[FOM] 238:Pi01 Independence/Large Large Cardinals/Correction
Harvey Friedman
friedman at math.ohio-state.edu
Tue Dec 7 22:31:23 EST 2004
This corrects my first version of Pi01 independence from n-huge cardinals in
posting #236. The strength has now shot up to lots of nontrivial elementary
embeddings of ranks into themselves.
These developments in no way, shape, or form obsolete BRT.
##########################################
Let N be the set of all nonnegative integers. For p in N, let [p] =
{0,...,p}. For any set V, let V^k be the set of all k-tuples from V, and
V^<k be the set of all tuples from V of nonzero length < k.
Let T:[p]^k into N, and E containedin N^k. We define the upper image of T
on E by
T<[E] = {T(x): x in E and T(x) > max(x)}.
We write PL([p]^k,E) for the set of all piecewise linear transformations
T:[p]^k into N over E. These are the T:[p]^k into N defined by finitely many
cases, where each case is given by a finite set of linear inequalities, and
T is given by an affine expression with coefficients in each case, and where
all coefficients used in the inequalities and affine expressions lie in E.
We use cross section notation T_x, where x is a vector of any nonzero finite
length. Note that dom(T_x) depends on the length of x. If x is too long,
then obviously dom(T_x) = emptyset.
We take min(emptyset) = 0. For x in N^s, we define x! = (x_1!,...,x_s!).
Let R1,...,Rt,S1,...,St be multivariate relations on N, where the arity of
each Ri,Si are the same. We say that
f nontrivially embeds (N,R1,...,Rt) into (N,S1,...,St)
if and only if
i) f is a partial function from V into V that is not an identity function;
ii) for all x1,...,xn in dom(f), Ri(x1,...,xn) iff Si(f(x1),...,f(xn)),
where the arity of Ri is n.
PROPOSITION 1. For all T in PL([p]^3k,[k]) there exists A containedin [p]^3
such that every A_i!, i! in [(8k)!!,p], is a nontrivial embedding of
([i!],T,A_00,T<[A^k]) into ([i!],T,A_00,A_00') whose domain includes all
min(T_x![A^<k]) <= i!.
Proposition 1 is obviously explicitly Pi01.
THEOREM 2. Proposition 1 is provably equivalent, over EFA, to the
consistency of ZFC + {there exists an n-Mahlo cardinal lambda such that
there are lambda many kappa < lambda with a nontrivial elementary embedding
from V(kappa) into V(kappa)}_n.
*************************************
I use www.math.ohio-state.edu/~friedman/ for downloadable manuscripts.
This is the 238th in a series of self contained numbered postings to
FOM covering a wide range of topics in f.o.m. The list of previous
numbered postings #1-149 can be found at
http://www.cs.nyu.edu/pipermail/fom/2003-May/006563.html in the FOM
archives, 5/8/03 8:46AM. Previous ones counting from #150 are:
150:Finite obstruction/statistics 8:55AM 6/1/02
151:Finite forms by bounding 4:35AM 6/5/02
152:sin 10:35PM 6/8/02
153:Large cardinals as general algebra 1:21PM 6/17/02
154:Orderings on theories 5:28AM 6/25/02
155:A way out 8/13/02 6:56PM
156:Societies 8/13/02 6:56PM
157:Finite Societies 8/13/02 6:56PM
158:Sentential Reflection 3/31/03 12:17AM
159.Elemental Sentential Reflection 3/31/03 12:17AM
160.Similar Subclasses 3/31/03 12:17AM
161:Restrictions and Extensions 3/31/03 12:18AM
162:Two Quantifier Blocks 3/31/03 12:28PM
163:Ouch! 4/20/03 3:08AM
164:Foundations with (almost) no axioms 4/22/03 5:31PM
165:Incompleteness Reformulated 4/29/03 1:42PM
166:Clean Godel Incompleteness 5/6/03 11:06AM
167:Incompleteness Reformulated/More 5/6/03 11:57AM
168:Incompleteness Reformulated/Again 5/8/03 12:30PM
169:New PA Independence 5:11PM 8:35PM
