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Abstract

The Kivrin program, consisting of a crawler, a data collection, and a front-end interface,
attempts to extract biographical information from Wikipedia, specifically, spatio-temporal
information—who was where when—and make it easily searchable. Some of the considera-
tions standard to moving object databases do not apply in this context, because the texts
by their nature discuss a discontinuous series of notable moments. The paper discusses
several different methods of arranging the crawler queue priority to find more important
figures and of disambiguating locations when the same place name (toponym) is shared
among several places. When lifespan information is not available, it is estimated to exclude
sightings outside the person’s plausible lifetime.

The results are grouped by the number of sightings in the user’s search range to minimize
the visibility of false drops when they occur. Erroneous results are more visible in times
and places where fewer legitimate sightings are recorded; the data is skewed, like Wikipedia
itself, towards the U.S. and Western Europe and relatively recent history. The system
could be most improved by using statistical methods to predict which terms are more likely
personal names than place names and to identify verbs that precede location information
rather than personal names. It could also be improved by incorporating the times as a
third dimension in the geospatial index, which would allow “near” queries to include that
dimension rather than a strict range.

The program can be used at http://linserv1.cims.nyu.edu:48866/cgi-bin/index.
cgi.
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1 Introduction

1.1 Goal

The goal of this project is to create an index of articles about people in Wikipedia (bio-
graphical pages) that has a geospatial facet and a temporal facet. The immediate product
is a tool that allows the user to explore different times and places in history through the
people associated with them. This unusual form of discovery allows the user to find out
about a time and place without prior knowledge and can lead to unexpected connections.

A potential future use of this work would be to create a similar index of, say, a digitized
document archive. In that case, instead of indexing which people are relevant to a time and
place, the tool would index which documents may be relevant.

1.2 Other answer sources

It is not clear how the question of “who was where when” could be easily and generally
answered without this tool. Many specialized reference works exist that cover only parts
of this question. “Women writers in the United States: a timeline of literary, cultural, and
social history” is an example of a topical reference book organized as a timeline[1]. Many
history references are organized around a single geographic place or single time period.

An informal survey of librarians revealed them to be somewhat stumped about a gener-
ally applicable method for approaching “who was where when” questions. Such questions
are easier to answer when they relate to a time and place that is in the spotlight of history,
such as France in 1789. The searcher could read a book on the topic and take note of who
is discussed, or just look at the index. It is much harder for less-scrutinized locales, such
as Idaho in the 1940s. In that case, librarians suggested consulting local newspapers of the
time and possibly the Who’s Who books. They also suggested contacting state historical
societies. These ideas would probably work, but they require far more effort than this tool
does and would not be generalizable outside recent U.S. history.

1.3 Wikipedia as a generalist’s resource

The generality and huge scope of Wikipedia (nearly 3.9 million pages in English[2]) makes
possible a high-level overview of history and allows the user to explore different combinations
of times and places easily. The tool is probably not useful to higher-level users who are
already experts in their field; they do not require this type of discovery. It is also not
useful for extremely specific queries (like May 1981 in Brooklyn), for reasons that will be
discussed.

Any information retrieval tool has to strike a balance between precision and recall. In
the design of this tool, I generally leaned towards increasing recall. The tool is meant to
reveal people who may be of interest; the user still has to look at the articles and determine
if they are really interesting. Thus offering more candidates is better than offering fewer.
At the same time, an effort was obviously made to minimize false drops that are caused by
totally wrong interpretations of the Wikipedia article text, since some of these are so far
off that they would undermine the user’s trust in the system.
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1.4 Components

The project consists of three main components. (For the sake of brevity, I have dubbed it
“Kivrin,” after the time-traveling historian of Connie Willis’s novel Doomsday Book [3].)

The first component is a crawler, written in Java, that processes a queue of Wikipedia
articles, determines if they are biographical and, if they are, extracts links to follow, bio-
graphical metadata, and a series of place-time pairs like “Rome” and “44 BC.”

The second component is a database of this information, stored in the document-based
(NoSQL) database MongoDB. Instead of tables, MongoDB stores collections of JSON doc-
uments.

The third component is a front-end, written in Python with some JavaScript, that allows
a user to query the database in several different ways: by place name, by person name, by
a pair of geographical coordinates, and by a circle or polygon selector tool (adapted from
code written by Marcelo Montagna[4]).

2 Prior work

2.1 Spatio-temporal search in general

Although this project proposes to create a database for times and places, many of the
concepts from spatio-temporal search and moving objects databases do not actually apply
here[5].

Many moving objects databases deal with objects that have continuously known posi-
tions, such as an airplane or cell phone. Others also take into account an object’s extent as
well as its position (for example, a forest fire). Biographies, however, are written in terms
of discontinuous notable moments. The changes to a person’s extent are not geographically
significant.

Similarly, spatio-temporal databases also sometimes have to do with tracking an object’s
velocity or trajectory, or predicting future positions. These concepts seem meaningless in
the context of a human life—especially the life of someone who is already deceased.

On the other hand, it is useful to consider the concept of an event versus a state. An
event is a fact that has no duration, but a state does. If a person in history is observed in
a place at a time, is it better to consider that a discrete event or a single observation of an
ongoing state? This question is discussed in section 5.2.

2.2 Named entity recognition

In this project, different levels of named entity understanding are required. We assume
broadly that the article’s sentences are about the subject of the article, so there is no
need to identify whether “George W. Bush” and “Bush” refer to the same person through
coreference resolution. On the other hand, we do need to identify places and, if the place
name is ambiguous, what specific place is being referred to. As is discussed later, place
names are identified based on signals like capitalization, context words, and the name’s
presence in a gazetteer.

The need to differentiate different categories of named entities is similar to the shared
tasks for CoNLL 2002 and 2003[6][7]. An earlier paper by Wacholder et al. discusses the
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problem in rules-based way, but the signals they use for their tool Nominator (like personal
titles) tend not to be present in the style of Wikipedia text[8]. In my initial approach to
this project, I avoided the more complex methods used by the CoNLL projects, thinking
that the cost would be superfluous queries to gazetteer sources. As discussed in section
12.2, these heuristics leave many personal name identified erroneously as place names.

2.3 Toponym disambiguation

Buscaldi and Rosso provide a valuable comparison of map-based versus knowledge-based
toponym disambiguation[9]. In each method, unambiguous toponyms in the surrounding
text are used as evidence. In the map-based method, the distance between candidate places
and the centroid of the established places is measured. In the knowledge-based method, the
established places and the candidate places are located in a tree in “the georeferenced version
of WordNet (GeoWordNet),” and a partition of the holonymy hierarchy is calculated. In
their experiments, the map-based method performs better when there is sufficient context.
In their work, they use the GeoSemCor corpus of general text.

Buscaldi and Rosso discard any context coordinates more than two standard deviations
away from the centroid. They also put all of the ambiguous toponyms in the pot together:
in their example, using the two Birminghams, there is also “Oxford,” which could be in the
UK or in Mississippi. They include the coordinates of both Oxfords in the context set for
Birmingham.

Rauch et al. discuss a confidence-based method for disambiguating potential toponyms
[10]. Various heuristics are implemented that go into calculating a final confidence score;
both positive and negative hints are considered. Nearby words like “mayor” or “Mr.” are
taken as evidence for or against the term referring to a place. Populations are taken into
account; places with higher populations are more likely to be the correct one (Kivrin uses
this idea by setting a minimum population for a place to be considered—see section 4.4).
“Correlation of geographic and textual distance” is another of their heuristics. By this, they
mean that geographically nearby and containing locations mentioned nearby in the text are
strong indicators for disambiguation.

Overell and Rüger discuss the creation of a co-occurrence model to resolve place name
ambiguity[11]. As a rationale, they mention (among others) the danger that a user looking
for a secondary sense will be “flooded with irrelevant results.” They also present three dif-
ferent types of ambiguity: structural (is “North” part of the toponym in “North Carolina”),
semantic (does “Lincoln” refer to a president or a town), and referent (is the Lincoln in
Nebraska meant or the one in England). They take advantage of the fact that Wikipedia
has discrete pages for each sense: “the onus is...on a page author...to correctly link to the
intended pages they reference,” an assumption also made in the Kivrin project. Overell
and Rüger use simple heuristics and basic information accurate enough to create an initial
co-occurrence model, which is then applied to a full data dump from Wikipedia. That in
turn “produce[s] a co-occurrence model of significant enough size to disambiguate place
names in freetext.”

In an influential paper, Sehgal et al. attack the opposite problem of entity resolution,
or telling when two differing descriptions refer to the same place[12]. Kivrin avoids this
question by allowing the user to search a geographic space that may include synonymous
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place names.

2.4 Spatio-temporal search in text documents

Manguinhas et al. discuss the development of a multilingual gazetteer service that is used
to process RSS feed items in English, Portuguese, and other languages, to extract time
and place information[13]. Their paper contains a valuable discussion of possible heuristics
for finding the correct interpretation of a geographic name. In particular, they discuss the
notion of one referent per discourse (“a geographic reference often means only one of its
senses when used multiple times within one discourse context [e.g. the same document]”)
and the idea of having “a default sense [that] can be assigned to ambiguous references.”
Both of these heuristics are used in the final version of Kivrin (see section 6.5). The paper
further argues that “most document collections can be organized” by time and place and
that “relatively simple extraction techniques can still provide results with a sufficiently high
quality.”

2.5 Information extraction from Wikipedia

A number of prior projects have sought to extract historical time and place information
from Wikipedia in various ways.

Sipoš et al. created HistoryViz, which offers a visual timeline about a person[14]. “Using
heuristics mostly based on PageRank and cosine similarity of the link structure,” they
extract relations to other people. The results are a timeline and a browsable network of
related people. A picture and capsule biography are also offered, derived from Freebase.
This project focuses on the temporal facet as well as on visualization of the data.

In an unpublished paper, Terrell discusses a method of automatically generating timeline
pages for Wikipedia[15]. In her work she draws information from Wikipedia, restructures
it, and contributes it back to Wikipedia, freeing up human editors for other tasks. She
makes several observations about the relatively consistent chronology of articles. She iden-
tifies dates down to the granularity of a day, and matches them with compressed sentences
indicating why the day is notable. Interestingly, the data is stored in the form of Prolog
facts. The facts are used to generate a timeline.

