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Abstract
This paper addresses the problem of stabilization of LTI systems via static output feedback (sof) and optimal

H2 and H∞ sof control. Various algorithms based on the same mixed LMI/randomized approach are defined
for the computation of sets of stabilizing sof and optimal H2 and H∞ sof control. The main idea is to combine
a particular relaxed LMI parameterization of stabilizing sof with high efficiency of Hit-and-Run method for
generating random points in a given domain. Their respective efficiency is compared on several examples of
the COMPleib library. Dual of the approach proposed in [35], the mixed LMI/randomized algorithms proposed
here appear to be much more effective. Indeed, obtained results are almost comparable to those obtained by
HIFOO package which is considered to be the most effective tool for optimal H∞ sof control. Finally, the paper
additionally provides an extensive evaluation of the different instances proposed in the COMPleib library in terms
of stabilization and optimal H2/H∞ sof control as well.

1 Introduction
One of the most challenging open problems in control theory is the synthesis of static output-feedback (SOF)
controllers that meet desired performances and/or robustness specifications [38]. The static or reduced fixed-order
dynamic output feedback problem is therefore always an active research area in the control literature.

In the recent years, many attempts have been made to give efficient numerical procedures to solve related
problems, [1, 36, 25, 14, 12, 15, 24, 16]. In [11], a numerical comparison was performed and classification
into three categories (nonlinear programming, parametric optimization and convex programming approaches) was
proposed. Even if these three classes may overlap, it gives a clear picture of the situation at that moment. Since
then, new developments have been witnessed and the literature has been enriched by numerous contributions
on the so-called nonlinear programming approach [26, 5, 10, 9, 3, 2] while pure convex programming methods or
parametric optimization methods (which could be merged in a unique class) were scarcely still considered [31, 35].
The main reason mainly relies on the use of new powerful numerical tools based on nonsmooth optimization for
the solution of static output feedback stabilization problems or static output feedback design with closed-loop
performance guarantees [10, 19, 20]. The algorithms based on these techniques may be considered as the most
numerically efficient ones at the moment as reported in different dedicated publications [4, 21, 18].

The first objective of this paper is not to contest the present superiority of existing packages but rather to show
that there is still room for alternative useful options on the specific issues mentioned above. In [32], a first step
for designing sets of stabilizing static output feedbacks was proposed which is dual of the one proposed later in
[35] and [34]. The effective construction of samples in these ellipsoidal sets relied on usual deterministic local
optimization algorithm. Recently, new randomized algorithms have been designed for the synthesis of feedback
controllers in different contexts [17], [33], [13]. Very efficient from a numerical point of view, an initial guess is
generally needed to adequately build the set of admissible controllers. The idea is therefore to combine these two
approaches into a mixed LMI/randomized algorithm to tackle the problem of static output feedback stabilization.

If stabilization is a mandatory requirement when designing control systems, it is not sufficient for many appli-
cations. It is therefore essential to provide the designer with adequate methods for the computation of feedback
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laws with guaranteed closed-loop performance. H2 and H∞ norms are now widely used in the control commu-
nity as complementary effective measures of optimal average performance for the former and robustness for the
latter The problems of H2 and H∞ optimal static output feedback stabilization are therefore addressed and mixed
LMI/randomized algorithms based on a coordinate-descent cross-decomposition scheme allows to get suboptimal
static output feedback gains for these two problems.

In the final section, different variations of the basic mixed LMI/randomized algorithm are analyzed on a large
part of the benchmarks of the COMPleib library [22], [28], [29].

1.1 Notations
For conciseness reasons, some abbreviations are used. sym(A) = A + A′. [?]′BA = A′BA and[

A B
? C

]
=

[
A B
B′ C

]
(1)

C is the field of real numbers and C is the field of complex numbers while C− is the open subset of complex
numbers with strictly negative real part.

For symmetric matrices, � (�) is the Löwner partial order (A � (�)B if and only if A−B is positive (semi)
definite) defined in the cone of positive (semi)definite matrices S+∗ (S+). trace(A) is the sum of diagonal elements
of a (square) matrix. Λ(A) is the spectrum of the matrix A (the set of all eigenvalues of the matrix A). Rm×n is
the linear space of rectangular m× n matrices with real entries and equipped with the inner product defined as the
usual inner product of the vectors representing the matrices < A,B >= trace(A′B).

1.2 Statement of stabilization and performance problems
Let the state-space model of the system be given by its minimal state-space realization:

ẋ(t) = Ax(t) + B1w(t) + Bu(t)
z(t) = C1x(t) + D11w(t) + D12u(t)
y(t) = Cx(t) + D21w(t)

P (s) :=

 A B1 B
C1 D11 D12

C D21 0

 (2)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector, y ∈ Rr is the output vector, w ∈ Rm2 is the
disturbance vector and z ∈ Rr2 is the controlled output vector. All matrices are assumed to be of appropriate
dimensions and it is assumed throughout the paper that rank(B) = m and rank(C) = r.