170:New Borel Independence 5/18/03 11:53PM
171:Coordinate Free Borel Statements 5/22/03 2:27PM
172:Ordered Fields/Countable DST/PD/Large Cardinals 5/34/03 1:55AM
173:Borel/DST/PD 5/25/03 2:11AM
174:Directly Honest Second Incompleteness 6/3/03 1:39PM
175:Maximal Principle/Hilbert's Program 6/8/03 11:59PM
176:Count Arithmetic 6/10/03 8:54AM
177:Strict Reverse Mathematics 1 6/10/03 8:27PM
178:Diophantine Shift Sequences 6/14/03 6:34PM
179:Polynomial Shift Sequences/Correction 6/15/03 2:24PM
180:Provable Functions of PA 6/16/03 12:42AM
181:Strict Reverse Mathematics 2:06/19/03 2:06AM
182:Ideas in Proof Checking 1 6/21/03 10:50PM
183:Ideas in Proof Checking 2 6/22/03 5:48PM
184:Ideas in Proof Checking 3 6/23/03 5:58PM
185:Ideas in Proof Checking 4 6/25/03 3:25AM
186:Grand Unification 1 7/2/03 10:39AM
187:Grand Unification 2 - saving human lives 7/2/03 10:39AM
188:Applications of Hilbert's 10-th 7/6/03 4:43AM
189:Some Model theoretic Pi-0-1 statements 9/25/03 11:04AM
190:Diagrammatic BRT 10/6/03 8:36PM
191:Boolean Roots 10/7/03 11:03 AM
192:Order Invariant Statement 10/27/03 10:05AM
193:Piecewise Linear Statement 11/2/03 4:42PM
194:PL Statement/clarification 11/2/03 8:10PM
195:The axiom of choice 11/3/03 1:11PM
196:Quantifier complexity in set theory 11/6/03 3:18AM
197:PL and primes 11/12/03 7:46AM
198:Strong Thematic Propositions 12/18/03 10:54AM
199:Radical Polynomial Behavior Theorems
200:Advances in Sentential Reflection 12/22/03 11:17PM
201:Algebraic Treatment of First Order Notions 1/11/04 11:26PM
202:Proof(?) of Church's Thesis 1/12/04 2:41PM
203:Proof(?) of Church's Thesis - Restatement 1/13/04 12:23AM
204:Finite Extrapolation 1/18/04 8:18AM
205:First Order Extremal Clauses 1/18/04 2:25PM
206:On foundations of special relativistic kinematics 1 1/21/04 5:50PM
207:On foundations of special relativistic kinematics 2 1/26/04 12:18AM
208:On foundations of special relativistic kinematics 3 1/26/04 12:19AAM
209:Faithful Representation in Set Theory with Atoms 1/31/04 7:18AM
210:Coding in Reverse Mathematics 1 2/2/04 12:47AM
211:Coding in Reverse Mathematics 2 2/4/04 10:52AM
212:On foundations of special relativistic kinematics 4 2/7/04 6:28PM
213:On foundations of special relativistic kinematics 5 2/8/04 9:33PM
214:On foundations of special relativistic kinematics 6 2/14/04 9:43AM
215:Special Relativity Corrections 2/24/04 8:13PM
216:New Pi01 statements 6/6/04 6:33PM
217:New new Pi01 statements 6/13/04 9:59PM
218:Unexpected Pi01 statements 6/13/04 9:40PM
219:Typos in Unexpected Pi01 statements 6/15/04 1:38AM
220:Brand New Corrected Pi01 Statements 9/18/04 4:32AM
221:Pi01 Statements/getting it right 10/7/04 5:56PM
222:Statements/getting it right again 10/9/04 1:32AM
223:Better Pi01 Independence 11/2/04 11:15AM
224:Prettier Pi01 Independence 11/7/04 8:11PM
225:Better Pi01 Independence 11/9/04 10:47AM
226:Nicer Pi01 Independence 11/10/04 10:43AM
227:Progress in Pi01 Independence 11/11/04 11:22PM
228:Further Progress in Pi01 Independence 11/12/04 2:49AM
229:More Progress in Pi01 Independence 11/13/04 10:41PM
230:Piecewise Linear Pi01 Independence 11/14/04 9:38PM
231:More Piecewise Linear Pi01 Independence 11/15/04 11:18PM
232:More Piecewise Linear Pi01 Independence/correction 11/16/04 8:57AM
233:Neatening Piecewise Linear Pi01 Independence 11/17/04 12:22AM
234:Affine Pi01 Independence 11/20/04 9:54PM
235:Neatening Affine Pi01 Independence 11/28/04 6:08PM
236:Pi01 Independence/Huge Cardinals 12/2/04 3:49PM
237:More Neatening Pi01 Affine Independence 12/6/04 12:56AM
Harvey Friedman
More information about the FOM
mailing list