# [FOM] 368:Upper Shift Fixed Points and Large Cardinals/correction

pax0@seznam.cz pax0 at seznam.cz
Sat Oct 10 11:19:30 EDT 2009

```Can you please give us some intuition why huge and subtle cardinals are the right types
here:
http://www.cs.nyu.edu/pipermail/fom/2009-October/014119.html

Thank you, Jan

>
>  I defined Q^k# as the set of all x in Q^k all of whose coordinates are
>  distinct.
>
>
>  Q^k<= as the set of all x in Q^k such that each coordinate is <= the
>  next.
>
>  Replace Q^k# by Q^k<= in
>
>  Internal Upper Shift Theorem
>  Sequential Internal Upper Shift Theorem
>  Finite Sequential Internal Upper Shift Theorem
>  Estimated Sequential Internal Upper Shift Theorem
>
>  **********************
>
>  manuscripts. This is the 368th in a series of self contained numbered
>  postings to FOM covering a wide range of topics in f.o.m. The list of
>  previous numbered postings #1-349 can be found
>  athttp://www.cs.nyu.edu/pipermail/fom/2009-August/014004.html
>  in the FOM
>  archives.
>
>  350: one dimensional set series  7/23/09  12:11AM
>  351: Mapping Theorems/Mahlo/Subtle  8/6/09  10:59PM
>  352: Mapping Theorems/simpler  8/7/09  10:06PM
>  353: Function Generation 1  8/9/09  12:09PM
>  354: Mahlo Cardinals in HIGH SCHOOL 1  8/9/09  6:37PM
>  355: Mahlo Cardinals in HIGH SCHOOL 2  8/10/09  6:18PM
>  356: Simplified HIGH SCHOOL and Mapping Theorem  8/14/09  9:31AM
>  357: HIGH SCHOOL Games/Update  8/20/09  10:42AM
>  358: clearer statements of HIGH SCHOOL Games  8/23/09  2:42AM
>  359: finite two person HIGH SCHOOL games  8/24/09  1:28PM
>  360: Finite Linear/Limited Memory Games  8/31/09  5:43PM
>  361: Finite Promise Games
>  362: Simplest Order Invariant Game
>  363: Greedy Function Games/Largest Cardinals 1
>  364: Anticipation Function Games/Largest Cardinals/Simplified 9/7/09
>  11:18AM
>  365: Free Reductions and Large Cardinals 1  9/24/09  1:06PM
>  366: Free Reductions and Large Cardinals/polished  9/28/09  2:19PM
>  367: Upper Shift Fixed Points and Large Cardinals  10/4/09  2:44PM
>
>  Harvey Friedman
>
>  _______________________________________________
>  FOM mailing list
>  FOM at cs.nyu.edu
>  http://www.cs.nyu.edu/mailman/listinfo/fom
>
>
>
```