Probably the most similar project to Kivrin is TimeTrails, created by Strötgen et al.,
which seeks to extract spatio-temporal information from free-text documents[16]. They use
Wikipedia featured articles as a test corpus, although they intend the tool for general use
on any body of documents. Here the intent is again more along the lines of creating a
timeline for an individual person. They discuss the creation of “document trajectories” or
“descriptions of event sequences very similar to object trajectories studied in the context
of moving object databases.” Offsets in time and place are computed. Times are processed
using HeidelTime, their own system for extracting and normalizing time expressions[17].
Places are processed using MetaCarta and the data is stored in an SQL database with
an R-tree index. The results are visualized on a map. There is also a brief discussion of
querying their database by a region, but this is not the primary aim. This work is relatively
closely tied to the idea of trajectories in general spatio-temporal databases. It is unclear
to me how to interpret this in the context of historical figures; Magellan is unlikely to go
anywhere new!
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2.6 Disambiguation with Wikipedia

Wikipedia has been a popular source of background knowledge to help disambiguate named
entities. Bunescu and Pasca developed have developed a program that uses a support vector
machine and Wikipedia redirect and disambiguation pages, categories, and links between
articles to determine the most likely assignment of an ambiguous entity to single sense[18].

Cucerzan used similar data signals from Wikipedia to choose an entity assignment that
that “maximizes the similarity between the document vector and the entity vector[19].”
This system is implemented as a web browser that displays text (from any source) with the
canonical form of a surface name displayed as a tooltip.

Nguyen and Cao developed a hybrid system that combines patterns and a vector space
model in two steps to match a proper name with a specific entry in Wikipedia[20]. They
particularly target Wikipedia disambiguation pages as the source of a “disambiguation
dictionary” that is used like a gazetteer. The disambiguation proceeds iteratively using
concretely identified named entities to help disambiguate nearby entities.

Dakka and Cucerzan trained a classifier–using a small corpus of manually tagged Wiki-
pedia articles–to classify other Wikipedia pages according to the categories used in the
CoNLL 2002-03 shared tasks[21]. In their system, they pay special attention to the first
paragraph and abstract as containing the key information. This was more successful than
using infoboxes or feature vectors of a text window of three words on either side of the
reference.

Han and Zhao explain their procedure as an attempt to move away from naive bag-of-
words models and use Wikipedia as a social network for disambiguation[22]. They propose
“a novel similarity measure which allows us to take into account the full semantic relations
indicated by hyperlinks within Wikipedia, rather than just term overlap or social relatedness
between named entities.” Context information that is similar in meaning but not identical
in terms can be used to group observations into single-entity clusters.

2.7 Place and space

Buckland et al., in a survey of tools to support geographic search, discuss a distinction “be-
tween place, a cultural concept, and space, a physical concept[23].” Space can be specified
by measurements, but places have human-invented names that may change over time and
are more likely to be ambiguous. The choices of searching Kivrin by a geographical shape
or a place name offers access to the data by either of these notions.

2.8 Flora & Fauna Finder

This project grew directly from my previous Flora & Fauna Finder project. FFF uses a
similar (but much simpler) crawler written in Java, with storage in MongoDB and a front-
end written in Python. FFF finds pages that contain the Taxobox template, and processes
those pertaining to plants and animals. Looking for phrases like “native to Nigeria,” it
creates a database of where these plants and animals can be found. The results are organized
by the taxonomy (genus, family, etc.).

Sample Flora & Fauna Finder results: http://linserv1.cims.nyu.edu:48866/cgi-
bin/classResults.cgi?place=japan
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Kivrin improves on FFF in many ways while taking on the more difficult task of process-
ing human biographies. Where FFF could often extract habitat information from a single
sentence, Kivrin finds sightings through the entire article text. FFF does not take account
of time at all; dinosaurs could appear alongside plants living today. FFF naively checks
whether a candidate phrase is a toponym at all, and does not care where it is geographically
or if there is more than one place with that name. It does not store coordinates and can
only be searched by place name. FFF accesses the HTML of the Wikipedia articles, which
is not only not the preferred method of access, but relatively slow and difficult to parse.

3 Basic design

Kivrin consists of a database of time-place pairs built by a crawler and accessed by a web
front end.

The crawler processes pages from Wikipedia, retrieves their metadata to see if they are
biographical and get birth and death data, and then examines the free text of the article
to look for times and places. The queue of pages to be processed is weighted to promote
more important pages being processed earlier.

Times are matched by one of two regular expressions. If the person was born after the
year 1000, the regex looks for four-digit numbers with no commas (which are very rarely
anything but years). If the person was born earlier, a more complicated regex that accepts
lower-digit numbers and AD/BC/BCE is used.

Places are matched by looking for trigger words like “to” or “visited” followed by a
capitalized phrase. The candidate place then goes through a series of checks:

1. It is checked against a list of known rejected phrases, like “President.”

2. If it is a Wikipedia link, the target page is retrieved. If coordinates can be found
there, they are compared against the list of known places so far. If there is already a
place with the same name and close coordinates, it is assumed to be the same place.
If not, a new place is created based on Wikipedia’s information.

3. Not all pages in Wikipedia that are about places have links. If no information was
found in Wikipedia, the place is looked up in the prior places found for that person,
on the assumption that there is one sense of a place per discourse (article) unless a
link clarifies otherwise.

4. Failing that, the place is looked up in the locally created collection (i.e. MongoDB
table) of places. If a place with the same name is found there and marked “default,”
that one is chosen.

5. Finally, the GeoNames gazetteer is tried and the first (most important) result is ac-
cepted and marked as the default. If a place with the same name and close coordinates
was already present from Wikipedia, that one is marked default.

6. If no information was found in any of these places, the phrase is probably not a valid
place; it is ignored and added to the rejects collection to be ignored in the future as
well.
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If this process results in at least one valid sighting of the person, they are added to the
people collection along with their birth and death dates and description. Birth and death
years are estimated if not available.

The user can query the front end by drawing a search shape on a map, using a place
name, or using a person’s name. If there are multiple possible place or person name matches,
the user is asked to confirm. The search results are ordered by the number of sightings,
with the person who has the most sightings in the desired span appearing first. If there are
more than one hundred places, only the top one hundred most frequently seen places are
actually processed.

The final version of the data, found at http://linserv1.cims.nyu.edu:48866/cgi-
bin/index.cgi is created by the final version of the queue design discussed in section 6.1
and the cascadecrawler version of the disambiguator discussed in section 6.5.

4 Data Sources

4.1 What is to be extracted

In this project, the goal is to create pairings of times and places associated with a third
entity: the person. This could be viewed as a very simple kind of template filling task in
which each entity needs to be represented to create a valid sighting.

There are two kinds of named entities that are of interest: people and places. The
identification of people is somewhat trivial, as Kivrin only processes Wikipedia pages that
are about a single person and marked as such by a human editor.

Identifying places is a more significant challenge. Some of the signals that are used
include shape features (capitalization), predictive words (prepositions and manually selected
motion verbs), and gazetteer sources. The gazetteers do not entirely prevent cross-type
confusion of personal names being mistaken for toponyms (see sections 10.2 and 12.2).

4.2 Finding people in Wikipedia

A 2008 paper, written when English Wikipedia contained about 2.5 million articles, re-
vealed that about 15% of articles were about “People and self,” a category that includes
biographies, but is not exclusively composed of them[24]. Using an early version of Kivrin,
which did not try to prioritize the queue, it appeared that about 12% of processed pages
were biographical.

In this project, I chose to identify biographical pages by only accepting those articles
that use the Persondata template[25], similar to my approach of identifying plants and
animals in my prior project using the Taxobox template[26]. The Persondata template is
actually simpler, including only the fields name, alternative names, short description, and
the places and dates of birth and death.

The Persondata template is not usually visible on the page. On the page for Bill Clinton,
the displayed infobox is the “Officeholder” infobox. The Persondata is present in the article
source.

Not all articles about people have the Persondata template; however, its use has been
strongly encouraged and good biographical articles have it. If an article lacks even this very
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basic metadata, it is unlikely to be a high-quality page and can be safely ignored. Over the
course of crawling tends of thousands of pages, I discovered only a handful of pages that
weren’t individual biographies that did have the Persondata template; they were closely
related and possibly the work of a single misguided editor.

The short description from the template is used in the search results to give the user
a sense of who the person is, even though the quality is uneven. (Thomas Paine is a
“pamphleteer” but James Cook merely says “Kingdom of Great Britain.”) The birth and
death dates are used as the initial pair of sightings and also to limit what other dates are
permissible; obviously if someone was born in 1553, any sighting in 1540 should be thrown
out.

4.3 Finding places in Wikipedia

Wikipedia also contains many articles with geographic coordinates, whether about places
or events, such as Nepal or the Battle of Gettysburg. Kivrin also uses this metadata when
possible (see section 6.4). Users can add coordinates to any kind of article they like, even
individual streets like the Strand in London.

4.4 References, image captions, and quotes

Wikipedia article text often contains lengthy references in the text.

[[Luther Bible|His translation of the Bible]] into the [[vernacular]] (instead of
[[Latin]]) made it more accessible, causing a tremendous impact on the church
and on German culture. It fostered the development of a standard version
of the [[German language#Modern German|German language]], added several
principles to the art of translation,〈ref〉Fahlbusch, Erwin and Bromiley, Geof-
frey William. ”The Encyclopedia of Christianity”. Grand Rapids, MI: Leiden,
Netherlands: Wm. B. Eerdmans; Brill, 1999–2003, 1:244.〈/ref〉and influenced
the translation into English of the [[Authorized King James Version|King James
Bible]].〈ref name=“Tyndale” 〉”Tyndale’s New Testament”, trans. from the
Greek by William Tyndale in 1534 in a modern-spelling edition and with an
introduction by David Daniell. New Haven, CT: [[Yale University]] Press, 1989,
ix–x.〈/ref〉

These must be removed because they contain all sorts of undesirable places and dates, often
with un-sentence-like punctuation that is hard to process. Image captions and blockquotes
can create similar problems. Images were allowed to remain because more often than not,
any times and places mentioned in the caption are relevant; but they may still represent a
discontinuity in the article narrative that may cause dates to be applied incorrectly.