The model (2) is stabilizable by static output-feedback (sof) if there exists a gain matrix Ksof ∈ Rm×r such
that the closed-loop matrix A + BKsofC is asymptotically stable (a Hurwitz matrix). Moreover, the system
is stabilizable by state-feedback (sf) if there exists a gain matrix K ∈ Rn×r such that the matrix A + BKsf is
Hurwitz. This last property is a special case of the former and corresponds to full state information output-feedback
(C = 1) and has found a tractable solution through convex optimization and LMI formalism [8]. Let us define the
set of stabilizing state-feedback matrices:

Ksf =
{
Ksf ∈ Rm×n : Λ(A + BKsf ) ∈ C−

}
(3)

and the set of stabilizing static output-feedback matrices:

Ksof =
{
Ksof ∈ Rm×r : Λ(A + BKsofC) ∈ C−

}
(4)

The first problem considered in this paper is to build non trivial sets of stabilizing sof for (2).

Problem 1 sof stabilization
Given the model (2), build a non trivial subset Knsof

sof ⊂ Ksof of nsof ≥ 1 instances.

In general, when evaluating algorithms for sof design, one important issue is not only to find stabilizing sof but
rather to find adequate candidates for optimizing some prespecified performance. For Ksof ∈ Kof and Ksf ∈ Ksf ,
consider the following transfer functions:

T (s,Ksof ) = (C2 + D2KsofC)(s1− (A + BKsofC))−1B2

Ts(s,Ksf ) = (C2 + D2Ksf )(s1− (A + BKsf ))−1B2

(5)

Let ‖T (s,K∗)‖2 and ‖T (s,K∗)‖∞ be respectively the H2 norm and the H∞ norm of the transfer matrix T (s,K∗).
The generic performance synthesis problem to be addressed is stated as follows.
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Problem 2 optimal sof control
Find K∗

sof ∈ Ksof such that ‖T (s,Ksof )‖∗ where ∗ = 2 or∞ is minimum.

K∗
sof = arg

{
min

Ksof∈Ksof

‖T (s,Ksof )‖∗

}
(6)

This problem which has been dealt with for the first time in [30] in the context of H2 optimal sof control, is known
to be a difficult one for which no convex formulation exists yet for ∗ = 2 or ∞. The problem is supposed to
have many local minima and it is believed that any reformulation will also exhibit local minima. To overcome
this particular problem, many approaches use heuristics to make the optimization problem more tractable. In
[31], an efficient numerical cross-decomposition procedure based on a new parameterization of Ksof has given
promising results in the H2 case. It is proposed to build on these previous results by adding a randomized step that
will enforced the obtained results. Note that in [31], the H2 optimal sof control problem was addressed but H∞
optimal sof control may be considered in the same framework. In the sequel, when considering the H2 sof optimal
control problem, it is assumed that D11 = 0 and D21 = 0.

2 Construction of stabilizing sof sets via a mixed LMI/randomized ap-
proach

2.1 Parameterization of Ksof

Two different mixed LMI/randomized algorithms may be defined. They both rely on the following parameteriza-
tion of stabilizing sof matrices that has been first proposed in [31]. Let us define the following notation:

M(P ) =
[

A′P + PA PB
B′P 0

]
=

 1 0
0 1
A B

′  0 0 P
0 0 0
P 0 0

 1 0
0 1
A B

 (7)

A necessary and sufficient condition for the existence of a stabilizing sof for (2) is given in the following theorem.

Theorem 1 [31]
∃Ksof ∈ Ksof for the model (2) if and only if there exist a stabilizing sf matrix Ksf ∈ Ksf , a matrix P ∈ S+∗

and matrices F ∈ Rm×m, Z ∈ Rm×r solutions of the matrix inequality (8):

L(P,Ksf , Z, F ) = M(P ) + sym
([

K ′
sf

−1

] [
ZC F

])
≺ 0 (8)

Moreover, Ksof = −F−1Z ∈ Ksof .

Proof
Note that the sof stabilizability of (2) (∃ Ksof ∈ Ksof ) is equivalent to the existence of a matrix Ksof ∈ Rm×r

and a matrix P ∈ S+∗ solutions to the following Lyapunov inequality:

(A + BKsofC)′P + P (A + BKsofC) =
[

1 C ′K ′
sof

]
M(P )

[
1

KsofC

]
≺ 0 (9)

Applying elimination lemma [37], this is also equivalent to the existence of matrices Ksof ∈ Rm×r, F1 ∈ Rr×m,
F2 ∈ Rm×m and a matrix P ∈ S+∗ solutions to the following matrix inequality:

M(P ) + sym
([

C ′K ′
sof

−1

] [
F1 F2

])
≺ 0 (10)

The matrix F2 is always invertible since the block (2, 2) reads F2 + F ′
2 � 0. Factorizing F2 in 10 leads to the

result. �
Even if the existence condition is expressed in terms of solution to a Bilinear Matrix Inequality (BMI), this

parameterization has some interesting characteristics that will be useful for defining efficient numerical procedure
for sof synthesis. First, thanks to the introduction of additional variables, there is a decoupling between the com-
putation of Ksof ∈ Ksof and the Lyapunov certificate P . Moreover, the matrix Ksf at the origin of the non
convexity of condition (8) must not be arbitrarily chosen but it has to be a stabilizing sf for (2), i.e. Ksf ∈ Ksf . It
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is well-known that the computation of a stabilizing sf for (2) is a convex problem that may solved via the following
LMI optimization problem [8]:

min
X,R

trace(X)

under trace(X) > α
X � 0
AX + XA′ + BR + R′B′ ≺ 0

(11)

for some α > 0 and where Ksf = RX−1 ∈ Ksf .
For a given Ksf ∈ Ksf , the LMI convex set LKsf

sof defined by:

