energy E1 and

Ek respectively. This is similar, but not equivalent, to the notion of geometrical

margin proposed for binary support vector machines[4]. One thing to note is that,

there have not been any other similarities in the notion of margin for multiclass

support vector machines, except in the realm of energy-based models[11]. There-

fore, we believe the notion of margin for energy-based models is a more general

concept than the notion of geometrical margin.

As of now, the examples above illustrated the two first elements of energy-
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based models – energy and discrimination, and their related concepts. To explain

regularization, we need to first present our PAC-learning frameworks theorem 1

and theorem 2. The key result is theorem 2, which connects generalization error

with a distance between a hypothesis and a concept class.

Proceeding from theorem 1 to theorem 2, as we will see later, requires that we

can find a metric that our well-defined energy is Lipschitz continuous to. This is

where our idea of marginal concept class – as in definition 11 – comes into play.

Using the previous binary classification as example, marginal concept class CE1 is

a class of all concepts that produce correct results and it sasifies

inf
c1∈CE1

ρ1(c1, x, y) = inf
c1∈CE1

2yc1(x) = 1. (1.15)

Therefore,

E1(h1, x, y) = max

{
0,

1

2
− yh1(x)

}
= max

{
0, inf

c1∈CE1
yc1(x)− yh1(x)

}

=

 infc1∈CE1 |c1(x)− h1(x)|, 1
2
− yh1(x) ≥ 0,

0, 1
2
− yh1(x) < 0.

(1.16)

The first case is already a hypothesis distance. We need to study more closely

for the second case. Notice that 1
2
− yh1(x) < 0 suggests that the discrimination

ρ(h1, x, y) ≥ 1. Using the definition of a marginal concept class, this means that

the value of h(x) is equal to the value of a concept c1(x), c1 ∈ CE1 , and such that

14



infc1∈CE1 |c1(x)− h1(x)| = 0. Combining with the equation above, we know that

E1(h1, x, y) = inf
c1∈CE1

|c1(x)− h1(x)|. (1.17)

As a result, the well-define energy E1 is Lipchitz continuous to a hypothesis distance

as defined above, with Lipschitz constant 1. The case of multiclass classification

can be similarly established. As a result, theorem 2 applies to the examples here

and the explanation of regularization in chapter 3 holds.
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Chapter 2

Probably Approximately Correct

(PAC) Learning

In this chapter we introduce an extension of the traditional PAC-learning theory

to energy-based models. All of the previous theories place generalization bounds

on binary classification error, which does not quite fit into the framework of energy-

based models. The reason is that energy-based models do not assume classification

as its task. The measurement of error is placed directly using the loss. One

advantage of this, as we will see in the next chapter, is that it gives connection of

generalizaton bounds with algorithmic behaviour, by the fact that energy-based

models do assume the minimization of a loss function as the algorithm.

2.1 Concentration Inequalities

We begin our chapter with the introduction of classical concentration inequalities[3].

These inequalities are used in the same way as all the previous theories, and so we
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do not provide proofs on them. The reader could refer to our bibliography to find

appropriate places where they were proved. The first one is Hoeffding’s lemma,

who will provide a good upper bound for the moment generating function used in

Chernoff’s bounding technique.

Corollary 1 (Hoeffding’s lemma). Given ε > 0, if X is an arbitrary random

variable bounded in [a, b], then for t > 0,

et(X−E[X]) ≤ et
2(b−a)2/8 (2.1)

Then, using Chernoff’s bounding technique, one can immediately verify the

following Hoeffding’s inequality[6].

Corollary 2 (Hoeffding’s inequality). Given ε > 0, if X1, . . . , Xm are i.i.d. (in-

dependently and identically distributed) random variables bounded in [ai, bi] respec-

tively, then

Pr[Sm − E[Sm] ≥ ε] ≤ e−2ε
2/

∑m
i=1(bi−ai)2 , (2.2)

Pr[Sm − E[Sm] ≤ −ε] ≤ e−2ε
2/

∑m
i=1(bi−ai)2 , (2.3)

where

Sm =
1

m

m∑
i=1

Xi. (2.4)

In this thesis the Hoeffding’s inequality is not used. What was used in the

subsequent establishment of bounds is actually the more powerful inequality by

McDiarmid[17], as shown below. The advantage of this bound is that it generalizes

Hoeffding’s inequality to the case of a function parameterized by i.i.d. random

varaibles.
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Corollary 3 (McDiarmids Inequality). Let X1, . . . , Xm be i.i.d. random variables

from X and f : Xm → R verifying for all i = 1, 2, . . . ,m

sup
x1,...,xm,x′i

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤Mi. (2.5)

Then, for a given ε > 0,

Pr [|f(X1, . . . , Xm)| − E[f(X1, . . . , Xm)| ≥ ε] ≤ 2e−2ε
2/

∑m
i=1 c

2
i . (2.6)

These are all the concentration inequalities that are useful for this thesis. For a

more detailed introduction of other concentration inequalities, the reader can refer

to the survey by Boucheron et al.[3]

2.2 Stochastic Complexity

As the title suggests, this section concerns with the measurement of complexity

for functions, which means the undesirability of the randomness of the output.

However, we cannot just wave hands and make a concept without saying what is

this notion of ‘undesirability’. Our idea is that, intuitively, complexity of a system

can be thought of as the correlation of its ability of producing output towards a

noise distribution that characterizes the most undesired performance.

Clearly, such undesired performance should be problem dependent. For exam-

ple, for real valued regression problems, the distribution characterizing the most

undesired performance might be the Gaussian distributed centered at 0 with some

variance (a.k.a. the Gaussian noise); on the other hand, for prediction of values in

a range, white noise – uniform distribution in the range of output – may be the best
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choice of undesired performance. In those particular machine learning applications

which are to figure out how to do classification, the most undesired performance

may be a discrete uniform distribution with respect to each classification output.

In particular, for binary classification we have the salt and pepper noise.

In each of the examples above, the undesirability is identified by some proba-

bility distribution associated with the name ‘noise’. Therefore, we generalize these

probability distributions to the concept of noise distribution.

Definition 14 (Noise distribution). A distribution N is said to be a noise distri-

bution if it satisfies the following requirements:

1. The distribution is symmetric:

∀η0 ≥ 0, Pr
η∼N

[η ≥ η0] = Pr
η∼N

[η ≤ −η0]. (2.7)

2. The first (central) absolute moment exists:

E
η∼N

[|η − E
η′∼N

[η′]|] = E[|η|] = σ1
η <∞. (2.8)

Requirement 1 is most intuitive, since we do not want our distribution to be

biased to either positive or negative partof the parameter η. As a result of this

requirement, the mean of a noise distribution is E
η∼N

[η] = 0.