4.5 What is in GeoNames and how it can be used

GeoNames is a gazetteer or geographical database that can be used for free (unlike similar
references like the Getty Thesaurus of Geographical Names). Its data comes from the US
Board on Geographic Names, the National Geospatial-Intelligence Agency, Wikipedia, and
user contributions[27].
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The information on geographic places it offers includes place names (toponyms), alter-
nate names in various languages, coordinates, what type of place it is, population, and more.
Because it contains over ten million records, there is a potential for queries to match even
when they do not actually refer to places. For example, “Obama” and “Chair” (often used
instead of “chairman”) are both words that Kivrin may investigate as potential toponyms.
GeoNames will return an exact-match toponym in both cases, even though Obama is far
more likely to mean the president than a town of less than 35,000 people in Japan.

To discourage this kind of mistake, Kivrin accepts only a small subset of GeoNames’s
feature codes[28] that are most likely to appear in historical information, such as countries,
regions, oceans, mountains, towns, etc. Examples of excluded codes are “irrigation ditch”
and “bus stop.”

4.6 Centroids versus bounding boxes

When storing information about geographic places, one can use a bounding box (a mini-
mum rectangle that includes the maximum extent of the entity) or a center of some kind.
Wikipedia’s templates are intended for a single pair of coordinates, although some articles
also offer a bounding box elsewhere on the page. GeoNames offers bounding boxes for
countries but not necessarily other entities like cities. Between these two sources, there is a
possibly of a mismatch in whether centroids or boxes are used, but there is more centroid
data, so centroids were chosen for the project. That said, it seems that in some cases GeoN-
ames contains not a geometrically calculated centroid but rather some general central point.
This may be the result of user contributions to GeoNames; centroids sometimes appear to
be in the wrong place to human eyes.

Another reason for this choice is that bounding boxes do not work well with strange
shapes, which unfortunately many geographic places are. For example, the bounding box
for China contains several other countries in their entirety. Using bounding boxes also
increases the amount of data that must be stored for each item—two points rather than
one.

Figure 1: Bounding box for China[29]
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A major downside of centroids is that the centroid of a larger place is near smaller ones,
so that all the results for Germany could unintentionally appear in a search around the area
of Frankfurt. On the other hand, using bounding boxes as the basis for searching could also
be confusing for a user. The user could draw a box around most of Florida but miss part
of the panhandle and not get results for the state since it was not entirely included.

4.7 Ancient places

The farther back ones goes in history, the more likely one is to encounter political entities
that no longer exist or places that have been renamed. GeoNames does not contain coordi-
nates for such places, but Wikipedia does on an inconsistent basis (e.g. Numantia). Kivrin
handles these places when coordinates can be found. First, the historic places with the
highest number of missed encounters (as counted by the rejects collection in earlier crawls)
were preloaded into the system. Examples include Constantinople and the Soviet Union.
Beyond these, whether a place gets picked up depends on Wikipedia. If the place links to
a Wikipedia page with coordinates, they will be accepted; if not, nothing will be found in
GeoNames.

Accepting ancient places is useful for coordinate-based searches; if Kivrin ignored ev-
erything about Constantinople, there would be a mysterious dearth of results in that part
of the world prior to 1500 because those sightings would have been dropped. Because of
the spatial search feature, it is worth creating sightings even for place names like Numantia
that are unknown to modern people.

4.8 DBpedia is not used

DBpedia is a project that attempts to extract structured information from Wikipedia (e.g.
from templates), store it in RDF (Resource Description Framework), and allow it to be
queried using SPARQL (a structured query language for RDF). Initially it seemed that
DBpedia would be a good resource for determining whether a Wikipedia article is about a
person and for retrieving metadata like birth and death dates.

As it turns out, the Persondata template provides a trivial solution to identifying people.
Also, a spot check of birth and death dates and places from DBpedia revealed that whether
fields like dbpedia-owl:birthDate or dbprop:dateOfBirth were favored was inconsistent.
The information was not incorrect (with some exceptions), but it was not clear which field
should be queried to retrieve the information consistently. The data was drawn from the
Persondata template, anyway, which was already available and reasonably easy to process.

DBpedia did not seem to offer any improvement in accuracy or ease of use, and querying
another service would have added complication and possibly slowness, so in the end, I did
not use DBpedia.

5 Patterns and assumptions about dates and places

In creating this project, I observed patterns about the nature of history, biography, and
Wikipedia that informed how Kivrin processes the text. For example, most biographical
entries do not jump around in time from 1943 to 1977, then 1959. Further, it is usually
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spelled out when a person makes a major move from one place to another. If this were not
true, it would be very disorienting to read text about someone in Sydney who then pops
up in Bombay without any further explanation.

5.1 Dates are carried forward

As the crawler processes sentences, it picks up dates and holds onto them, trying to match
them with places in the current and subsequent sentences. The reverse is not true; Kivrin
does not pick up a place and then try to match it against times that appear later. Given
this hypothetical text:

In 1943, he left school. He joined his family in Bombay for several years,
leaving in 1945.

Kivrin would retrieve Bombay and 1945, as they appear in the same sentence. If it were
written slightly differently, as:

In 1943, he left school. He joined his family in Bombay for several years,
working at the family firm. In 1945, he left for England.

Kivrin would pick up 1943 and Bombay, and then 1945 and England. If the text said:

He went to Bombay for business. He arrived there in 1943.

No match would be found unless there were a usable date mentioned before the first sen-
tence. This form of discourse feels unnatural, though—almost backwards—and was not
encountered often in actual Wikipedia content.

Initially, the crawler was designed to drop a carried-forward date anytime it encountered
a section break. A section break might indicate a new discourse that was disjoint from
what came before. In practice, though, this caused more useful dates to be dropped than it
prevented false hits. It turns out that biographical entries proceed in a mostly chronological
way, with the exception of a legacy discussion sometimes appearing at the end of the article.

5.2 Places are not carried forward

Given that the crawler assumes a date is carried forward until it is contradicted, does it
equally make sense to assume a place is carried forward until it is contradicted? That is to
say, if Kivrin logs Ulysses S. Grant as being in Oregon in 1852, and he isn’t mentioned being
in a specific different place until (hypothetically) 1856, should it create entries for Oregon
in 1853, 1854, and 1855? This is the question of whether to consider an observation of a
person in a place as a discrete event or an observation of an ongoing state.

In practice, this seemed like a bad idea for two reasons. First, if there aren’t very
many places mentioned in an article, this method could generate dozens of “invented” facts
implying a continuous state alongside just a few concretely observed events. The volume of
data in the system would tip towards dubiously extracted, unconfirmed facts. Second, the
front-end is meant to process a time span. If the user wants 1997, 1995 to 1999 would be a
good search strategy. The further back in history you go, the longer time span is desirable.
If, in the above hypothetical example, the user searched for 1850 to 1860, they would pick

11



up Ulysses S. Grant even if there is only the 1852 sighting alone. In short, historical text
may have a sparse amount of definite sightings and it is not possible for the system to know
whether the person stayed in the same place or went to other places that were simply not
worth mentioning.

5.3 Notability and specific places

Places need to meet a certain standard of notability to be included, which is partially to
reduce false matches but also because it is unlikely that a searcher is really interested in a
ditch. The place also needs to be specific; none of the references used is likely to provide
coordinates for informal places like “The Great Plains.” Finally, continents are excluded
because they are too big to be useful. Accidentally picking up the centroid of Europe in a
search would result in far too many results, and not the ones the user desired.

5.4 Subject of the discourse

When processing sentences, the crawler assumes they are all about the subject of the article.
Sometimes, of course, this is not true. There are cases where it still makes historical sense
to consider it a match. Hitler may not have personally gone to Ukraine in 1941, but if you
are interested in Ukraine in the early 1940s, Hitler is a major figure who would seem to
belong in the search results.

There are harder cases. In Vivien Leigh, some sentences seems to belong in the article
about Laurence Olivier:

Offered the role of Heathcliff in Samuel Goldwyn’s production of Wuthering
Heights (1939), he travelled to Hollywood, leaving Leigh in London.

Since the crawler is processing information about Leigh, it should only pick up London, but
it will also pick up Hollywood. Kivrin does not try to untangle the antecedents of sentences
like this.

6 Processing and interpretation

6.1 Processing the queue

The crawler starts with about twenty historical figures, selected to offer diverse starting
points across time and space. The figures are meant to be relatively important in history
but were also chosen to have links to other Wikipedia articles about important historical
figures. For example, Benjamin Franklin gives the crawler entrée to a large number of articles
about leaders of Colonial America.

As the crawler processes a page, it also gets the titles of articles that page links to; these
are returned in alphabetical order. The API allows requests of up to 500 links, but in the
case of long articles this may not be complete. For example, in Bill Clinton, the first 500
alphabetized links only includes those up through “J.”

I tried several different ways to prioritize the queue to achieve the best coverage of
“important” historical figures without resorting to providing a lengthy, hard-coded list. By
important, I mean political and cultural figures whose significance has become the object
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of consensus over time as opposed to, say, pop-culture figures of the present moment. At
the same time, I sought to ensure that figures from Africa, East Asia, and South America
had a chance of being picked up.

The first version of the crawler simply queued and processed articles first-in-first-out.
Article titles were upserted into the queue; if the article title was already present, nothing
changed. This was a transparent approach but a “dumb” one—in effect, it worked out from
the seed articles in slow concentric circles, queuing people who personally knew or were
closely associated with people who had already been processed.

The next version attempted to prioritize the queue. Each time a link was encountered,
instead of simply upserting it, the number of times it had been seen was incremented.
The next article to be processed would be the one with the highest score. This method
attempted to allow more important articles (measured by number of encountered inlinks)
to be processed earlier, but it retained a bias towards the initial seed set and its successors.
Unfortunately, this type of queue showed a tendency to get sucked into local whirlpools of
unimportant articles that all link to one another. For example, the page on football player
Frank Bausch links to every other page about a player on the 1940 Chicago Bears, giving each
of them one inlink. When the next one of those pages is processed, each of the remaining
players gets another inlink. Soon, the entire team bubbles up to the top of the list and gets
processed, further incrementing the inlink scores of additional football players. Because the
queue is, at this point, only processing articles about professional sports players, an article
about an American president does not have a chance to get incremented and rise to the top
to be processed—at least, not until every football player in history has been.

The obvious solution to this problem is to process articles in order of how many absolute
inlinks exist to it across all of Wikipedia. A tool exists that gives this information, but it
has its own flaws[30]. The first issue is that querying the tool significantly slows the crawl;
it can take roughly a second to get the results in the case of a page that many others
link to, since the tool is performing an SQL query with multiple joins across huge tables
in a copy of the Wikipedia database. Where an article contains many links, more time is
spent queuing them than is spent processing the article itself. The second issue is that the
tool is sometimes unresponsive or has database errors, and it is not clear what to do with
queueable articles when this happens. The third issue is that many of the most linked-to
articles within Wikipedia are in fact about figures like current professional wrestlers.