LKsf

sof =
{
(P,Z, F ) ∈ S+∗ × Rm×r × Rm×m : ∃Ksf ∈ Ksf | L(P,Ksf , Z, F ) ≺ 0

}
(12)

is a convex parameterization that approximates the set of all stabilizing sofKsof . Note that this convex approxima-
tion may be empty (LKsf

sof = ∅) even if Ksof 6= ∅ for a given Ksf ∈ Ksf . However, a complete parameterization
of Ksof is obtained when Ksf covers the whole continuum of Ksf .

Ksof =

{∞⋃
i

LKi
sf

sof |K
i
sf ∈ Ksf

}
(13)

In fact, the problem of finding a stabilizing sof amounts to find a triplet composed of (Ksof ,Ksf , P ) ∈ Ksof ×
Ksf × S+∗ verifying (8), meaning that a common Lyapunov certificate P has to be found for Ksf and Ksof . This
last interpretation is reminiscent of a necessary and sufficient condition of sof stabilizability proposed in [7].

Remark 1 :
Note that the parameterization (8) of Ksof has an equivalent one for Ksf since:

L(P,Ksf , Z, F ) = L(P,Ksof ,H, F ) = M(P ) + sym
([

C ′K ′
sof

−1

] [
H ′ F ′ ])

≺ 0 (14)

where Ksf = −F−T H ′ ∈ Ksf . Given Ksof ∈ Ksof , one can easily get a convex parameterization approximating
the set of all stabilizing sf. This seems of no consequence since the complete set Ksf may be parameterized by the
LMI convex set defined in (11). Nevertheless, this alternate parameterization will appear useful in the sequel when
looking for sets of sof of for optimal H2 or H∞ sof.

For a given Ksof ∈ Ksof , the LMI convex set LKsof

sf defined by:

LKsof

sf =
{
(P,H, F ) ∈ S+∗ × Rn×m × Rm×m : ∃Ksof ∈ Ksof | L(P,Ksof ,H, F ) ≺ 0

}
(15)

is a convex parameterization that approximates the set of all stabilizing sf Ksf .

2.2 Hit-and-Run design techniques for stabilization
Hit-and-Run for the stability set for matrices.

We apply HR for generating the sets of stabilizing state-feedback matrices Ksf (3) and static output-feedback
matrices Ksof (4). The approach is the same for both cases. We describe it for static output-feedback matrices
(for state-feedback matrices take C = I , Ksf ∈ Rm×n). Suppose matrices A, B, C are given and K ∈ Rm×r is a
variable, K0 belongs to the bounded set of stabilizing gains:

Ksof = {K : A + BKC is Hurwitz.} (16)

The structure of this set is analyzed in [17]. It can be nonconvex and can consist of many disjoint domains.
In every step of the HR algorithm we generate matrix D = Y/||Y ||, Y = randn(m,r) which is uniformly

distributed on the unit sphere in the space of matrices equipped with Frobenius norm. Matrix D is a random
direction in the space of m × r-matrices. We call boundary oracle an algorithm which provides L = {t ∈ R :
K0 + tD ∈ Ksof}. We denote

A + B(K0 + tD)C = F + tG,

F = A + BK0C, G = BDC
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for a matrix K0 ∈ Ksof , then L = {t : F + tG is Hurwitz}. In the simplest case when Ksof is convex, this set
is the interval (−t, t) where t = sup{t : K0 + tD ∈ Ksof}, t = sup{t : K0 − tD ∈ Ksof}. In more general
situations boundary oracle provides all intersections of the straight line K0 + tD,−∞ < t < +∞ with Ksof . L
consists of finite number of intervals, the algorithm for calculating their end points is presented in [17], Section
4. However sometimes “brute force” approach is more simple. Introduce f(t) = max< eig(F + tG), then the
end points of the intervals are solutions of the equation f(t) = 0 and can be found by use of standard 1D equation
solvers (such as command fsolve in Matlab).

HR method works as follows.

1. Find a starting point K0 ∈ Ksof ; i = 0.

2. At the point Ki ∈ Ksof generate a random direction Di ∈ Rm×r uniformly distributed on the unit sphere.

3. Apply boundary oracle procedure, i.e., define the set

Li = {t ∈ R : Ki + tDi ∈ Ksof}.

4. Generate a point ti uniformly distributed in Li (we recall that Li is, in general, a finite set of intervals), and
compute a new point

Ki+1 = Ki + tiD
i.

5. Go to step 2 and increase i.

The simplest theoretical result on the behavior of HR method states that ifK does not contain lower dimensional
parts, then the method achieves the neighborhood of any point of K with nonzero probability and asymptotically
the distribution of points ki tends to uniform one. The rage of convergence strongly depends on geometry of K
and its dimension.