Requirement 2 is trivial if the noise distribution is bounded (e.g., white noise

or any discrete uniform distribution) with its range satisfying some constraints.

For real values, because of the central limit theorem, noise is most likely to be a

Gaussian distribution who has some variance. Note that a Gaussian distribution

also satysfies requirement 2.
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Definition 15 (Empirical stochastic complexity). Let F be a family of functions

mapping from U to R, and S = (u1, u2, . . . , um) a fixed sample of size m with

elements in U . Then, the empirical stochastic complexity of F with respect to the

sample S is defined as:

ĈS(F ) =
1

σ1
η

E
η

[
sup
f∈F

1

m

m∑
i=1

ηif(ui)

]
(2.9)

where η = (η1, . . . , ηm)T , with ηis independent random variables taking values from

a noise distribution N . The random variables ηi are called noise variables.

The empirical stochastic complexity measures on average how well the function

class F correlates with random noise on S. This describes the richness of the class

F : richer or more complex class F can generate more kinds of f(zi)’s and thus

better correlate with the random noise, on average. There is a normalization

term σ1
η, which is a normalization term to different kinds of noise distributions,

regardless of their first central absolute moments.

Definition 16 (Stochastic complexity). Let D denote the distribution from which

the samples were drawn. For any integer m ≥ 1, the stochastic complexity of F

is the expectation of the empirical stochastic complexity over all samples of size m

drawn according to D:

Cm(F ) = E
S∼Dm

[ĈS(F )]. (2.10)

Acure reader may discover that, ifN characterizes the salt and pepper noise, the

stochastic complexity is exactly the Rademacher complexity[1][18]. However, since

energy-based models do not assume classification, there is no reason to restrain us

to it. If N is Gaussian distribution, it is the Gaussian complexity[1] normalized by
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its first absolute central moment. Notice that the first central absolute moment of

the standard Gaussian distribution sohuld be 2/π.

After these definition, we present a lemma which will be used later.

Lemma 1. Let F be a family of functions mapping from U to R, and assume

S = (u1, u2, . . . , um) and S ′ = (u′1, u
′
2, . . . , u

′
m) are samples of size m drawn i.i.d.

from distribution D. Then, the following holds for variables η = (η1, η2, . . . , ηm)

drawn i.i.d. from a noise distribution N :

E
S,S′

[
sup
f∈F

1

m

m∑
i=1

(f(u′i)− f(ui))

]
≤ 1

σ1
η

E
η,S,S′

[
sup
f∈F

1

m

m∑
i=1

ηi(f(u′i)− f(ui))

]
. (2.11)

Proof. Since N is a noise distribution, it can be known that it has first (central)

absolute moment E
η
[|η|] = σ1

η, as in requirement 2 of definition 16. Thus, the

following derivation holds:

E
S,S′

[
sup
f∈F

1

m

m∑
i=1

(f(u′i)− f(ui))

]
=
σ1
η

σ1
η

E
S,S′

[
sup
f∈F

1

m

m∑
i=1

(f(u′i)− f(ui))

]

=
1

σ1
η

E
S,S′

[
sup
f∈F

1

m

m∑
i=1

σ1
ηi

(f(u′i)− f(ui))

]

=
1

σ1
η

E
S,S′

[
sup
f∈F

1

m

m∑
i=1

E[|ηi|](f(u′i)− f(ui))

]

=
1

σ1
η

E
S,S′

[
sup
f∈F

E
η

[
1

m

m∑
i=1

|ηi|(f(u′i)− f(ui))

]]

≤ 1

σ1
η

E
η,S,S′

[
sup
f∈F

1

m

m∑
i=1

|ηi|(f(u′i)− f(ui))

]

=
1

σ1
η

E
η,S,S′

[
sup
f∈F

1

m

m∑
i=1

ηi(f(u′i)− f(ui))

]
.

(2.12)

The second last line comes from the convexity of supremum. The last line comes
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from that when ηi > 0, the associated summand remains unchanged; when ηi < 0,

the associated summand flips signs, which is equivalent to swapping zi and z′i

between S and S ′. Since we are taking expectation over all possible S and S ′, this

swap does not affect the overall expectation. The lemma is therefore proved.

2.3 Generalization Bounds

In energy-based models, we do not assume that the prescribed hypothesis class

is finite. In particular, in almost all cases the hypothesis is parameterized by

a parameter w in the real multi-dimensional space. As a result, although we can

easily construct an approximation bound for each of the hypotheses in the class, it is

not guaranteed that when the algorithm explores these hypotheses it could achieve

good generalization. Thus, by the fact that we are dealing with all hypotheses in

the class, it is better if we can bound the maximum difference between the true

expected energy and the emirical expectation, i.e.,

φS(H) = sup
h∈H

 E
(x,y)∼D

[E(h, x, y)]− 1

|S|
∑

(x,y)∈S

E(h, x, y)

 (2.13)

where D is the distribution from which samples (x, y) were drawn.

To use McDiarmid’s inequality on φ(S), it is necessary to identify a bound on

the change of φ(S) if only one point is changed. If we assume that an upper bound

on the energy is M , then it follows the lemma below.

Lemma 2. Let F be a family of non-negative functions mapping from U to R with

its values upper bounded by some value M ≥ 0. Assume S = (u1, u2, . . . , um) is a

sample of size m drawn i.i.d. from distribution D. Define the following functionals
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ψS(f) and φS(F ):

ψS(f) = E
u∼D

[f(u)]− 1

m

m∑
i=1

f(ui), φS(F ) = sup
f∈F

ψS(f), (2.14)

where it verifies that φS(F ) > 0. Then, it holds that

sup
S,S′
|φS(F )− φS′(F )| ≤ M

m
, (2.15)

where S ′ differs with S at only one point.