The final version uses a queue that only uses information that has been gathered during
the current crawl but is weighted to avoid the “whirlpool problem.” It is based on the
insight that more complete Wikipedia articles are higher quality and more significant, and
the pages they link to are also likely to be more significant. The quality of an article is
approximated by counting how many sightings it generated. All of the pages it links to
get incremented by its number of sightings. This way, an article like Frank Bausch, which
is only two sentences long, cannot add very much weight to the pages it links to, but Bill
Clinton, which yields dozens of sightings, can lend a lot of weight to an article like Barack
Obama. Barack Obama’s score is further increased when another high-quality article linking
to it, like Al Gore, gets processed.

To introduce an element of chance, every third processed page is chosen simply by
popping the oldest one from the queue rather than the one with the highest score. (It may
be better to choose at random, but MongoDB does not offer a simple way to do that.)
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Both the method of using the absolute inlink count and the method of weighting pages
by the quality of their referrers are similar in flavor to PageRank[31]. The final approach,
while not perfect, seem to balance the pros and cons the best. Interestingly, it serves to
focus the crawl on biographical pages better. The first version, taking pages purely in the
order encountered, found about 12% of retrieved articles to be biographical. In the final
version nearly half of the dequeues are biographical (see section 10.1).

6.2 Time granularity and assumptions

Because Wikipedia is chiefly meant to be read by humans (and was composed by humans),
it does not express dates in a machine-readable way.

The majority of dates in Wikipedia text are expressed in absolute terms, especially if
we limit our search to years, but the granularity of time expressions is inconsistent. Times
closer to the present day may be expressed more precisely, due to better record-keeping as
well as familiarity. (The average person remembers the exact date of 9/11, but the date of
the Battle of Thermopylae in 480 BC is known only approximately, which does not bother
the average person.)

It turns out not to be practical to index even recent dates very granularly because
human-written text is not consistent about the specificity of date expressions. If two people
were in New York City on 9/11/01, one person’s article may mention the exact date and
the other person’s may only say 2001. The first person should be returned for a search on
2001 as a whole, but should the second person be returned for a search on 9/11/01? If
we restrict results to times the crawler actually observed (accordingly to the logic of not
creating “invented” sightings of Ulysses S. Grant in Oregon, above), then the results for
9/11/01 would be sparse, and for unimportant dates, extremely sparse—even if a number
of indexed people were actually there.

BC dates are transformed into negative numbers for processing and storage, but are
converted back to display as BC for usability.

Some dates are affected by the conversion from the Julian to the Gregorian calendar,
which involved a drift of about two weeks in the solar calendar as well as a change in whether
January 1 or March 25 was considered the start of the year. Because the changeover hap-
pened in different countries at different times, it would be difficult to correctly normalize the
dates from freely written text. Kivrin does not compensate for Old Style versus New Style
dates, since both versions would usually fall in the same multiyear search range anyway[32].

Overall, it is more in keeping with the use case of the tool to only let users search at
the granularity of a year. They can confirm their results by reading the article or through
further research beyond Wikipedia.

6.3 Estimating birth and death dates

Birth and death dates are important for limiting at what times sightings are accepted; with-
out them, extreme outliers can crop up, including numbers in the single digits (mismatches)
and very recent dates pertaining to the subject’s legacy—even if the subject lived hundreds
of years ago.

If there is a birth date but no death date, the death date is assumed to be 100 years
later—a generous span. The estimated death date is used to limit the sightings but is not
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entered as metadata about the person. Conversely, if there is a death date but no birth
date, the birth date is assumed to 100 years earlier.

If both are missing, it is necessary to provide an estimate. I experimented with an
average and a standard deviation limit. Both of these failed because the outlying false
dates—exactly the ones that were most likely to be wrong—had too much influence. In the
end, Kivrin simply finds the mode of all the sightings’ times, and uses a range of 50 years
on either side of it. This way, if the most sightings are from 1887, 5 and 2008 are both
easily rejected. Again, a hundred-year span is meant to be generous and err on the side of
accepting information.

6.4 Order of querying

GeoNames limits users to 2,000 queries per hour and 30,000 per day. It is desirable to
prevent unneeded queries to avoid hitting that limit. First, strings that appear in place-
like contexts but are not places can be maintained in a rejects collection, so GeoNames is
never queried for the same string more than once. The rejects collection is pre-loaded with
terms that often cause problems (“in World War II ”) and others are added as they are
encountered. There is also a count of how many times a rejected term has been encountered,
for analysis.

The most frequently encountered confounding terms are months (“June”), geographic
(or perhaps linguistic) adjectives (“English”), and places that fail to be matched. Some are
too big (“Europe”). Others are historical (“Sparta”), which is not handled by GeoNames
(although some of these may have coordinates in Wikipedia, see section 4.6). Finally, some
of the most frequently encountered rejects are nongeographical entities like “Parliament,”
“Christianity,” and “Manchester United.” As the crawl begins, the rejects list grows quickly,
then levels off when the bulk of confounding terms have already been identified. Similarly,
the number of GeoNames queries required drops as the crawl progresses, because more and
more places are available in Kivrin’s own places collection or the rejects collection.

Another way to avoid excessive querying of GeoNames is to get geographic coordinates
directly from Wikipedia first. This approach has advantages and disadvantages. On the
positive side, if a place name is given as a link to a Wikipedia article, we know that the
human editor is telling us unambiguously what place is meant. If it is possible to extract
coordinates from that page, they are likely to be highly accurate. On the negative side,
coordinates are expressed inconsistently in Wikipedia (see section 11.3) which makes them
convoluted to match. This is the slowest component of the crawler, which in the middle of
a run processes about two hundred biographies per hour.

GeoNames offers a way to search data drawn from Wikipedia associating coordinates
with articles, which may be faster than retrieving the entire article. Unfortunately, it does
not allow you to retrieve a single article based on an exact title match (which makes it
no more accurate or efficient than a regular GeoNames search, in addition to “costing” a
query). It also throws errors when the place name being searched contains a comma, which
is a problem because many Wikipedia articles that are linked to have titles like “Vincennes,
Indiana.” Not being able to distinguish “Vincennes, Indiana” from “Vincennes, France” (if
GeoNames only deals with the part before the comma), makes this feature not useful for
this project.
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6.5 Multimatch - different places sharing a toponym

A number of places share names with other places, such as London, England and London,
Ontario. The default behavior of GeoNames is to return matches in order of relevancy,
giving weight to capitals and higher populations. Accepting the first match means that
London, Ontario may never be associated with any data—not even a mayor of London,
Ontario—unless coordinates are picked up through a Wikipedia link.

The “multimatch” feature in Kivrin was tested by introducing pages that were known
to discuss different places with a shared toponym. Fred Shuttlesworth and Martin Luther
King, Jr. represented Birmingham, AL and James Watt and Joseph Priestley represented
Birmingham, England. Most of the toponym conflicts I encountered involved England and
her former colonies, so this is a realistic test.

The project went through four different versions of the order for matching place names.
The very first version stripped out all Wikipedia markup and only referred to GeoNames.
Like the Flora & Fauna Finder project, it simply accepted the first result from GeoNames.
It was similar to always hitting the “I’m Feeling Lucky” button in Google. This was only
for testing GeoNames and was never intended as a permanent structure.

The second version (tidycrawler) used coordinates from linked Wikipedia articles if
available. If not, it used the first GeoNames match. There was a unique index on the place
name field. In theory, this meant that if London, Ontario was encountered from Wikipedia
before GeoNames was queried for its first result, London, England, all future sightings of
London would be placed in Canada. In practice, the most prominent match almost always
made it into the database first. The results of this version were mixed: on one hand, the
results felt natural and reasonably accurate since the user most often is searching for the
most prominent match. On the other hand, it was unsatisfying to know that the crawler
was definitely going to make foreseeable mistakes.

The third version (multicrawler) attempted to permit an unlimited number of places
to share the same name, and then figure out which match was most likely. As in tidy-
crawler, multicrawler used coordinates from linked Wikipedia articles. If there was no link,
it tried to use a version of the centroid calculations discussed by Buscaldi and Rosso[9].
However, whereas they threw all the possibly conflicting toponyms in the same bucket and
disambiguated them against all the confirmed place coordinates en masse (see section 2.2),
multicrawler disambiguated as it went, using a moving centroid to choose the nearest name
match based on the places it has for the person up to that point in processing. For example,
Benjamin Franklin was born in Boston, so “Cambridge” encountered early in his article would
choose the one in Massachusetts. Later in life, he has many sightings in and near London,
which would pull his centroid across the Atlantic. If “Cambridge” were encountered at that
point in processing, the university town in the UK would more likely be chosen.

This process introduces an inconsistency: If there are confirmed coordinates from Wiki-
pedia, any amount of jumping around the globe is tolerated, whereas if GeoNames is used,
the search will stick closer to “home.” This causes new errors. For example, Martin Luther
King Jr.’s page discusses his trip to India. Because India is not linked, and King was mostly
active in the southern U.S., the sighting is created with a Mississippi town called India,
rather than the country. In a naive GeoNames search, the country would have come first
and been accepted.
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Another new problem was created by this solution: What happens if no centroid can
be calculated, because this is the first sighting? Having no centroid at all would create
not-a-number exceptions during processing, but using a dummy like 0.0, 0.0 causes bias.
Someone born in London could be assigned to London, Nigeria at roughly 5.7, 5.8, since
that is closest to 0.0, 0.0 of all the candidates. Now an Englishman’s centroid is established
in Western Africa, an error that can cause future incorrect choices. Multicrawler combatted
this issue by assigning the default beginning point to 43, -37, the midpoint between London
and New York City. This was a major assumption, but it capitalized on the known bias of
English Wikipedia towards North America and Western Europe. Theoretically this choice
could cause problems for the places furthest from 43, -37 (e.g. East Asia), but in practice,
this did not happen because there is much less crossover between toponyms in Asia and
America or Asia and Europe than between Europe and America. There is not an additional
place called “Tokyo” in, say, Wisconsin, so the right one in Japan is chosen regardless of
the dummy centroid. In short, the dummy starting centroid was easily overridden when
processing most articles about non-Western figures, while often preventing articles about
Western figures from starting off on the wrong foot.

