[FOM] Definition of "large cardinal axiom"?

JoeShipman@aol.com JoeShipman at aol.com
Wed Apr 14 13:59:51 EDT 2004

I have always understood "Large Cardinal Axiom" to mean a sentence Phi in the language of set theory with the following properties:

1) Phi is equivalent to a sentence of the form "There exists a cardinal Kappa such that Psi(Kappa)" or "There exist arbitrarily large Kappa Psi(Kappa)", such that

2) Psi(Kappa) implies Kappa is strongly inaccessible, or bears some simple relationship to a strongly inaccessible cardinal (for example, Kappa is a singular limit of strong inaccessibles)

3) Psi(V) is true, or at least not known to be false (that is, Psi can be straightforwardly modified into a sentence of VNBG or some similar "Class" theory asserting something about the universe of sets that might be true).

Conditions 2 and 3 are not precise, but they're clear enough in practice.  Can anyone suggest a statement generally regarded as a large cardinal axiom that does not satisfy the above?

-- Joe Shipman

More information about the FOM mailing list