Proof. Denote S ′ = (u′1, u
′
2, . . . , u

′
k, . . . , u

′
m) = (u1, u2, . . . , u

′
k, . . . , um), such that

the samples S and S ′ differ at uk. Without loss of generality, let us assume that

φS(F ) ≥ φS′(F ). Denote f ∗ = argmax
f∈F

ψS(f), we know that φS(F ) = ψS(f ∗), and

φS′(F ) = argmax
f∈F

ψS′(f) ≥ ψS′(f
∗). As a result,

|φS(F )− φS′(F )| = φS(F )− φS′(F )

= ψS(f ∗)− φS′(F )

≤ ψS(f ∗)− ψS′(f ∗)

= |ψS(f ∗)− ψS′(f ∗)|

≤ sup
f∈F
|ψS(f)− ψS′(f)|

= sup
f∈F

∣∣∣∣∣
[

E
u∼D

[f(u)]− 1

m

m∑
i=1

f(ui)

]
−

[
E
u∼D

[f(u)]− 1

m

m∑
i=1

f(u′i)

]∣∣∣∣∣
= sup

f∈F

1

m
|f(u′k)− f(uk)|

≤ M

m
(2.16)

A simlar result can be obtained if we assume φS(F ) ≤ φS′(F ). The lemma is
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therefore proved.

Note that by replacing u with (x, y) and f(u) with E(h, x, y) we recover the

definition of φS(H) as in equation 2.13. The lemma above provides a direct way

to apply McDiarmid’s inequality (as in corollary 3). This will give us the theorem

below, which is the sole generalization bound of this thesis.

Lemma 3 (Approximation bound for a function family with finite bound). Let F

be a family of non-negative functions mapping from U to R upper bounded by some

value M ≥ 0. Assume S = (u1, u2, . . . , um) is a sample of size m drawn i.i.d. from

distribution D. Define functional φS(F ) as

φS(F ) = sup
f∈F

E
S∼Dm

[f(u)]− 1

m

m∑
i=1

f(ui) (2.17)

Then, for any δ > 0, with probability at least 1− δ, the following holds for φS(F ):

φS(F ) ≤ 2Cm(F ) +M

√
log 2

δ

2m
. (2.18)

Proof. With lemma 2, applying φS(F ) to McDiarmid’s inequality (corollary 3), we

obtain

Pr
[∣∣∣φS(F )− E

S∼Dm
φS(F )

∣∣∣ ≥ ε
]
≤ 2e−2ε

2/(M2/m). (2.19)

Setting the right hand to be δ we get ε = M

√
log( 2

δ
)

2m
. Therefore, with probability

at least 1− δ,

φS(F ) ≤ E
S∼Dm

[φS(F )] +M

√
log 2

δ

2m
. (2.20)
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What remains is to bound E
S∼Dm

[φS(F )]. Denote ÊS[f ] = 1
m

∑m
i=1 f(ui), we have

E
S∼Dm

[φS(F )] = E
S∼Dm

[
sup
f∈F

E(f)− ÊS(f)

]
= E

S∼Dm

[
sup
f∈F

E
S′∼Dm

[
ÊS′(f)− ÊS(f)

]]
≤ E

S′,S∼Dm

[
sup
f∈F

ÊS′(f)− ÊS(f)

]
= E

S′,S∼Dm

[
sup
f∈F

1

m

m∑
i=1

(f(u′i)− f(ui))

]
,

(2.21)

in which the third line came from Jensen’s inequality for the convex supremum

function. Apply lemma 1 to the right hand side of the inequality above, we get

E
S∼Dm

[φS(F )] ≤ E
S′,S∼Dm

[
sup
f∈F

1

m

m∑
i=1

(f(u′i)− f(ui))

]

≤ 1

σ1
η

E
η,S′,S

[
sup
f∈F

1

m

m∑
i=1

ηi(f(u′i)− f(ui))

]

≤ 1

σ1
η

E
η,S′

[
sup
f∈F

1

m

m∑
i=1

ηif(u′i)

]
+

1

σ1
η

E
η,S

[
sup
f∈F

1

m

m∑
i=1

−ηif(ui)

]

≤ 1

σ1
η

E
η,S′

[
sup
f∈F

1

m

m∑
i=1

ηif(u′i)

]
+

1

σ1
η

E
η,S

[
sup
f∈F

1

m

m∑
i=1

ηif(ui)

]

= 2Cm(F ),

(2.22)

where η = (η1, η2, . . . , ηm) is a sample of noise drawn i.i.d. from noise distribution

N . The theorem is therefore proved.

As before, if we replace u by (x, y) and f(u) with E(h, x, y), we can get the

generalization bound on a well-defined energy, as follows.

Theorem 1 (Approximation bound with finite bound for energy). For a well-
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defined energy E(h, x, y) over hypothesis class H, input set X and output set Y, if

it has an upper bound M > 0, then with probability at least 1 − δ, the following

holds for all hypothesis h ∈ H:

E
(x,y)∼D

[E(h, x, y)] ≤ 1

m

∑
(x,y)∈S

E(h, x, y) + 2Cm(F ) +M

√
log 2

δ

2m
, (2.23)

where the function family F is defined as

F = {E(h, x, y)|h ∈ H} , (2.24)

D is a distribution on the samples (x, y), and S is a set of samples of size m drawn

i.i.d. from D.

The theorem provides a generalization bound for energy-based models with

well-defined (non-negative) and bounded energy. The result suggests that merely

minimizing the empirical expectation of energy may not give a good approximation

of the true expectation. Instead, we need to figure out the appropriate term r(h)

for a structural energy minimization algorithm, based on the algorithmic effect on

the two parameters Cm(F ) and M . As we will discuss in the following chapter,

when a minimization algorithm proceeds, it will confine the hypothesis class H

that the algorithm is able to explore dynamically, by the optimization objective.

This suggests a dynamic treatment of the hypothesis class H with consideration

of minimization algorithms.
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2.4 Comparison to Previous Theories

To let the reader better understand our theory, here we provide a comaprison

of our theory to the previous PAC-learning frameworks[9][18][25] and those PAC-

Bayes models[16][20][21][23]. The difference is two-fold, for which one fold is a

difference in how to get to our result – theorem 1, and the other fold is a difference

in how we proceed from here to a better explanation of regularization.

The reader may recognise many different versions of theorems in the realm of

learning theory that look just like theorem 1 – which is true since we used pretty

much the same concentration inequalities to get here – but the assumptions are

hugely different. All previous PAC-learning and PAC-Bayes frameworks assume

binary classification problem and bound the classification error, while we assume a

well-defined energy that is used as part of the optimization problem in learning and

bound it directly to lay the foundation of a more direct way of explainin regular-

ization. The theorem works for not only binary classification, but also regression,

multi-class classification and even probability estimation – anything that can be

formulated in energy-based models. Also, almost any learning algorithm that gets

to the form of a mathematical optimization problem can usually be formulated in

energy-based models, thanks to the large number of examples and tricks given in

LeCun et al’s tutorial[11].