The code for multicrawler was much more complicated than tidycrawler, and unfortu-
nately its results appeared to be, if anything, worse. A single error could tug the person’s
centroid far away from where it was supposed to be, causing further errors. One possible
cause is that Buscaldi and Rosso’s work was based on a corpus of nonspecific everyday text,
such as news articles. News articles tend to have to do with one topic. This assumption does
not necessarily hold true for a person’s biography. In fact, it seems as though prominent
people travel a great deal, especially in recent times. Wikipedia includes more Bill Clintons
than Emily Dickinsons.

The fourth version (cascadecrawler) attempts to balance the best parts of tidycrawler
and multicrawler. It does away with all the calculations of centroids and distances and
tries three options in turn. If there is a linked Wikipedia article with coordinates, those are
used. If there is a place with the same name already in that same person’s sightings, it is
reused. That way, if Birmingham appears in Martin Luther King’s article with a link to
the one in Alabama, that sense is retained for the entire discourse (article, in this case). If
there is no link, cascadecrawler checks whether there is already a place stored that’s marked
as “default”—from GeoNames. If so, that is used, and if it appears to be the same as a
prior Wikipedia match (within one degree of latitude/longitude) the prior Wikipedia match
is marked as default. If not, the top GeoNames result is used and added as the default.
In short: the top GeoNames result is the default choice for any toponym unless there is
different information directly from Wikipedia or earlier in the same article, in which case
multiple places can share a name.

This final version appears to have the best results. It allows both Birminghams to appear
correctly for Priestley, Watt, King, and Shuttlesworth, but it prevents the Philadephias in
Greece and Germany from sneaking in. To be sure, it still causes errors, but the errors are
much more traceable than those caused by the moving-centroid approach. For example, it
is surprising to find the U.S. President Zachary Taylor in deep South America, but when
you realize that GeoNames’s top result for Florida is in Uruguay, it is easy to understand
how the error arose.
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6.6 Child entities

The tidycrawler version of Kivrin added parent entities for each new place: a country
and a first-level administrative unit (a state or county, depending on the country). When
Philadelphia was created in the database, Pennsylvania and the United States would be
created if needed, and Philadelphia’s id would be appended to an array of children for each.

Then, on the front-end, if a user searched by name for Pennsylvania, a sighting in
Philadelphia would be returned, because the search would include all of Pennsylvania’s
children.

This feature was removed from the final version for several reasons. First, it conflicted
with the multimatch functionality. To avoid accidentally appending Birmingham, AL as
a child of the West Midlands county or the United Kingdom would require additional
GeoNames queries, burning through the permitted number of queries too fast and requiring
another round of iterating through results to find the nearest one. Second, the size of
comparable-level entities varies by country. It might be reasonable to search Monaco and
find all the sightings associated with it and its child entities. After a crawl of any significant
size, searching United States, however, is likely to search thousands of child places and take
too long. Third, conceptually, the user can use the polygon selector if she is interested in all
the sightings in a region; it makes sense for the place name search to only return sightings
involving literally that place name.

7 Data storage

MongoDB is a schema-free, document-based database system, designed to be flexible and
allow easy horizontal scaling.

MongoDB has very convenient features for handling geospatial information; in fact, my
discovery of these features during my last project inspired this one. It is easy to create a
field with latitude and longitude and then have a two-dimensional geospatial index on that
field. There are also expressions to search within a polygon or a circle with a given center
and radius that match up with the desired front-end design for Kivrin.

MongoDB operates as a series of JSON documents and can be interacted with on the
command line using a JavaScript shell. The items in the collection are JSON documents,
so a search might return:

{ "_id" : ObjectId("4f765ae1bbe04eee951129e1"), "coords" :
[ 28.63576, 77.22445 ], "numSights" : 7, "place name" : "New Delhi" }

Insertions and updates are JSON documents as well:

db.people.insert({ "title" : "Ferdinand II, Holy Roman Emperor",
"birth" : 1578, "death" : 1637, "description" : "Holy Roman Emperor" })

Queries are also JSON documents.

db.people.find({"title":"George McGovern"})

Using operators like $gt for greater than, it becomes easy to compose complicated queries.
For example, to find the percentage of people in the database who were born in the 20th
century:
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db.people.find({"birth":{$gt:1900,$lt:2001}}).count() / db.people.count()

MongoDB is very easy to use in terms of “upserting” data (insert if does not exist, otherwise
update). The user can create any database or collection simply by trying to connect to it.
Thus the code at the opening of the crawler is the same regardless of whether it is starting a
new run or picking up an existing one. Similarly, the command “ensureIndex” either creates
or simply confirms the existence of an index. Upsertions are used throughout the crawler
code. When outbound links are added to the queue, they are upserted, with the new score
incremented onto the old one if the article already existed. The small amount of data that
is preloaded to the places and rejects collections is done as an upsertion; otherwise these
items would get duplicated if the crawl is started and stopped.

MongoDB has drivers for Java and Python that are used in this project. The Python
code looks similar to the command-line code, but the Java implementation is rather different;
each JSON document item must be created as a DBObject before it can used as a query,
insertion, etc.

BasicDBObject newPlace = new BasicDBObject();
newPlace.put("placename", candidatePlace);
Double[] coordsWinner = new Double[2];
coordsWinner[0] = winner.lat;
coordsWinner[1] = winner.lon;
newPlace.put("coords", coordsWinner);
places.insert(newPlace); //this could be done on one line in the shell
ObjectId place_id = (ObjectId) newPlace.get("_id");

8 Retrieval

8.1 Ordering results

The front end displays people ordered by the number of sightings in the time/place re-
quested. This promotes higher quality results. Detailed articles that result in a larger
number of sightings are likely to have more sightings in the requested span, so they appear
higher in the list. More importantly, false matches are likely to be one-offs, and fall to the
bottom of the results list.

It would be possible to improve the perceived quality of search results by only displaying
people with more than one sighting—thus excluding the one-offs. I did not choose to do
this, however, in the spirit of allowing users to examine their own results.

8.2 Weighting places

Places are weighted by the number of sightings associated with a place. If a user draws too
large a search area on the map, they may select hundreds of places. Then sightings need to
be found for each of those places in turn, which can be very time-consuming. We can limit
the number of places searched, but this may result in insignificant places being searched
and significant ones excluded. By ranking the number of sightings for each places, we can
promote important places and make sure they are included if the number of places picked
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up by a query exceeds one hundred. If the user wants their search to include more small
places, they can draw a smaller shape.

The number of sightings logged in the database for this weighting often does not exactly
match the actual number of matching records in the sightings collection because the count
is incremented before a person’s timeline is de-duplicated. (If the exact same place/year
combination appears more than once, it would be redundant to repeat it in the results.)

8.3 Context

Each sighting is stored with the sentence that gave rise to it, to supplement the results
with context. The sentence often says why the person was in that place or what they
were doing there. It is also useful for troubleshooting—the source of strange results can be
seen immediately. Wikipedia mark-up and HTML should be stripped out, although section
headers sometimes remain.

9 Implementation details

9.1 Most important functions

CascadeCrawler (main)

This part of the program controls the crawl. At the beginning is a static Boolean variable
that controls whether the crawler will operate in a verbose troubleshooting mode or not;
the default is false.

The crawler starts by connecting to MongoDB, opening the database, and then con-
necting to the different collections (e.g. queue, people, etc.). The queue is then seeded with
a selection of historical figures spread across time and geography.

The queue is processed until it is empty. Two-thirds of the time, the crawler pops the
article with the highest score, but when the counter mod 3 is zero, it pops the first (oldest)
item. The article is added to the alreadyIndexed collection.

Next, there is code to check whether the page has already been processed. This is
important because of redirect links: Franklin D. Roosevelt and FDR are different titles that
access the same page. Also, this step checks a time-stamped collection of already processed
articles; in the future, this could be used to reprocess articles that are old.

The program makes several calls to the Wikipedia API. First, it retrieves the article’s
id, which it needs for the template and link queries. Then it checks whether the page uses
the Persondata template. If it is, is passes the article title to a PageProcessor.

When the article’s count of sightings is returned to this method, the crawler accesses
a JSON-formatted list of outbound links from the Wikipedia API and queues all of them,
incrementing their score by the number of sightings found in the present article.

This class also contains a counter to intermittently display stats on the progress of the
crawl, and various error handlers.
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PageProcessor

This part of the program controls the processing of a single biographical page. It fetches the
article text, does some preliminary work on it, and then passes it off to have spatio-temporal
information identified.

After retrieving the article text, the page processor’s first task is to extract the birth
and death dates and places. This appears as a part of the Persondata template, which is
metadata, not formatted for humans to read. It also gets the person’s description.

Regular expressions are then used to trim the article text by removing the references,
bibliography, etc., which is the source of many false matches.

The cleaned-up text is passed to the PlaceTimeFinder to extract a sorted set of “sight-
ings” of the person. The PageProcessor receives this back, matches it with the metadata
about the person, and then uses this to insert the person record and all the sightings
into the database. If the birth and death dates need to be estimated, this is done by the
PageProcessor.

PlaceTimeFinder

This class starts by creating a local stoplist of words in the person’s name, unless they
appear after a word like “of.” For example, “Franklin” should not be allowed to be a place
in the article about Benjamin Franklin, but in the article about John of Ghent, “Ghent”
should be allowed.

Then it examines the article text one sentence at a time. It looks for a time in the
sentence, and if it can’t find one, it tries to use a valid time from a previous sentence. (If
it can’t find a time, it drops sentences until it finds one.) If the person was born before
1000AD, it uses a complicated regular expression that handles AD/BC/BCE dates. If not,
it more naively (and quickly) looks for four-digit numbers without commas. These almost
never appear except as years.

If it has a time in hand, it looks for potential places in the sentence—capitalized phrases
that appear after a preposition or a word like “visited.” Each candidateplace gets sent to
the PlaceEvaluator.

If it is able to pair a time and a place, it puts them in the Sorted Set that gets returned
to the PageProcessor.

PlaceEvaluator

The placeAnalyzer takes strings that may be the names of places and decides how to
handle them. First it checks a list of known rejects (like “January”). If it hasn’t already
been rejected, it checks whether it has the form of a Wikipedia link ([[like this]] or [[another
link format|this]]).