2.3 Two LMI/randomized algorithms for sof stabilization
Two algorithms using complementary advantages of degrees of freedom offered by parameterization (8) and Hit-
and-Run numerical efficiency are built in order to generate non trivial sets of stabilizing sof. The first algorithm
uses Hit-and-Run only for generating a large subset Knsf

sf of Ksf that will serve for checking if LKsf

sof is empty.

Algorithm 1 :

1- Compute a stabilizing sf K0
sf = RX−1 ∈ Ksf via the solution of the LMI problem (11):

2- From K0
sf , generate a set Knsf

sf ⊂ Ksf which is the collection of nsf samples of stabilizing sf matrices via
H.R. ;

3- Compute a set Kn1
sof

sof ⊂ Ksof which is the collection of n1
sof samples of stabilizing sof matrices:

∀Ki
sf ∈ K

nsf

sf , if the LMI set LKi
sf

sof 6= ∅, add the solution Ki = −F−1
i Zi to the collection set Kn1

sof

sof .

Remark 2 :
(11) is not the only way to initialize algorithm 1. K0

sf may also be computed as the LMI solution of the H2 or
H∞ state-feedback problems (see [6] for more details).

Step 3 is performed by testing the realizability of the LMI set LKsf

sof for each instance Ksf ∈ K
nsf

sf implying
the solution of the homogeneous LMIs (10) with respect to the decision variables (P,Z, F ). To avoid numerical
problems, this step must be done by solving the following semidefinite programming problem:

min
P,Z,F

trace(P )

under trace(P) > α
P � 0

M(P ) + sym
([

K ′
sf

−1

] [
ZC F

])
≺ 0

(17)

for some α > 0.
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The interest of running this algorithm is twofold. First, it will be a good way to evaluate the conservatism of the
convex approximation of Ksof induced by parameterization (8). Indeed, the percentage n1

sof/nsf may be defined
as a quantitative measure of both the conservatism of the convex approximation as well as the difficulty to stabilize
the plant via sof. Secondly, this algorithm will be used for H2 optimal synthesis via sof in two different ways as
will be explained in section 3.

Remark 3 :
If K is a stabilizing sof a priori known, then the set LKC

sof 6= ∅ since the choice Z = −FK will lead to the
existence of P ∈ S+∗ and F ∈ Rm×m such that:

M(P ) + sym
([

C ′K ′

−1

] [
−FKC F

])
= M(P ) + sym

([
C ′K ′

−1

]
[−F ]

[
KC −1

])
≺ 0 (18)

Applying elimination lemma, this last condition is equivalent to the existence of a matrix P ∈ S+∗ such that:

(A + BKC)′P + P (A + BKC) ≺ 0 (19)

which is obviously true since K ∈ Ksof

A much more numerically efficient mixed LMI/randomized algorithm generating sets of stabilizing sof may be

deduced from the previous one. It mainly avoids to run the computational burden of checking if LMI set LKi
sf

sof

is empty for every instance ∀ Ki
sf ∈ K

nsf

sf but starts a hit and run generation of Kn2
sof

sof as soon as an initial
Ksof ∈ Ksof is found by LMI step. It proves to be much more efficient in practice to generate sets of stabilizing
sof ion almost every studied cases of the COMPleib library.

Algorithm 2 :

1- Compute a stabilizing state-feedback K0
sf = RX−1 ∈ Ksf via the solution of the LMI problem (11) ;

2- From K0
sf , generate a set Knsf

sf ⊂ Ksf which is the collection of nsf samples of stabilizing sf matrices via
H.R. ;

3- Find an initial stabilizing sof K0
sof = −F−1

0 Z0: Check every Ki
sf ∈ K

nsf

sf until LKi
sf

sof 6= ∅ ;

3- From K0
sof , compute a set Kn2

sof

sof ⊂ Ksof which is the collection of n2
sof samples of stabilizing sof matrices

via H.R.

2.4 Comments on results from the COMPleib library
The COMPleib library is composed of different LTI models (2) ranging from purely academic problems to more
realistic industrial examples. The underlying systems that are already open-loop asymptotically stable have not
been considered here for obvious reasons. With this last restriction, 53 different models mainly classified in six
classes have been tested.

- Aerospace models: Aircraft models (AC), helicopter models (HE), jet engine models (JE)

- Reactor models (REA)

- Decentralized interconnected systems (DIS)

- Academic tests problems (NN)

- Various applications: Wind energy conversion model (WEC), binary distillation towers (BDT) and terrain
following models (TF), string of high-speed vehicles (IH), strings (CSE), piezoelectric bimorph actuator
(PAS),

- Second order models: A tuned mass damper (TMD), a flexible satellite (FS)

- 2D heat flow models (HF2D)
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For precise details concerning each single example and benchmark, the interested reader may read [28] and [27].

- First note that it has been possible to stabilize every model except AC10. In the first case, the HIFOO
package which may be considered as one of the most effective tool for sof stabilization and for optimal H∞
sof control is not able either to stabilize it.

- A quick look at the reference [34] clearly shows that algorithms 1 and 2 gives far better results than this
last reference. In [34], the proposed algorithm was unable to stabilize plants AC10, NN1, NN5, NN5, NN7,
NN10 and NN12.