Another part of the reason why we can get here is the definition of hypothesis –

we separted the definitions of hypothesis and decision, unlike the previous theories

where the hypothesis produces binary results directly. We disagree with the later

approach because it lacks one layer of thinking – as a function, a linear hypothesis

produces real values, rather than binary classification labels. This is is also the in-

trinsic advantage of energy-based models, which makes it a generalized framework
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to so many different forms of learning problems, and therefore our theory applies

to them too.

Before we talk about the difference of how we proceed from here, another impor-

tant difference is in the idea of stochastic complexity. Previous PAC-learning theo-

ries use Rademacher complexity[1][18] which is a degenerated case of our stochastic

complexity, as previously shown. This complexity measurement is meaningful for

functions that produces binary values – such as 0-1 loss used in previous theories –

but it does not make sense to the definition of energy which is usually a real value.

Therefore, our generalized stochastic complexity helps to make better intuition.

A theory is much less meaningful if it is useless for practice. Therefore, where

we go from here is a an even more crucial question. The general routine of previous

PAC-learning theories is to ignore the third term in equation 2.23, since M was

characterized as a value prescribed to the hypothesis class. More specifically, since

the previous theories bound the 0-1 loss, M in this case is precisely 1[25]. The hope

of the third term falls upon the number of samples m, that is, when m is is large

enough it can be guaranteed to be small. Then, the second term, for which the

previous theories use Rademacher complexity, is bounded by a sequence of compli-

cated concepts such as growth functions and Vapnik-Chervonenkis dimension (VC-

dimension)[26], with the help of Massart’s lemma[15] and Sauer’s lemma[19]. The

result is a bound on the generalization error proportional to O(
√

(d+ log 1/δ)/m),

in which d is the VC-dimension[9][18][25].

At the beginning this was quite exciting, since a numerical bound naturally falls

on the possibility of figuring out what is the VC-dimension d for a given hypothesis

class. However, in practice this rarely works except for a very few simple cases of

hypotheses. There are two reasons for this disapointing fact. The obvious one is
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that it is difficult and challenging for anyone to characterize the VC-dimension for

some general class of hypothesis functions; the amount of mathematical analysis

to get VC-dimension is quite intimidating. The other reason, not so obvious, is

that the assumption that VC-dimension – a static value – does not change during

learning is problematic. This is particularly true if a learning algorithm could be

an iterative optimization procedure – like that in our case of energy-based models,

since at each step the algorithm will have some guarantee to not go beyond some

changing value of the optimization objective, and therefore the set of hypotheses

that the algorithm is able to explore afterwards is actually confined to those that

produce a smaller objective value than this upper bound.

The later problem is dealt with in chapter 3 of our thesis, for which this dy-

namic subset of hypotheses was named sublevel hypothesis class. To do that, we

begin with a bound on a hypothesis distance that the energy function is Lipschitz

continuous to, and bound the stochastic complexity and the upper bound M with

the complexity and upper bound of this distance measurement. What helped us

to get there is a generalized Talagran’s contraction lemma, presented in Talagrand

et al’s excellent introductory book to Banach-space statistics[14]. The bound on

sublevel hypothesis class therefore falls into the possiblity of bounding the up-

per bound of this hypothesis distance, since its stochastic complexity could also

be hopefully bounded by this upper bound. As a result, the notions of compli-

cated upper bounds for the Radamacher complexity such as growth function and

VC-dimension are not used, therefore eliminating the difficulty in figuring them

out.

Just like many distance measrements, the hypothesis distance satisfies the tri-

angular inequality. In chapter 3 we will use this triangular inequality twice. The
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first application reveals a similar idea of bias-variance trade-off[5], which we believe

is the first time that such similarity appeared in a PAC-learning framework. The

second application reveals the reason why metric-based regularization works, such

as lp regularization used extensively in machine learning practices today. Further

more, our revelation extends the metric-based regularization to the new form of a

centered metric around the parameter that was learnt using prior knowledge unsu-

pervisedly. This form matches with the recent ideas of unsupervised pre-training,

which is a part of the excitement in deep learning. We therefore conducted several

experiments to validate this new way of regularization, and it produced both better

generalization error and testing error compared to raw norm-based regularization.

Our last words will compare between the explanation of regularization from

our framework and PAC-Bayes models. The PAC-Bayes framework[16][20][21][23]

is particularly interesting because it combines frequentists’ idea of generalization

error with the prior and posterior distribution of hypothesis. Similarly to previous

PAC-learning theories, the PAC-Bayes framework applies only to binary classifica-

tioin problem, to which our theory holds an advantage. However, PAC-Bayes also

provides an explanation of regularization by the fact that the generalization error

is bounded by the a KL-divergence defined with prior distribution of hypotheses.

It can explain our new way of regularization, although only for binary classification

problems. We are quite interested in extending PAC-Bayes framework to energy-

based models, to see whether some results in combining algorithm behaviour could

also be achieved. This could be a piece of good work for the future.

So far, neither the previous theories nor our current theory can give an efficient

numerical bound for general learning problems, except for some very limited cases.

But as the datasets used in machine learning grows larger and larger, a numerical
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bound is quite appealing but less necessary, compared to a better explanation of

regularization. Therefore, this thesis does not concern with a numerical bound.

Without further ado, the next chapter introduces the latter parts of our theory.
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Chapter 3

Explanation of Regularization

In this chapter, we provide an explanation for the technique of regularization

used in many machine learning techniques. Specifically, we provide a noval explana-

tion for role of regularization by considering the effect of optimization algorithms in

the learning process. This gives one advantage that is provided by the formulation

of energy-based models, as in equation 1.6, that the we immediately put ourselves

into seeking the solution of a minimization algorithm. This provides the possibility

of connecting the complexity and bound measurements dynamically with respect

to how the algorithm proceeds. In turn, this thought also provides a way to design

the optimization objective – the regularization term – in a theoretically founded

way.

3.1 Hypothesis Metric

Previously we have a bound for a well-defined energy. This may not be a prac-

tical bound, since the energy function may be too complicated to derive anything

meaning for its complexity. Instead, if we can give an approximation bound using
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a measurement of the distance between the hypothesis and the concept class, it

may be a better bound in the sense that this distance is not only conceptually

intuitive, but also helpful in our later derivation of any norm-based regularization

used extensively in machine learning literature.

