# [FOM] Odd Thought About Identity]

Alex Blum blumal at mail.biu.ac.il
Fri May 15 06:07:49 EDT 2009

```Richard Heck wrote:

>This came up in my logic final. There was a deduction in which one got
>to here:
>    Rxy . ~Ryx
>and needed to get to here:
>    ~(x = y)
>    (x)(y)(x = y --> Rxy <--> Ryx)
>This does not, of course, accord with the usual way we state the laws of
>identity, but it struck me that it is, in fact, every bit as intuitive
>as the usual statement. Which, of course, is why they did it that way.
>
>It wouldn't be difficult to formulate a version of the law of identity
>that allowed this sort of thing. But I take it that it would not be
>"schematic", in the usual sense, or in the strict sense that Vaught
>uses. I wonder, therefore, if a logic that had a collection of axioms of
>this sort might not yield an interesting example somewhere. Or if there
>isn't a similar phenomenon somewhere else.
>
>
>Richard
>
>
>

Perhaps,
If x=y, then any free occurences of x in a wff F may be replaced by y
and any free occurences of y  in the formula may be replaced by x.

This would immediately yield from 'x=y' and 'Rxy' , 'Ryx', but ' 'x=y'
and 'Rxy' also yield '~Ryx'. Hence '~(x=y) v ~Rxy' But 'Rxy' Hence '~(x=y).
Alex Blum

```