- Hard to stabilize examples may be identified as the ones for which less than 5% of the initializing state-
feedback succeed in finding a stabilizing sof. AC9, AC13, AC14, AC18, HE3, JE3, BDT2, TF3, NN9,
NN12, NN14 are such plants for which n1

sof obtained with algorithm 1 is rather low. This is mainly due to
the bad conditioning of numerical operations (matrix inversion) and LMI optimization rather than a failure
of the method in itself. This is confirmed by the reference [29] where similar failures of SDP solvers were
already noticed for some of the previous examples (AC14, AC18, JE3) for the problems of H2 or H∞
state feedback optimal control which are known to have a convex formulation. Moreover, the initialization
Ksf = KC where K ∈ Ksof is known a priori, does not perform well for all these examples, demonstrating
that the plant matrices are poorly conditioned (see remark 3).

- It is not a surprise to note that n1
sof ≤ n2

sof since if the initialization step succeeds n2
sof = 1000 while

max(n1
sof ) = 1000. More surprising is the easiness to get n2

sof stabilizing sof for almost all examples and
considering also that the complete run is really fast in general. Size seems to be a limiting factor for LMI
step but not for Hit-and-Run step.

Figure 1 shows the population stabilizing gains with the boundary for example AC7. It is interesting to note
that the exact shape of the set of stabilizing sof is easily obtained with the mixed LMI/randomized algorithm 1
(see [22] for comparison). Similar results have been obtained for all two-parameters examples of the database
COMPleib, labelled AC4, NN1, NN5 (see below), NN17 and HE1.

Figure 1: Set of stabilizing sof generated with LMI/Randomized algorithm 2 for AC7 example

Figures 2 and 3 show a comparison of the populations respectively obtained via algorithms 1 and 2 for bench-
mark NN5.

Figure 2: Set of stabilizing sof generated with LMI/Randomized algorithm 1 for NN5 example
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Figure 3: Set of stabilizing sof generated with LMI/Randomized algorithm 2 for NN5 example

3 H2 optimal synthesis via sof
An obvious and easy way to compute an H2 suboptimal sof solution for (2) is to pick the best element (with respect

to the closed-loop H2 norm) in the sets Kn1
sof

sof and Kn2
sof

sof computed by algorithms 1 and 2. This is an alternative
to the usual gridding approach for the computation of suboptimal controllers. In general, this approach leads to
a rather crude and possibly very conservative approximation of the global solution. Indeed, the genuine H2 sof
optimal control problem (6) is replaced by the following relaxation:

Ksub∗
sof = arg

 min
Ksof∈K

n∗
sof

sof

‖T (s,Ksof )‖2

 (20)

Corresponding results for COMPleib are labelled as H2 s1 for algorithm 1 and H2 s1 for algorithm 2 in table
1, 2, 3, 4. In the following, different alternative iterative optimization procedures for H2 optimal sof control are
proposed.

3.1 Parameterizations for H2 optimal control
First, the parameterization of theorem 1 is extended to give a solution to the problem (6). Let us define:

N(P2) = M(P2) +
[

C1 D12

]′ [
C1 D12

]
(21)

Theorem 2 :
The H2 optimal sof for (2) is given by K∗

sof2
= −F−1∗Z∗ where the triplet (P ∗

2 , Z∗, F ∗) ∈ S+∗ × Rm×r ×
Rm×m is the global optimal solution of the non convex optimization problem (22):

min
P2,Z,F,Ksf2

trace(B′
1P2B1)

under P2 � 0

L2(P2,Ksf2 , Z, F ) = N(P2) + sym

([
K ′

sf2

−1

] [
ZC F

])
≺ 0

(22)

and Ksf2 ∈ Ksf .

When dealing with the simpler case of H2 sf optimal control (problem (22) for which C = 1) , the exact H2 sf
optimal control may be computed via the solution of the following convex LMI optimization problem:

min
X2,R,T

trace(T )

under X2 � 0[
−T C1X2 + D12R

X2C
′
1 + R′D′

12 −X2

]
≺ 0

AX2 + X2A
′ + BR + R′B′ + B′

1B1 ≺ 0

(23)

In [31], parameterization of theorem 2 is used to derive a coordinate-descent cross-decomposition algorithm
allowing to compute a H2 sub-optimal sof. This algorithm is recalled for sake of clarity.
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Algorithm 3 :

1. (Initialization step - k=1), choose a stabilizing sf gain K0
sf ∈ Ksf .

2. (Step k - first part), for this choice of Kk
sf = K0

sf , solve the following LMI relaxation of minimization
problem (22):

Γ2
k,1 = min

P2,Z,F
trace(B′

1P2B1)

under P2 � 0

L2(P2,K
0
sf2

, Z, F ) = N(P2) + sym

([
K0′

sf2

−1

] [
ZC F

])
≺ 0

(24)

At the optimum, freeze Z = Zk and F = Fk.

3. (Step k - second part), for this choice of Zk and Fk, solve the following LMI relaxation of minimization
problem (22):

Γ2
k,2 = min

P2,Ksf

trace(B′
1P2B1)

under P2 � 0

L2(P2,Ksf2 , Zk, Fk) = N(P2) + sym

([
K

′

sf2

−1

] [
ZkC Fk

])
≺ 0

(25)

At the optimum, freeze Ksf .