We begin our discussion with a definition of this distance measurement, which

is dependent on a metric between a hypothesis and a concept, when a sample is

given. Note that since hypotheses and concepts are essentially the same thing, the

metric is mathematically symmetrical.

Definition 17 (Hypothesis distance). Given a sample input x, assume we asso-

ciate a metric κ(c(x), h(x)) between a concept and a hypothesis. Then, the dis-

tance between a hypothesis h and the concept class is defined as k(C(x), h(x)) =

infc∈C κ(c(u), h(u))

The motivation for us to introduce this definition of hypothesis distance is

that we want to provide a generalization bound for it, to offer easier access to the

implications of theorem 1 associated with the algorithmic behaviour in a learning

process. Therefore, we need to bound the two terms Cm(F ) and the upper bound

M . This puts us in need of a relationship between a well-defined energy and

a hypothesis distance. For this, our assumption is that the energy provides a

functional Lipschitz continuous guarantee with respect to the distance.

Definition 18 (Lipschitz energy). If a well-defined energy E(h, x, y) satisfies the

inequality

‖E(h1, x, y)− E(h2, x, y)‖ ≤ L‖k(C(x), h1(x))− k(C(x), h2(x))‖ , (3.1)

where C is a prescribed concept class.
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The relationship between the stochastic complexity of the energy function class

and that of the hypothesis distance can be characterized by the following lemma.

Lemma 4. Let Φ : R → R be an L-Lipschitz function. Then, for any function

class K of real-valued functions, the following inequalities hold:

ĈS(Φ ◦K) ≤ L · ĈS(K)

Cm(Φ ◦K) ≤ L · Cm(K)

(3.2)

where S is sample of size m drawn i.i.d. from distribution D.

Proof. First of all, observe that if the first inequality holds for any S of sample

size m, then the second holds since it is just an expectation of the first one.

Thus, the rest of this proof concerns the first inequality only. Let’s fix a sample

S = (x1, x2, . . . , xm). Then, by definition

ĈS(Φ ◦K) =
1

σ1
ηm

E
η

[
sup
k∈K

m∑
i=1

ηi(Φ ◦ k)(xi)

]

=
1

σ1
ηm

E
η1,...ηm−1

[
E
ηm

[
sup
k∈K

um−1(k) + ηm(Φ ◦ k)(xm)

]] (3.3)

where um−1 =
∑m−1

i=1 ηi(Φ ◦ k)(xi). Also, by definition of Eηm and symmetry

property of noise distribution,

(1− ε) E
ηm

[
sup
k∈K

um−1(k) + ηm(Φ ◦ k)(xm)

]
= (1− ε) E

ηm

[
1

2
sup
k∈K

[um−1(k) + |ηm|(Φ ◦ k)(xm)] +
1

2
sup
k∈K

[um−1(k)− |ηm|(Φ ◦ k)(xm)]

]
.

(3.4)

By definition of the supremum, there is some δ > 0 such that for any 0 < ε < δ
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and ηm ∈ R, there exist k1, k2 ∈ K such that

um−1(k1) + |ηm|(Φ ◦ k1)(xm) ≥ (1− ε)
[
sup
k∈K

um−1(k) + |ηm|(Φ ◦ k)(xm)

]
and um−1(k2)− |ηm|(Φ ◦ k2)(xm) ≥ (1− ε)

[
sup
k∈K

um−1(k)− |ηm|(Φ ◦ k)(xm)

]
.

(3.5)

Now, let us bound the right hand side of equation 3.4 by fixing an ηm. Using the

the inequality for supremum, for any 0 < ε < δ,

(1− ε)
[

1

2
sup
k∈K

[um−1(k) + |ηm|(Φ ◦ k)(xm)] +
1

2
sup
k∈K

[um−1(k)− |ηm|(Φ ◦ k)(xm)]

]
.

≤ 1

2
[um−1(k1) + |ηm|(Φ ◦ k1)(xm)] +

1

2
[um−1(k2)− |ηm|(Φ ◦ k2)(xm)]

(3.6)

Let s = sign(k1(xm)− k2(xm)). Then, the previous inequality implies

(1− ε)
[

1

2
sup
k∈K

[um−1(k) + |ηm|(Φ ◦ k)(xm)] +
1

2
sup
k∈K

[um−1(k)− |ηm|(Φ ◦ k)(xm)]

]
.

≤ 1

2
[um−1(k1) + |ηm|(Φ ◦ k1)(xm)] +

1

2
[um−1(k2)− |ηm|(Φ ◦ k2)(xm)]

≤ 1

2
[um−1(k1) + um−1(k2) + sL|ηm| · (k1(xm)− k2(xm))] (Lischitz property)

=
1

2
[um−1(k1) + sL|ηm| · k1(xm)] +

1

2
[um−1(k2)− sL|ηm| · k2(xm)]

≤ 1

2
sup
k∈K

[um−1(k) + sL|ηm| · k(xm)] +
1

2
sup
k∈K

[um−1(k)− sL|ηm| · k(xm)].

(3.7)
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As a result,

(1− ε) E
ηm

[
sup
k∈K

um−1(k) + ηm(Φ ◦ k)(xm)

]
= (1− ε) E

ηm

[
1

2
sup
k∈K

[um−1(k) + |ηm|(Φ ◦ k)(xm)] +
1

2
sup
k∈K

[um−1(k)− |ηm|(Φ ◦ k)(xm)]

]
≤ E

ηm

[
1

2
sup
k∈K

[um−1(k) + sL|ηm| · k(xm)] +
1

2
sup
k∈K

[um−1(k)− sL|ηm| · k(xm)]

]
= E

ηm

[
sup
k∈K

um−1(h) + L · ηmk(xm)

]
,

(3.8)

where the last line again utilizes the definition of expectation and the symmetry

property of noise distribution. Since the inequality holds for all 0 < ε < δ, we have

E
ηm

[
sup
k∈K

um−1(k) + ηm(Φ ◦ k)(xm)

]
≤ E

ηm

[
sup
k∈K

um−1(h) + L · ηmk(xm)

]
. (3.9)

Proceeding in the same way for all other ηis (i 6= m) proves the lemma.

It can be easily recognised that if ĈS is the Rademacher complexity, the lemma

above is identical to the Talagrand’s lemma[14][18] as in Mohri et al’s book[18].

Before we introduce the complete bound for hypothesis distance, we need another

lemma to bound the maximum of a well-defined energy function, as follows. The

proof is very easily verified using the non-negativity of a well-defined energy.