If the string has the form of a Wikipedia link, it passes it to WikiCoordsFetcher. If not,
or if the Wikipedia check fails, it tries to reuse a place with the same name that has already
been found for this person. If that is not possible, it passes the string to GeoNamesFetcher.
It either receives a IdAndCoords back, which it passes up to PlaceTimeFinder, or it adds
the candidate place name to the list of rejects.

21



9.2 Helper classes

PlaceTime

This class gives a structure to pairs of times and places. The times are integers, the places
are ids from the places collection in MongoDB, and it also stores a string of context (the
sentence that gave rise to the sighting pair, as a sort of keyword-in-context).

The class also implements a comparator that ensures only unique combinations of times
and places can be added. A person can be multiple places in one year, or in the same place
in different years, but there is no point in having duplicates of identical sightings.

LatLon and IdAndCoords

These classes simply give an easy way to hold geographic data together while processing.

LoadFeatureClasses and LoadPlaceTypes

This class creates a reusable HashSet of the Feature Classes from GeoNames that are ac-
ceptable in the context of this project. LoadPlaceTypes does the same thing, except for
populated places, which are handled in more detail.

NoneSuitableException

This exception handles cases where there is no place id to return to the calling function
(either because nothing could be found at all or because nothing acceptable could be found).
Sometimes it is caught without further action being taking but if it bubbles up to the
placeAnalyzer with no further places to check, it creates or increments a reject.

SetOfPlacesToCheck

This makes it easy to pass the set of relevant MongoDB collections between functions. Also,
when first instantiated, it preloads small sets of useful information: places that should be
handled but don’t appear in GeoNames with exactly that name (e.g. “New York City”)
and terms that appear in place-like contexts but should be rejected (e.g. “January”).

TimeStamp

This creates a nicely formatted timestamp to appear at various times during the crawl, for
monitoring.

URLConnectionReader

This is used to open web pages (mostly queries to the Wikipedia API for metadata, since
the pages themselves are accessed through JWBF).

GetMode

Calculates the mode of the observed dates to estimate a lifespan when none is provided.
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9.3 Included packages

MongoDB

The driver for MongoDB offers functions to connect to and manipulate database objects.

GeoNames

The GeoNames API allows the user to query GeoNames for a toponym string and retrieve
a list of matching geographical entities. It also returns metadata about the places, which
allows filtering and disambiguation in the client application.

Jackson

Jackson is a JSON parser for Java that is needed to process information from the Wikipedia
API, e.g. the list of outbound intrawiki links in each article[33].

JWBF

The Java Wikipedia Bot Framework provides easy access to MediaWiki API functions, like
retrieving the page content (as distinct from manually accessing the HTML page content,
which Wikipedia asks users not to do)[34].

Others

Other included packages are dependencies of those described above.

9.4 MongoDB collections

MongoDB collections are like the tables of an SQL database, except that the documents
stored in them can be of any “shape”—if a person lacked a description, that can be left out
without any problem. Every record is automatically assigned a unique id.

Because MongoDB is a NoSQL database, though, there is no entity relationship diagram
showing how the collections fit together; instead, examples are given.

people

{ "_id" : ObjectId("4f765ef7bbe04eee95113019"), "title" : "Indira Gandhi",
"birth" : 1917, "death" : 1984, "description" : "Prime Minister of India" }

The people collection contains the basic metadata about each person for whom there are
sightings. This collection is indexed on the title (person’s name) to allow for name searches
on the web.
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places

{ "_id" : ObjectId("4f7b1145bbe0a9784d904b29"), "coords" :
[ 55.75222, 37.61556 ], "numSights" : 1450, "placename" : "Moscow" }

Place records contain a toponym, coordinates, and the number of sightings associated with
it. If it is the primary result from GeoNames, it includes “default”:true; otherwise that field
is missing. This collection is indexed by the place names and coordinates, for searching on
the web, as well as by the number of sightings, to allow ordering of places to search when
the user’s selection is too large.

sightings

{ "_id" : ObjectId("4f649ac0bbe034d1ff139381"),
"place" : ObjectId("4f649a75bbe034d1ff139306"),
"person" : ObjectId("4f649ac0bbe034d1ff139376"), "time" : -78,
"kwic" : "Hearing of Sulla’s death in 78 BC, Caesar felt safe enough to
return to Rome. " }

A sighting combines a time (expressed as an integer between -3000 and 2012), with the ids
of the person and place in question. The sentence that gave rise to the sighting is also saved
as keyword in context (KWIC). For the sake of brevity, the context sentence is cut off after
200 characters, so sometimes the context is lost in the case of extreme run-on sentences.
This collection is indexed by the time to accommodate the user’s search range. It is also
indexed by the place to allow the look-up associating places and sightings to happen faster.

queue

{ "_id" : ObjectId("4f6529f8c9a1bb766b506a46"), "score" : 531, "title" :
"Jeanne Moreau" }

The queue combines the title of the article with its current score, which is incremented
when more pages link to it, as described in section 6.1. The queue is indexed on the title
(to speed upsertions) and the score (to make it faster to identify the currently high-scoring
item).

alreadyIndexed

{ "_id" : ObjectId("4f649df2bbe034d1ff139978"), "title" : "Aurangzeb",
"date" : ISODate("2012-03-17T14:21:38.121Z") } //valid person
{ "_id" : ObjectId("4f64a098bbe034d1ff139de8"), "title" : "Capitalism",
"date" : ISODate("2012-03-17T14:32:56.200Z") } //not a person

This collection is checked to make sure that pages are not being processed repeatedly even
if they are linked to a lot. It contains both valid biographies and non-biographies. This
collection is indexed on the title, to make it easy to check pages.
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rejects

{ "_id" : ObjectId("4f64f8b8bbe021436bd46ef1"), "encounters" : 132,
"term" : "Henry" }

This collection keeps track of what terms have already been rejected as non-toponyms, to
avoid requerying GeoNames. The rejects are indexed on the term.

9.5 Front-end

The web front-end of Kivrin is written in Python with some JavaScript. There are four
pages:

Homepage

The search screen briefly explains the project and allows the user to search three different
ways. The geographic search (default) uses JavaScript written by Marcelo Montagna to
select a map area by a rectangle or circle. I modified this code to restyle it, resize and
reorient the base map, and remove additional features that are unneeded.

results.cgi

This script translates the search area into a MongoDB query of the places collection, except
that the radius units for MongoDB are degrees rather than miles, so the user’s radius in
miles is divided by 69 to estimate the degrees.

The script then looks up 100 places in the user’s range. This limit was put in place to
prevent the application from seeming too slow in cases where a user’s selection is very large.
The top hundred places are chosen based on the number of sightings they have through
the entire project. At this stage, the system doesn’t know if there are any sightings in the
time range, but this sorting means that the most important places are always included.
Otherwise, it might be possible to search Southern California and have Los Angeles happen
to not make the cut. Also, sorting the places means that the display of “places searched”
always names the most important ones first, which should confirm for the user that the
system is working reasonably. If the user needs a greater number of less significant places
to be included, he could zoom in and search a smaller map area; it should feel natural to
see results for smaller places represented in a search of a smaller area.

For each of the places found, the sightings collection is searched for sightings including
that place, and in the user’s time range. Note that in cases where there are synonymous
or near-synonymous places with similar coordinates, both would be included in the search,
avoiding the need for entity resolution to respond to the user’s request.

Next, the sightings are grouped by the person and sorted by date for each person. They
are displayed with the people with the most sightings first.

timeline.cgi

This script searches people’s names with a regular expression and asks the user to confirm
which exact person is meant if there is more than one candidate. Then it displays all the
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sightings for that person in chronological order. It is mainly intended as a troubleshooting
tool.

toponym.cgi

This script allows the user to search by a place name rather than coordinates. If there
is more than one candidate, the user is shown a list of possibilities with coordinates and
a small spotting map for context. When the user confirms the coordinates, the query is
bounced back to results.cgi as a search for a single place.

10 Evaluation

The evaluation was performed on a static copy of the final database that contained slightly
more than 16,000 people and just short of 1 GB of data. The crawler was then restarted to
continue building the data that is currently available on the website.

Where random selections were required, I used a random number generator and then
skipped that many items, like this:

db.people.find().skip(8677).limit(1)

10.1 Identification of biographies

The Persondata template is an almost flawless way of identifying biographies; more inter-
esting is the question of whether the crawler promotes biographies in its queue.

A sample of 100 dequeues was taken at three points in the crawl. There was an average
of 1.3% examined articles that were biographical but were ignored because they lacked
the Persondata template. None of these articles was high quality (for example, they were
marked as lacking citations) so it is just as well to ignore them. An average of 6% of the
examined articles were flawed titles (redirects to another article or nonexistent pages in
Wikipedia) that were correctly passed over. These statistics were consistent at different
points in the crawl.

The balance between correctly identified people and correctly discarded non-people
changed through the crawl. Early on, there were 63 people and 30 non-people. Several
thousand dequeues later, there were 43 people and 50 non-people. In the last sample,
there were 34 people and 58 non-people. On average, 46.7% of dequeued pages were valid
biographies.

In a previous version of the crawler that did not prioritize the queue, I observed that
an average of 12% of articles are biographical; yet the final version of the crawler finds a
much higher proportion. This shows that the crawler, in its attempt to process the queue
in a way that prioritizes important articles, is also prioritizing biographies, especially early
in the crawl, probably because they tend to link to each other.

10.2 Identification of places

Fifty places were sampled to see if they were, in fact, places (as opposed to personal names
or other stray words). Of the fifty, 33 were indeed places and appeared to be the correct
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one to match the sightings associated with them. (I did not check that the sightings were
100% correct when there were dozens or more, just that the main sense of the place name
was selected or a plausible secondary one for those sightings.)

An additional three places out of the fifty were places, but the wrong one was selected.
For example, a place called Bickley in the U.S. was selected instead of one in the U.K. Two
others were parsed incorrectly, due to Unicode in the place name. It is difficult to generalize
about these examples, so they are left out of the further analysis in this section.

That left twelve out of the fifty as not places. Most were personal names, such as
Alexandra.

Looked at by the count of places, this shows a rate of 66% correctly identified places
and 24% terms misidentified as places, which is a large percentage of the data. However,
the distribution of sightings across places is not consistent. Very many places are associated
with a single sighting; others have just a handful; and a small number have hundreds. In
this sample, more than half of the places had a single sighting, whereas Toronto had over
300.