4. (Termination step), if Γk,1 − Γk,2 < ε, then stop, Ksof = −F−1
k Zk, otherwise k ← k + 1 and go to step 2.

Note that this algorithm always generates a non increasing sequence of H2 sub-optimal costs:

· · · ≥ Γk−1,2 ≥ Γk,1 ≥ Γk,2 ≥ · · ·

Remark 4 :
The matrix Ksf2 in (22) must belong to the set:{
Ksf ∈ Ksf : ∃ P2 ∈ S+∗ | (A + BKsf )′P2 + P2(A + BKsf ) + (C1 + D12Ksf )′(C1 + D12Ksf ) ≺ 0

}
(26)

This is not restrictive since for Ksf ∈ Ksf , it is always possible to find a matrix P � 0 such that:

(A + BKsf )′P + P (A + BKsf ) + (C1 + D12Ksf )′(C1 + D12Ksf ) ≺ 0 (27)

by choosing a matrix P � Wo where Wo is the observability grammian defined as the solution of the Lyapunov
equation:

(A + BKsf )′Wo + Wo(A + BKsf ) + (C1 + D12Ksf )′(C1 + D12Ksf ) = 0 (28)

For a given Ksf2 ∈ Ksf , the LMI convex set LKsf2
sof may be defined as:

LKsf2
sof =

{
(P2, Z, F ) ∈ S+∗ × Rm×r × Rm×m : ∃Ksf2 ∈ Ksf | L2(P2,Ksf2 , Z, F ) ≺ 0

}
(29)

This algorithm generally works well in practice and allows to get suboptimal H2 sof in a moderate cpu time

when the initializing K0
sf2

is adequately chosen, i.e. L
K0

sf2
sof 6= ∅. As may be seen in tables 1, 2, 3, 4, this is not

always the case and one has to resort to more efficient alternatives. Following remark 1 and noting that a set of
initial stabilizing sof may be computed via algorithms 1 and 2, an alternate parameterization may be proposed.

L2(P2,Ksof ,H, F ) = N(P2) + sym
([

C ′K ′
sof

−1

] [
H ′ F ′ ])

≺ 0 (30)

where Ksf = −F−T H ′ ∈ Ksf . It leads to an alternate coordinate-descent cross-decomposition algorithm.

Algorithm 4 :
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1. (Initialization step - k=1), choose a stabilizing sof gain Ksof ∈ K
n1

sof

sof or Ksof ∈ K
n2

sof

sof .

2. (Step k - first part), for this choice of Kk
sof = K0

sof , solve the following LMI relaxation of minimization
problem (22):

Γ2
k,1 = min

P2,Z,F
trace(B′

1P2B1)

under P2 � 0

L2(P2,K
k
sof ,H, F ) = N(P2) + sym

([
C ′Kk′

sof

−1

] [
H ′ F ′ ])

≺ 0
(31)

At the optimum, freeze H = Hk and F = Fk.

3. (Step k - second part), for this choice of Hk and Fk, solve the following LMI relaxation of minimization
problem (22):

Γ2
k,2 = min

P2,Ksof

trace(B′
1P2B1)

under P2 � 0

L2(P2,Ksof ,Hk, Fk) = N(P2) + sym
([

C ′K ′
sof

−1

] [
H ′

k F ′
k

])
≺ 0

(32)

At the optimum, freeze Ksof = Kk
sof .

4. (Termination step), if Γk,1 − Γk,2 < ε, then stop, Ksof = Kk
sof , otherwise k ← k + 1 and go to step 2.

For a given Ksof ∈ Ksof , the LMI convex set LKsof

sf is defined by:

LKsof

sf =
{
(P,H, F ) ∈ S+∗ × Rn×m × Rm×m : ∃Ksof ∈ Ksof | L2(P2,Ksof ,H, F ) ≺ 0

}
(33)

Once again, algorithm 4 generally works well in practice except when LK0
sof

sf = ∅. The idea is to use potentialities
of randomized algorithms to generate non trivial sets of stabilizing sf for algorithm 3 and sets of stabilizing sof

for algorithm 4 in which it will be easier to find at least one instance K0
sf (resp. K0

sof ) such that LK0
sf

sof 6= ∅ (resp.

LK0
sof

sf 6= ∅).

3.2 Mixed LMI/randomized algorithms for optimal H2 sof control
The first algorithm is built upon the parameterization of theorem 2, coordinate-descent algorithm 3 and on the
construction of a sufficiently representative subset of stabilizing sf Knsf

sf2
.

Algorithm 5 :

1- Compute a H2 optimal sf K0
sf2

= R−1X2 ∈ Ksf via the solution of the LMI problem (23):

2- From K0
sf2

, generate a set Knsf

sf2
⊂ Ksf which is the collection of nsf samples of stabilizing sf matrices via

H.R. ;

3- Compute a set Knsof2
sof2

⊂ Ksof which is the collection of nsof2 H2 suboptimal samples of stabilizing sof
matrices:

∀ Ki
sf ∈ K

nsf

sf2
, if the LMI set L

Ki
sf2

sof 6= ∅, run the coordinate descent algorithm 3 and add the solution
Ki = −F−1

i Zi to the collection set Knsof2
sof2

.