Lemma 5. Assume a well-defined energy E is L-Lipschitz with respect to a hy-

pothesis distance k. If the maximum of the hypothesis distance is M , then the

maximum of E is bounded by L ·M .

Following the two lemmas above, applying theorem 1 we now can give the

thorem below for a bound on a well-defined energy, using the stochastic complexity

and maximum bound of the hypothesis distance.
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Theorem 2 (Approximation bound with finite bound for hypothesis distance). For

a well-defined energy E(h, x, y) over hypothesis class H, input set X and output

set Y, if it is L-Lipscthiz to a metric k who has an upper bound M > 0, then with

probability at least 1− δ, the following holds for all hypothesis h ∈ H:

E
(x,y)∼D

[E(h, x, y)] ≤ 1

m

∑
(x,y)∈S

E(h, x, y) + 2L · Cm(K) + L ·M

√
log 2

δ

2m
, (3.10)

where the function family K is defined as

K = {k(C(x), h(x))|h ∈ H} , (3.11)

D is a distribution on the samples (x, y), and S is a set of samples of size m drawn

i.i.d. from D.

The theorem above provides us a tool for bounding generalizatoin errors using

the hypothesis distance, other than the energy functions, for that in practice the

distance is always easier to be used for deriving feasible regularization terms for

the structural loss minimization algorithm. Later part of this thesis will show how

a regularization term can be derived generally.

Similarly to the bound on energy, the theorem above states that in order to

get good generalization on true expectation, we have to reduce the stochastic com-

plexity and the upper-bound of the metric. This will follow with our innovative

idea in this thesis, that is rather than thinking of the stochastic complexity and

the upper-bound of the metric as static, we think of them as dynamically chang-

ing as the algorithm proceeds. Thus, compared to the previous PAC-learning

theories[9][25][18] and PAC-Bayes theories [16][20][21][23], this thesis may provide
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a different view of how does the statistical guarantees work and thus a more direct

way of stipulate regularization.

3.2 Sublevel Hypothesis Class

Even though we have the previous bounds on energy and hypothesis distance,

a difficulty appears since we cannot easily ask the question of whether there is

an upper of the stochastic complexity or whether M exists, if no additional prior

assumptions are given. For that, we introduce the concept sublevel hypothesis class

to characterize the property of a minimization learning algorithm, that at a certain

step the objective never goes beyond some limitation. This seemingly limited scope

of thinking includes all that can be formulated in energy-based models – indeed,

all energy-based models are minimization problems with an objective in the form

of equation 1.6.

More specifically, if we assume a guarantee from an iterative optimization al-

gorithm that at a certain step the objective value never goes beyond the previous

step, then when the algorithm proceeds, it keeps confining the scope of hypotheses

to those ones that can only have smaller objective values. However, this guarantee

can be loosened as long as the algorithm converges, since we can than assume

at a certain time during the algorithm’s computation, if we were to inspect the

parameters we can derive from the algorithm that the objective never goes beyond

some limitation that is converging – this limitation does not have to be the current

objective value. To keep our illustration simple and direct, we use the first way of

thinking henceforth.

The reader may expect that, at this point, we may proceed into the inspection
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of a mathematical formulation of such guaranteed minimization property. But the

truth is that we do not need to – with the previous observations at hand, we could

just start to design an objective function that keep bounding the stochastic com-

plexity and the maximum value. In turn, this is precisely the idea of regularization.

But this is certainly not the whole story – we did not show what kind of regular-

ization term could be used to bound the stochastic complexity and the maximum

value yet. One thing for sure, this will certainly make the bounds tighter, unlike

the previous theories in which the hypothesis class is kept static.

To begin our journey, let us first define the notion of sublevel hypothesis class

with respect to a regularization term r(h), with first thinking of minimization

guarantee.

Definition 19 (Sublevel hypothesis class). Assuming we are using a multi-objective

optimization algorithm, whose objective is ( 1
m

∑
(x,y)∈S E(h, x, y), r(h)). If the al-

gorithm is currently at h0, then the sublevel hypothesis class H0 is a subclass of the

prescribed hypothesis class H defined as

H0 =

h ∈ H
∣∣∣∣∣∣ 1

m

∑
(x,y)∈S

E(h, x, y) ≤ 1

m

∑
(x,y)∈S

E(h0, x, y), and r(h) ≤ r(h0)

 ,

(3.12)

in which S is sample of size m drawn i.i.d. from some distribution D.

The first term, needless to say, guarantees minimization of the first term on the

right hand side of equation 3.10. What we would hope is to a way to construct r(h)

such that the second and the third terms – stochastic complexity and the upper

bound M – could be minimized, so as to get a guarantee on the minimization of

its left hand side – the true expectation. Notice that scalarization of both the
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objectives in the definition above gives the optimization problem in equation 1.6.

Fortunately, the stochastic complexity Cm(K) can be upper bounded by M .

What left to us is to hopefully bound M using r(h), such that the algorithm

provides good generalization. This follows with the theorem below, but the reader

should be cautious that this theorem is merely a hope in designing r(h). It will

not provide a sensible bound if we replace the stochastic bound in equation 3.10,

since the left-hand is always smaller than L ·M .

Theorem 3 (Upper bound of stochastic complexity). Let F be a family of non-

negative functions mapping from U to R upper bounded by some value M ≥ 0.

Then the following holds

ĈS(F ) ≤ M

2
,

Cm(F ) ≤ M

2
.

(3.13)

Proof. Define indicator function

1{η ≥ 0} =

 0, if η ≥ 0;

1, otherwise.
(3.14)

Then, by symmetry of noise distribution, we know that Eη∼N [1{η ≥ 0}|η|] = σ1
η/2.

Also note that by non-negativity of the function family F , we know that ηf(u) ≤
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1{η ≥ 0}|η|M . Thus, the following derivation holds

ĈS(F ) =
1

σ1
η

E
η

[
sup
f∈F

1

m

m∑
i=1

ηif(ui)

]

≤ 1

σ1
η

E
η

[
1

m

m∑
i=1

1{η ≥ 0}|ηi|M

]

=
M

σ1
η

E
η

[1{η ≥ 0}|η|]

=
M

2
.

(3.15)

The same inequality holds for Cm(F ) as well since it is an expection over ĈS(F ).