If we instead look at the percentages by how many sightings associated with the fifty
sampled places were assigned to a real place (87%) versus how many were assigned to a
non-place (6.6%), the proportion of dead wood in the database looks better.

10.3 Plausible results for a place and time

As with many search engines and similar projects, it would be very difficult to calculate
recall for Kivrin, because we have no definitive source of information on what people should
be retrieved for a given time and place. Still, I attempted to calculate a rough kind of
precision for the results: Of the people retrieved for a search, how many of them were
plausibly at that place and time? As stated in the introduction, the goal is to retrieve
candidate biographies for a user to consider, so I did not insist on a perfectly clear-cut fact
to consider a result correct. I counted a person as correct if they were at the location or
had a significant influence on it (such as starting a war there).

I did four test searches: Philadelphia region, 1760-80; Berlin, 1942-43; Paris, 1200-1300;
and Vietnam region, 1970-74. Of 236 people found, 195 were correct, or 82.6%.

The first three searches were more accurate at 92%. The search for Vietnam had more
errors because many people opposed the Vietnam War without going there or influencing
the region. Also, there is a place called “No” in Vietnam which got picked up for 13
entertainers with a song that went “to No. 1.” These were one-off sightings that appeared,
as desired, at the bottom of the results list.

On the whole, if a user searches for a place for which there is data available, they will
get useful results.

10.4 Complete results for a person

Obviously, this form of evaluation would be much better performed by unbiased volunteers
without access to the system results. Still, I attempted to read through twenty randomly se-
lected articles processed by the system, and mark places/times I felt were clearly associated
with the person. I then compared these results to Kivrin’s.
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Of 165 sightings shown by Kivrin across these 20 biographies, 115 were right and 50
were wrong. Also logged were 68 places that I thought should have been included but were
not.

A 30% error rate is disappointing, however, a number of the errors could have been
avoided with a single change: making sure to exclude any filmography section, as I did for
bibliographies. Because these sections are filled with dates and capitalized words, they are
a minefield of false hits. Many of the remaining mistakes were personal names.

Similarly, Kivrin found 115 correct sightings but should have found 183, missing 37%.
Many of these errors fit into one of two categories. I made inferences while reading, such as
that a person who is the director of the London Symphony Orchestra is probably in London.
Kivrin looks for motion-related verbs and prepositions so will not catch such information.
Also, the preposition “of” is not included, because it led to many false drops during testing.
Unfortunately, it also led to every battle (e.g. Battle of Gettysburg) being ignored, and the
test set included seven people with military experience.

10.5 Some additional statistics

Sightings per place and person

There are 12.3 sightings per person, on average. There are 7.4 sightings per place on average.
The place with the most sightings (over 4,000) is London, England. About 13,000 places,
or 47%, have only one sighting.

People per century

I performed a count of the number of people born in each century to document the recency
bias of Wikipedia. People without birth dates (of which there are 877 or 5%) are not
included. Allowing the date to go back to the beginning of recorded history has not resulted
in any sightings in the early millennia. Meanwhile, there is an order of magnitude difference
between the millennium from 1 to 1000 (152 people) and the millennium from 1001 to 2000
(15,373).

People per initial

I checked how many people had been indexed by the title of the article. Because Wikipedia
only allows users to retrieve the first 500 outbound links from an article, alphabetically,
we should expect some “alphabet bias” in what people are available to be queued. It is
impossible to say what proportions we should expect, given uneven use of letters across
different languages. In the sample, however, we see 1,941 for A, 1,144 for B and 1,155 for
C, yet only 594 for S and 510 for T—an extreme enough difference to suggest that late-
alphabet articles are having a harder time making it into the queue. A user is unlikely to
notice this in their results, but until the crawl is completed, it will have a significant effect
on their results.
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Table 1: Distribution of births
Timespan Number of births
-3000 - -2000 0
-2000 - -1000 0
-1000 - 0 22
Century starting 1 17
101 3
201 2
301 12
401 9
501 11
601 27
701 7
801 25
901 39
1001 40
1101 62
1201 95
1301 63
1401 106
1501 142
1601 174
1701 1316
1801 3965
1901 9410
2001 4
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11 Limitations

Some aspects of the project were constrained by qualities of the source material in Wiki-
pedia.

11.1 Geographic bias

Wikipedia, specifically its English version, has a well-documented geographic bias in favor
of articles about people, places, and events in North America and Europe. In 2009, Mark
Graham analyzed almost half a million geotagged articles in Wikipedia to create a map of
the intensity of Wikipedia coverage by country, which he then normalized by land area and
population[35]. Discussing his results, he observed, “[A]mazingly, there are more Wikipedia
articles written about the fictional places of Middle Earth and Discworld than about many
countries in Africa, the Americas and Asia.”

A visual comparison of the distribution of toponyms in GeoNames[36] versus geotagged
articles in Wikipedia[37] visually reveals the extent to which certain parts of the world are
neglected.

Figure 2: Distribution of toponyms in GeoNames

Biographical pages are not geotagged, so they are not included in the map, but it
is likely that they are similarly affected. My attempts to include non-Europeans/non-
Americans like Jomo Kenyatta among the seed articles may be able to promote inclusion of
the non-European/non-American people that do exist in Wikipedia, but it is not realistic to
aspire to unbiased geographic coverage when the underlying content is biased. Accordingly,
searches outside the western world, particularly further back in history, have sparse results,
usually with a more noticeable proportion of mistakes.

11.2 Recency bias

In his recent book The Better Angels of Our Nature, Steven Pinker discusses the idea of
“historical myopia: the closer an era is to our vantage point in the present, the more details
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Figure 3: Distribution of geotagged Wikipedia articles

we can make out.” In one experiment, “Internet users [were asked] to write down as many
wars as they could remember in five minutes.” He reports that “the responses were heavily
weighted toward the world wars, wars fought by the United States, and wars close to the
present[38].”

Wikipedia shares this bias, as is evidenced by the distribution of people indexed by
Kivrin by century of birth. This has an effect on the granularity of data available at
different times. Searching a single year for ancient Rome will have much thinner results
than searching a single year for contemporary Los Angeles.

11.3 Evolving toponyms

Wikipedia articles are reasonably consistent about using names like Constantinople and
Istanbul appropriately when the change happened long ago and different names are clearly
associated with distinct historical periods, but there are more problems where toponyms
changed recently. For example, many sightings in Burma get erroneously assigned to a town
in Kazakhstan because Wikipedia prefers the name Burma to Myanmar and GeoNames
chooses the opposite. In some cases, there remains a dispute over the name for a place,
as in the Falkland Islands/Malvinas. Results for places without a settled toponym are
incomplete.

11.4 Inconsistent templating

Wikipedia makes use of templates to elicit certain metadata elements from authors. It
also uses a non-HTML mark-up format that is meant to be easier for contributors to use
while also adding intelligent features, like automatically linking citations to a bibliography.
However, given the number of Wikipedia contributors, it is not surprising that real-life
Wikipedia text is more inconsistent and flawed than the ideal model.

The notation of birth and death dates and of geographic coordinates provide examples of
this. Dates are encoded in the Persondata template in a variety of ways. Most of these can
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be used, even though a significant number use date templates that have been discouraged.

1790-01-12
1706|1|17|mf=y [month-first format]
December 10, 1790
ca. 127 BC [and many other formats for estimating dates]

Here are some of the different ways geographical coordinates are encoded, which is
especially surprising given that there is a project specifically intended to regularize this[39].

coord|52|48.2|18|N|2|08|59|W
coord|1.05|S|36.92|E
coord|41.3086|-72.9276
lat_deg=37 |lat_min=58 |lon_deg=23 |lon_min=43
latitude = 48.8567 |longitude = -2.3508
latd=41 |latm=11|latNS=N |longd=73 |longm=58 |longEW=W
latd=41 |latm=11 |lats = |latNS=N |longd=73 |longm=58 |longs = |longEW=W
latd=41 |latm=11 |lats=47 |latNS=N |longd=73 |longm=58 |longs=1 |longEW=W

Difficulty recognizing these particular pieces of data has a noticeable effect on the quality
of indexing. When birth and death dates cannot be recognized, the PageProcessor must
estimate the person’s lifespan. When coordinates are present in an article but cannot be
recognized, this forces a search of GeoNames.

11.5 “Unencyclopedic” or trivial content

What does and does not belong in Wikipedia is a matter of active debate. Most contributors
agree that trivia is not appropriate and that there should be some threshold for significance.
Autobiographical vanity entries are deleted, for example. Still, Wikipedia has many more
entries than a print encyclopedia which means that Kivrin will discover biographies that
may not seem important by print standards. The queue design attempts to steer the crawler
towards more important entries.

Also, individual Wikipedia pages sometimes contain information that seems unimpor-
tant or irrelevant. For example, an earlier version of the crawler that was less precise in
matching dates created a sighting for the pop singer Boy George in Cyprus in the year 26—a
laughable error caused by an entire paragraph in his article about a looted religious icon he
inadvertently bought.

Kivrin assumes Wikipedia articles are about their subjects and doesn’t make any at-
tempt to recognize when they veer off to discuss fringe topics. The presence of “unencyclo-
pedic” content results in false drops.

11.6 Reading level

One study (which may not be directly applicable, as it analyzed pages with health infor-
mation) calculated the reading level of Wikipedia articles based on sentence length and
structure. In their sample, the average was 14.1, or college level[40]. These longer sentences
make the text more difficult to interpret accurately. A Simple English version of Wikipedia
exists, but its extent is not at all comparable (it only has about 81,000 articles)[41].
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11.7 Nested tags

At times Wikipedia’s simple-seeming mark-up piles up in a way that makes it difficult to
manipulate. One example is the use of {{double curly brackets}} to indicate a template.
Templates can be nested inside each other, such as when a photo caption includes a citation.
This makes it difficult to thoroughly scrub the text of mark-up using regular expressions
without risking catastrophic backtracking. Nesting is the cause of mark-up appearing in
search results.

12 Further Work

There are a number of improvements that could be made to Kivrin, either with more coding
on the project itself or if updates were made to the tools on which it relies.

12.1 Parsing

Kivrin’s PlaceTimeFinder relies on regular expressions in several places, for example, to
identify potential places and times in the text and to match coordinates from Wikipedia.
This reliance on regular expressions to identify interesting text seems inefficient, especially
since additional processing is sometimes required to handle the text once it has been identi-
fied as a phrase of interest. Better results might be achieved by processing the text through
a customized parser. It would be necessary to first find the Persondata template, which
appears at the end of each article, to get the birth and death dates that serve as guardrails
for other observations. After that, the body of the article could be processed linearly.