4- Compute the best H2 solution K∗
2 ∈ K

nsof

sof2
out of nsof2 choices.

Note that an alternative to the first step for the initialization of algorithm 5 could be to compute a stabilizing sf via
the solution of (11) or (36) defined in the section dedicated to optimal H∞ sof control.

The natural alternative to the previous algorithm 5 is deduced from parameterization (30) and coordinate-
descent algorithm 4.
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Algorithm 6 :

1- Compute a set Kn∗sof

sof of stabilizing sof via algorithms 1 or 2.

2- Compute a set Knsof2
sof2

⊂ Ksof which is the collection of nsof2 H2 suboptimal samples of stabilizing sof
matrices:

∀ Ki
sof ∈ K

n1
sof

sof2
or Kn2

sof

sof2
, if the LMI set L

Ki
sof2

sf 6= ∅, run the coordinate descent algorithm 4 and add the
solution Ki = −F−1

i Zi to the collection set Knsof2
sof2

.

4- Compute the best H2 solution K∗
2 ∈ K

nsof

sof2
out of nsof2 choices.

This algorithm may be run in two different ways depending upon the choice of the initial stabilizing sof sets Kn1
sof

sof

or Kn2
sof

sof .

3.3 Comments on results from COMPleib library for optimal H2 sof control
First, note that algorithm 4 has been initialized with a stabilizing sof computed via the solver HIFOO [18]. Note
also that the H2 performance presented in the tables are the actual H2 performance computed for the closed-loop
system.

Figures 4 and 5 illustrate how algorithm 5 generates a path to a suboptimal solution in the set of admissible sof
in the case of example NN5.

0 20 40 60 80 100 120 140 160 180 200
5

10

15

20

25

30

35

40

45

50

55

k1

k
2

Figure 4: Suboptimal H2 sof (algorithm 5) for NN5 example
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Figure 5: Zoom of the subobtimal path (algorithm 5) for NN5 example

- First of all, it is interesting to note that plants DIS2, NN2, HF2D10, HF2D11, HF2D18 are not really dis-
criminant benchmarks for the optimal H2 sof control problem. Except for very crude approximations given

by picking the best element in the sets Kn1
sf

sof or Kn2
sf

sof , all algorithms give an identical result. For instance,
NN2 is a classical academic example for which the exact solution is known and may be obtained easily
via analytic derivation [30]. All algorithms are able to get the optimal global solution which is somehow
reassuring.

- Since n1
sof ≤ n2

sof , it could be expected that ‖T (s,Ksub2
sof )‖2 = H2 s2 ≤ ‖T (s,Ksub1

sof )‖2 = H2 s1. As
can be seen in tables of results 1, 2, 3, 4, this is far from being always the case (see instances AC11, AC18,
HE4, DIS4, REA1, REA2, REA3, PAS). This point may be mainly explained by the random nature of the

discrete sets Kn1
sof

sof and Kn1
sof

sof . Moreover, these mixed results shows the necessity to perform an additional
iterative LMI optimization step. Compared to the best result among all possible approaches, this gridding-
type method gives rather crude suboptimal approximations with a large number of generated points even on
less challenging instances such the ones mentioned above.

- The third remark is that less complex (from a numerical point of view) algorithms 3 and 4 may be an option
to get a first fast approximation of a possible guaranteed performance for benchmarks that are not too hard
to stabilize. As could be expected 3 and 4 fail on more demanding examples: AC5, AC13, AC18, JE2,
PAS, NN1, NN5, NN6, NN7, NN12 and NN17 for algorithm 3 and AC1, AC11, AC13, DIS4, JE2, PAS,
FS for algorithm 4. At first, it may be surprising that this last algorithm is not really competitive. This may
be explained by the initialization which does not really take advantage of the parameterization leading to
an unfeasible second step for several examples. Though, it should be noted that pure coordinate-descent
algorithms cannot compete in general at the exception of ”easy benchmarks” and instance AC18.

- Obviously, algorithm 5 gives the best results except for the very specific instance AC18.

- Results obtained for example NN6 should be compared to the one in reference [23] where a suboptimal cost
is found to be 217 103 where here the worst cost is given by 12398 while the best is 1350.87.

4 H∞ optimal synthesis via sof
This section follows the same lines as the previous section 3. Consequently, only an abridged version giving the
main differences are presented.
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4.1 Parameterizations and algorithms for H∞ optimal control
First, the parameterization of theorem 1 is extended to give a solution to the problem (6) in the optimal H∞ sof
control case. Let us define:

N∞(P∞) = [?]′
[

0 P∞
? 0

] [
1 0 0
A B∞ B

]
+ [?]′

[
1 0
0 −γ21

] [
C∞ D∞ D∞u

0 1 0

]
(34)

Theorem 3 :
The H∞ optimal sof for (2) is given by K∗

sof∞
= −F−1∗Z∗ where the triplet (P ∗

∞, Z∗, F ∗) ∈ S+∗×Rm×r ×
Rm×m is the global optimal solution of the non convex optimization problem (35):

min
P∞,Z,F,Ksf∞

γ2

under P∞ � 0

N∞(P∞,Ksf∞ , Z, F ) + sym

 K ′
sf∞

K ′
w∞
−1

 [
ZC ZD21 F

] ≺ 0

(35)

with Ksf∞ ∈ Ksf and Kfi∞ =
[

Ksf∞ Kw

]
is feasible for the H∞ optimal full-information problem.