As of now, all the ideas of this thesis regarding PAC-learning has been intro-

duced. The result indicates that the ability of generalization can hopefully depend

on M – the upper bound of the hypothesis distance with respect to which a well-

defined energy is L-Lipschitz to – in a sublevel hypothesis class that is determined

by the current minimization algorithm state h0. This gives a very important tool

for deriving the regularization term when the loss function of a problem is deter-

mined – minimizing a function of parameters that upper bounds M of the sublevel

hypothesis class. The next section discuss specific implications of this idea.

One other issue to be noted is that M does not only function as a hope for

bounding the generalization error. Since it is the upper bound of a distance mea-

surement between a hypothesis and the concept class, the effect of itself being small

is that the sublevel hypothesis class with the algorithm achived great consistency

with the approximation of the concept class. This is another fold of the story, al-

though relatively trivial, regarding how crucial M is for the theory on energy-based

models.
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3.3 Distance Decomposition

From the previous sections, we have recognised that the hope of generalizatioin

for an energy-based model solely depends on M . However, we may still want to

derive some more specific upper bound on M so that a distribution-independent

regularization term r(h) can be given. In this section we will study the case when

κ is some norm, and the hypotheses are parameterized by a vector w ∈ Rm such

that h(x) = h(w, x). This encopes almost all energy-based models used in practice.

Before we talk about the distance k, we need a tool which is the triangle

inequality for hypothesis distance.

Theorem 4 (Triangle inequality of hypothesis distance).

∀h1, h2 ∈ H, k(C(x), h1(x)) ≤ k(C(x), h2(x)) + κ(h1(x), h2(x)).

Proof. Let c∗ = argminc∈Cκ(c(u), h2(u)), then

k(C(x), h1(x)) = inf
c∈C

κ(c(u), h1(u))

≤ κ(c∗(u), h1(u))

≤ κ(c∗(u), h2(u)) + κ(h1(u), h2(u))

= inf
c∈C

κ(c(u), h2(u)) + κ(h1(u), h2(u))

= k(C(x), h2(x)) + κ(h1(x), h2(x)).

(3.16)

Let k be the hypothesis distance that the energy is L-Lispchitz to, and define
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h∗ = argminh∈H0
maxx{k(C(x), h(x))}, the triangle inequality states that

k(C(x), h(x)) ≤ k(C(x), h∗(x)) + κ(h(x), h∗(x)). (3.17)

This equation is particularly interesting, since K(C(x), h∗(x)) is like a distance be-

tween the current sublevel hypothesis class and the target concept class – measured

in terms of the maximum over input space – which pretty much like a measurement

of the consistency betweeen sublevel hypothesis class H0 and the concept class C.

Taking the maximum of both sides over x, we get

M = max
x
{K(C(x), h(x))} ≤ max

x
{K(C(x), h∗(x))}+ max

x
{κ(h(x), h∗(x))}.

(3.18)

If we match this to the bias-variance trade-off in many machine learning texts[5],

then the two terms on the right hand side of the inequalities behaves very much

like a bias and a variance, respectively.

If we prescribe the algorithm a large-capacity sublevel hypothesis class, then

K(C(x), h∗(x)) is usually small. The problem of generalization then falls into how

can we make maxx{κ(h(x), h∗(x))} small enough. If the hypotheses are parame-

terized by a parameter w and define h(w∗, x) = h∗(x), Then what we would hope

for is a Lipchitz-like inequality such has κ(h(w, x), h(w∗, x)) ≤ L(x)κw(w,w∗), in

which κw is a metric for the parameters w. This will give the bounding form

max
x
{κ(h(x), h∗(x))} ≤ max

x
{L(x)}κw(w,w∗), (3.19)

such that κw(w,w∗) could be used directly as the regularization term r(w), if w∗

is known.
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However, in reality there is no way to know about the true w∗. There are two

ways to deal with this – either using again the triangle inequality

κw(w,w∗) ≤ κw(w, 0) + κw(w∗, 0), (3.20)

such that we regularize using κw(w, 0), or using some approximation wc of w∗

such that κw(w∗, wc) is small and again by triangle inequality we regularize using

κw(w,wc). The former explains all the norm (and metric) based regularization used

in literature, and the latter explains a possible role unsupervised learning especially

deep learning could play – their learnt parameters using prior knowledge could be

good choices of wc. The next chapter will provide experimental results using the

latter idea.

However, despite all the excitement we had above, we had not solved the prob-

lem in seeking L(x) in equation 3.19 in the first place. The feasibility of such a

decomposition is probably dependent on the specific definition of the metric κ.

Here we provide a theorem for the case that κ is some norm, which is perhaps the

most used form of regularization in literature.

Theorem 5 (Metric decomposition for norm). For (sub-)differentiable hypothesis

functions h(w, x) ∈ Rn with parameters w ∈ Rm, the following inequality decom-

position holds

∀x, κ(h(w, x), h(w∗, x)) ≤ κw(w,w∗) · L(x) (3.21)

for metrics k and kw defined as

κ(h(w, x), h(w∗, x)) = ‖h(w, x)− h(w∗, x)‖qq, κw(w,w∗) = ‖w − w∗‖qp, (3.22)
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and L(x) defined as

∀x, L(x) =
n∑
i=1

[li(x)]q, with li(x) = sup
w
‖∇whi(w, x)‖r , (3.23)

where

1

p
+

1

r
= 1. (3.24)

Proof. With the definition of li(x), assuming the hypothesis functions are differ-

entiable, first we prove that

|hi(w, x)− hi(w∗, x)| ≤ li(x)‖w − w∗‖p. (3.25)

By the mean value theorem, it is easy to know that there exist some 0 ≤ α ≤ 1

such that

∀x, hi(w, x)− hi(w∗, x) = ∇wh((1− α)w + αw∗) · (w∗ − w). (3.26)

Thus, by Hölder’s inequality[7], if 1/p+ 1/r = 1 we know that ∀x,

|hi(w, x)− hi(w∗, x)| = |∇wh((1− α)w + αw∗) · (w∗ − w)|

≤ ‖∇wh((1− α)w + αw∗)‖r‖w∗ − w‖p

≤ l(x)‖w − w∗‖p.

(3.27)
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As a result, k(h(w, x), h(w∗, x)) can be bounded as

κ(h(w, x), h(w∗, x)) = ‖h(w, x)− h(w∗, x)‖qq

=
n∑
i=1

|hi(w, x)− hi(w∗, x)|q

≤
n∑
i=1

[l(x)‖w − w∗‖r]q

= ‖w − w∗‖qr ·

(
n∑
i=1

[l(x)]q

)

= ‖w − w∗‖qr · L(x)

= κw(w,w∗) · L(x).