If each sentence were parsed, identifying its structure better, it might be possible to
ignore (some) sentences that are not about the subject of the article. Sometimes these
imply information about the subject’s whereabouts or influence, and other times they do
not, so it is not clear if universally ignoring such sentences would be an improvement.

12.2 Supervised machine learning

A large proportion of the errors remaining in the dataset are caused by named entities that
Kivrin interprets as toponyms, but which are actually personal names or words in the title
of a book, film, etc. In other words, while final version of the multimatch process was
reasonably successful at resolving referent ambiguity, the question of semantic ambiguity
was not addressed, passing flawed candidates into the multimatch process to begin with. A
sufficiently large annotated corpus of similar text tagged for people and places would make
it possible to use machine learning methods to avoid mistakes based on personal names.

First, we could analyze which names are for places versus people. About Annie Besant,
we read “Besant returned to Frank to make a last unsuccessful effort to repair the mar-
riage.” Frank is her husband’s name, but it could be replaced with “Chicago” and still be
grammatical. It may be possible to learn whether names like “Frank” are place or personal
names. This could be approached in two ways: either the system could attempt to identify
a surface form like “Frank” with a long-form name earlier in the article, or it could simply
learn from the corpus that “John” and “Obama” are almost never places, without caring
which “John” or “Obama” is meant.
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Second, we could analyze which verbs are followed by personal names and which by
toponyms. Kivrin is set up to recognize certain obvious, motion-based verbs (like “visit”)
but mostly looks for prepositions. This makes it vulnerable to false hits like “married to
Theobald.” The system could learn that “married to” does not involve a place but “invaded”
does.

12.3 Sentence tokenization

The project relies on Java’s BreakIterator class, which is not ideally designed for this use.
The crawler uses getSentenceInstance to chunk the text while looking for facts. This tool
takes abbreviations for the default locale (en US) into account (such as Mr. and Dr.) but
is frequently fooled by proper names like “U.S.” or “Lyndon B. Johnson” or “St. John’s.”
A customized tokenizer could take into account patterns like state abbreviations and ab-
breviations like “Mt.” and “N.”–patterns that appear often when describing geographic
places.

In the current version, a legitimate place could be discarded if it appears before a year in
a sentence that got split in two incorrectly. The most significant error caused by incorrect
sentence breaks is the assignment of Washington to a location in England, even though
Washington, D.C. is almost always intended. The full name of the American city gets
broken into the nonsense “Washington, D.” so that even a legitimate link to the Wikipedia
page gets broken. When just “Washington” is looked up, the top hit is in England. The
toponym Washington, D.C. never gets included in the places collection at all.

12.4 More complex multimatch heuristic

Setting aside the coordinates from Wikipedia, the various multimatch approaches I tried rely
on either importance or proximity. The final version (cascadecrawler) threw out proximity
and went back to using importance as the deciding factor when no other context could be
derived. It may be more effective to strike a balance between proximity and importance by
allowing proximity to be considered when one place is not clearly the most important one
with that name.

For example, London, England, has a population of nearly eight million and is a national
capital. The places in the United States that share the name have less than ten thousand
people each and are not capitals. Even London, Ontario, is only a county seat, with less
than half a million people.

By contrast, Birmingham, AL and Birmingham, England each have between one hun-
dred thousand and one million people and are of the same place type in GeoNames, “seat
of a second-order administrative division.”

A more subtle multimatch heuristic could select London, England as the only valid Lon-
don because it is of a more important place type and has more than an order of magnitude
more people than any other place sharing the same name, but could perform the disam-
biguation process for Birmingham, because neither candidate is clearly more important.

Of course, in this example, using Wikipedia solved it correctly anyway, but this more
subtle heuristic could work in other instances. It would require the addition of rules about
what counts as a sufficient jump in importance like how much difference in population is
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significant. It would probably also require ranking the many different kinds of GeoNames
feature codes to assert which are more important than others.

12.5 Pleiades

Late in working on this project, I learned of the Pleiades database of ancient places. This
resource includes coordinates for ancient places and connects names from different eras,
like Gangra and Germanicopolis[42]. Adding this as a gazetteer option (probably only in
cases where the person’s birth occurs before a certain date, say 500 AD), would reduce
the haphazard matching of names of ancient places when they are only available from
Wikipedia. More complete data would improve the strength of the association between
places (evolving, human-named notions of locations) and spaces (physical locations) in the
system.

Using data from Pleiades would still leave a gap between ancient and modern places.
For example, a place like Carniola, a medieval state in the Holy Roman Empire, appears in
neither Pleiades nor GeoNames, and does not have coordinates in Wikipedia.

12.6 Time normalization

Kivrin does not extrapolate relative times from phrases like “at age 18...” which are rela-
tively rare and mostly appear describing someone’s youth (rarely does an article say, “at the
age of 47...”). The same is true of phrases like “ten years later. . . ” The argument against
doing this would be that matching any significant proportion of these phrase variations
would be time-consuming (most sentences do not contain them) and that good Wikipedia
text would introduce a major time or place shift using clearer, more spelled-out writing.

Annotation of dates at a more granular level could be supported by a tool like the
HeidelTime system for extracting and normalizing temporal expressions[43]. This would
require further thought about how to treat user queries for time spans that differ in gran-
ularity from the attested data derived from Wikipedia articles. Kivrin will already return
a result if someone is in New York City on 9/1/2001 and the user searches for 2001. The
question is what happens if the user searches for a specific date. Implementing a system
like HeidelTime would reveal whether there is actually enough data in Wikipedia at this
level of granularity to offer worthwhile results.

12.7 Filter by field of endeavor

Although DBpedia was not helpful for retrieving metadata that stems from the Persondata
template, its ontology could help in other ways. One example would be organizing people
by profession. This would not be practical directly from Wikipedia, since the quality of
information in profession infoboxes varies. (O.J. Simpson has only the infobox for NFL
players despite now being known for something else; many people just have a “person”
infobox; meanwhile other categories vary in specificity like “artist” or “musical artist.”)

Luckily, DBpedia contains data that tries to organize professions according to Wikipedia
categories and WordNet: the YAGO ontology[44]. In DBpedia, Andrea Gabrieli has a number
of rdf:type entries such as yago:ItalianComposers[45]. Using YAGO it is possible to go
higher in the ontology and discover that the highest-level parent is “Musicians.”
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Pulling in this kind of data would make it possible to allow users to filter Kivrin’s
results according to major fields like arts, science, government, etc. Users might find this
interesting, although part of the intent of the project was to allow serendipitous discovery
across fields of endeavor.

12.8 Discovering nonbiographical articles

Attempting to process nonbiographical articles would probably not have very useful results.
First, numerous trivial results would be included. A tool like Kivrin is not needed to tell
us that the 1952 Philadelphia Phillies were in Philadelphia in the 1950s. Also, nonhistorical
articles do not necessarily proceed chronologically; Radium, for example, jumps around in
the 19th and 20th centuries and discusses the element’s half-life of 1601 years. Results from
an article like this would be very poor. Finally, articles about events like the Storming of the
Bastille would be appropriate to include, but I am not aware of a template that identifies
them like the Persondata template does for people.

12.9 Three-dimensional index and case-insensitive search

A major change could be made easily if MongoDB implemented three-dimensional (or n-
dimensional) geospatial indexing. This feature, which has been discussed but not decided
on, would make it possible to collapse sightings and places into a single collection with
the timeline as a third, quasi-spatial dimension. Rather than requiring the user to specify
a time range, which is in the idiom of a traditional database schema, Kivrin could then
look for sightings that are near a pinpoint query like 46, -122, 1980 (the Mt. St. Helens
eruption). Effectively, the range of dates searched would expand or contract as needed to
get a reasonable number of hits. This form of searching may feel more natural to users.

It would also improve the system if MongoDB made another change that is under con-
sideration: adding case-insensitive search and indexing. Kivrin compensates for this by
running user-typed searches in regular-expression mode, but this is sluggish.

12.10 Offline processing

The project could be approached differently by downloading the content of Wikipedia and
GeoNames and processing the information offline. If indexing speed were not an issue, the
backlinks tool could be queried for each candidate page to determine its importance in the
network of Wikipedia articles, allowing results to be ranked by that metric instead of the
number of sightings in the search range. It may become desirable to limit the database
to highlight only the more important people. Assuming again that more important people
have more complete pages, the system could be set to create a record only if the person’s
article resulted in, say, ten or more sightings (instead of just one in the current version).
Similarly, after indexing, the places collection could be pruned over the significant number
of places with only one sighting, to speed query processing.

36



12.11 Scale and speed

The crawler would obviously process pages much faster if it were multithreaded. I did not
attempt this since it would simply burn through the available GeoNames queries faster and
then sit idle. GeoNames does offer commercial plans, but only the most expensive ones
offer more queries per hour than the free plan.

The MongoDB database should scale well. On a database of about 40,200 people, the
size of all the indexes was about 174 MB. If the indexes were to grow too large to fit on
one machine, MongoDB is designed to allow easy, automatic sharding/partitioning across
multiple nodes, which accounts for its popularity with fast-growing start-ups.

All of the MongoDB indexes, including geospatial ones, are implemented as B-trees. It
may be more efficient to implement the index on the coordinates as an R-tree, which would
also lend itself to creating a three-dimensional index. Still, the B-tree indexes work very
adequately for the current volume of data.

13 Conclusions

Despite some errors, the results given by Kivrin in test searches offer plausible information,
serviceable enough for general use. The design of this tool shows how a huge volume of
user-generated information can be digested into a form that allows access in novel ways.

The queue design takes advantage of what can be observed about linking patterns in
Wikipedia to favor biographical entries and results of higher perceived importance.

The multimatch discussion shows that assumptions about place name disambiguation
that may be valid in other contexts do not make sense when dealing with text that is itself
already a kind of summary that may omit intermediate steps that would otherwise give
context.

The data quality would be most improved by using statistical methods to resolve se-
mantic ambiguity, differentiating personal names from place names.

The front end compensates for errors by ordering results by the number of sightings;
one-off mistakes drop to the bottom of the list. Use of a three-dimensional geospatial index
could allow users to search in a more natural-feeling way.
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