(3.28)

The theorem also holds for sub-differentiable hypothesis class by extending the

mean value theorem to subgradients.

The theorem tells us that, if the energy is L-Lipschitz to the q-th power of a

q-th norm, a good regularization parameter should be chosen as r(h) = r(w) =

‖w − wc‖q2, in which wc is an approximation of the best parameter and if it is not

available, we can let wc = 0.

It is interesting to know that regularization with the l2 norm of the training

parameter seems to always give a good bound on generalization error. However,

one should admit that because of certain asymptotic equivalence of norms, we

can choose arbitrary norm-based regularization depending on some other prior

requirements – such as sparsity from l1 norm. As far as this theory concerns, any

norm will be good candidates for regularization.

Another interesting fact from the proof of the theorem is that the dimension of

the output and the dimension of the parameter both determine the complexity to
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some extend, since L(x) is bounded with a sum of n items of [li(x)]q, and li(x) is

also bounded with a sum of the squares of each dimension of ∇whi(w, x). Thus, in

designing a learning system, it is generally not a good idea to use a large dimension

for the output and a large amount of parameters.

As of now, we have provided a complete theory of PAC-learning for energy-

based models. The decision on whether a learning algorithm could be bounded

falls onto the possibility of finding a hypothesis distance which the loss function

is L-Lipschitz to. Then, if the metric is in the form of a norm, l2 regularization

(or any other norm-based regularization) can be applied to it for the purpose of

achieving good generalization.

3.4 Central Regularization

There was a particular noval and interesting idea follows from our introduction

to a theory for energy-based models, that is to use an approximation vector wc to

approximate the best answer w∗, and then regularize with the following regularizer:

r(h) = r(w) = ‖w − wc‖22. (3.29)

We call this definition of the regularizer central regularization.

Following the recent developments of deep learning and feature learning, we

have already got a set of nicely working algorithms that use various prior knowledge

for identifying wc, for different kinds of data. In this thesis we will experiment on

one of them – predictive sparse decomposition[8]. It uses a alternating direction

method in conjunction with fast iterative shrinkage thresholding (FISTA)[8] to
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optimize the following objective

E(W,V, x, z) = ‖y −Wz‖22 + λ‖z‖1 + ‖f(V, x)− z‖22, (3.30)

in which W is the dictionary and f(V, x) is an encoder.

(a) Decoders

(b) Encoders

Figure 3.1: The pretrained predictive sparse decomposition autoencoder
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For our purpose we use the following smoothed version of rectified linear unit

f(V, x) = log{1 + exp(V x)}. (3.31)

The dataset used is a 32× 32 expansion of the MNIST dataset[12]. It contains

60,000 training images and 10,000 testing images of handwritten digits. Figure

3.1 shows the visualization of W (the decoder) and V (the encoder) learnt using

predictive sparse decomposition for 800 dictionary entries. The output of the

encoder f(V, x) will then be connected to a linear layer and a cross-entropy loss to

train a 2-layer neural network model.
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Figure 3.2: Comparison between fine tuning and central regularization

Our first experiment is between fine tuning and central regularization. In the

experiment, we initialize the weights of the first layer using the learnt encoder

weights V , and then optimize the neural network altogether. Central regularization

added a term r(w) = ‖w−wc‖ with wc = V for the first layer. The regularization

parameter λ is 0.05. From figure 3.2 we can see that while achieving similar

performance, central regularized model observe closer values for the training erro

and testing error. This is exactly what to be expected from any regularization
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method – good generalization.
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Figure 3.3: Pretraining performance

Our second experiment is concerning what would happen if we embed a pre-

training stage in the algorithm. That is, we keep the first layer fixed, pretrain

only the second layer and then pass this whole structure to fine tuning and central

regularization. This provides comaprisons of fine tuning and central regularization

in the algorithm’s near-optimal stage, from a common starting point. Figure 3.3 is

the result of this pretraining stage, which makes a common ground of 3.5% testing

error and 2.1% training error for the comparison.

Figure 3.4 shows the comparison between fine tuning and central regularization

after pretraining. The common ground given by the pretraining stage provides a

much nicer comparison here. Central regularization not only makes the curves
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Figure 3.4: Comparison between fine tuning and central regularization after pre-
training

between training error and testing error closer, but also provides a lower testing

error. This suggests that a good property of regularization – better generalization

will make the testing error small. The testing error we achieved after 20 epoches

of central regularization is about 1.9%, although worse than those state-of-the art

ones trained with distortions[22], but better than similar architectures trained with

merely norm-based regularization[10].
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Chapter 4

Conclusion

This thesis studies the PAC-learning theory of energy-based models. We began

our introduction with the three elements of energy-based models – energy, dis-

crimination and regularization. Energy is defined as the objective to be minimized

during inference, and discrimination measures the difference of energy between the

incorrect outputs and the correct outputs. In a learning algorithm we wish to

achieved small loss on an energy associated with some margin, and add regulariza-

tion to the optimization objective to ensure small generalization error. But how

to design a regularization term is not clear, unless some theory on generalization

error can be provided.

The theory we chose to expand ourselves on the probably approximately correct

(PAC) learning theory. Starting with concentration inequalities and a definition

of complexity, we establish that the generalization error is bounded by an upper

bound of the energy. To ensure that this upper bound exists, we make an observa-

tion that at each step of an optimization algorithm, the hypothesis class that the

algorithm is able to explore is confined by its current objective value. This com-
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bined together the PAC-learning model and algorithmic behaviour of energy-based

models.

Then, if the energy is Lipschitz continuous to some metric between hypothesis,

we can measure this generalization error bound interms of the distance between the

current hypothesis and the target class. A first triangle inequality reveals a similar

idea of bias-variance trade-off, and a second one reveals why we do metric (or

norm) based regularziation. A novel idea of central regularization is also provided,

and our experiments show good practical results of this regularization scheme.

The future of this work may include a study of the theory based on finite

variance and mean of the energy rather than an upper bound, and the possibility

of progressive central regularization when a deep learning model and a supervised

model are trained together in parallel.
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formula of laplace. Math ḿatique des Annales Scientifiques des Institutions

Savantes de lUkraine, 1924.

[3] S. Boucheron, G. Lugosi, and O. Bousquet. Concentration inequalities. In

O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced Lectures on
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