It is recalled that the H∞ optimal full-information problem is defined as problem (6) for which the measured output

is given by y =
[

x
w

]
i.e. C =

[
1 0

]′
and D21 =

[
0 1

]′
in (2) [39]. A convex solution for this last

problem may be easily formulated:

min
X∞,R,Kw

γ2

under X∞ � 0 AX∞ + X∞A′ + BR + R′B′ B1 + BKw (C1 + D12R)′

(B1 + BKw)′ −γ21 (D11 + D12Kw)′

(C1 + D12R) (D11 + D12Kw) −1

 ≺ 0
(36)

where Kfi =
[

RX∞−1 Kw

]
.

A coordinate-descent algorithm very similar to algorithm 3 may be designed. The only difference is that the
initialization is made by using the complete solution Kfi of the H∞ optimal full-information problem given by
(36). As the basic principles of this algorithm have been dealt with in the previous section, it is not recalled here.

As for the H2 case, an alternate parameterization may be used when Ksof ∈ Ksof is given.

L∞(P∞,Ksof ,K1,K2, F ) = N(P∞) + sym

 K1

K2

F

 [
KsofC KsofD21 −1

] ≺ 0 (37)

It leads to an alternate coordinate-descent cross-decomposition algorithm similar to algorithm 3.
In addition to these two algorithms, two mixed LMI/randomized algorithms for optimal H∞ sof control are

built along the lines of subsection 3.2.

4.2 Comments on results from COMPleib library for optimal H∞ sof control
For the case of optimal H∞ sof control, HIFOO [10, 19, 20, 18] may be considered as the most numerically
efficient package at the moment as reported in different dedicated publications. It has been run 10 times on every
tested example. It is recalled that the default options of this package uses 3 random initialization when searching
for a solution. The obtained result will give the reference for the H∞ norms computed with our algorithms.
Moreover, algorithm 4 is initialized with a stabilizing sof found by HIFOO. In the presented results, no computation
time has been exhibited but it is important to mention that HIFOO is much more efficient than any other tested
LMI/randomized algorithm. This is mainly due to the LMI optimizations steps that still remain too demanding for
large scale benchmarks.

- In every case, when they succeed, iterative mixed LMI/randomized algorithms (particularly algorithm 5)
outperforms results given in [34]. In many cases, algorithm 5 is close to the solution given by HIFOO and
even better in some cases.
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- CSE2 is a demanding problem in terms of computation time due to the large number of variables involved in
the optimization but appears to be far less challenging with respect to the optimal H∞ sof control problem.
Every algorithm leads to an identical result (except for algorithm 4 which probably needs more iterations to
converge to the optimum).

- None of the presented LMI/randomized algorithms works fine on example JE2. Note that the performance
channels have been artificially selected in COMPleib. Note also that the initialization Ksf = KsofC where

Ksof ∈ K
n∗sof

sof fails wheras it should give a solution. Different tested LMI solvers (SeDuMi, SDPT3, SDPA)
display a bad numerical behavior leading to a diagnosis of infeasibility while a simple solution may be
constructed (see remark 3).

- Algorithm 5 (and algorithm 3) does not give any result on examples AC14, HF2D10, HF2D11, HF2D14,
HF2D15, HF2D16, HF2D17 but may be considered as the more interesting one to get results close to
HIFOO and better in some few cases. One of the reason of this relative failure is probably due to the
construction of random full information static gains a priori structured as:

Kfi∞ =
[

Ksf∞ 0
]

(38)

where Ksf∞ is randomly chosen in Ksf via Hit-and-Run.

5 Conclusions
In this article, two different mixed LMI/Hit-and-run algorithms have been proposed for the stabilization of LTI
systems via static output feedback. Evaluation of these algorithms on the 53 benchmarks that are not open-loop
stable shows that both may be considered as effective tools for the construction of non trivial sets of stabilizing
sof. These examples exhibit relatively different structural features and different size of the state-space realization
as well. Due to the relative limitations of SDP solvers in terms of computation time for large scale LTI systems,
these approaches cannot be considered as competitive packages with respect to the last dedicated packages based
on nonsmooth optimization [4, 18]. Nevertheless, we strongly believe that a promising new perspective is possible
in the continuity of the seminal work of [13].
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A Tables resuming obtained numerical results for H2 optimal sof control
The following notations are used in tables 1, 2, 3, 4.

- Name* means that performance channels are artificially built up in COMPLeib for example Name

- OLS stands for Open-Loops Stability

- OLMS stands for open-loop marginal stable (a unique eigenvalue at 0 or multiple eigenvalue with 0 real part
but scalar associated Jordan blocks)

- OLNS stands for open-loop non stable max(real(eig(A)))>0

- n1
sof/nsf stands for the percentage of stabilizing static output feedback found by the algorithm 1

- H2 s1|s2 stands for the best H2 norm of the computed SOF samples with algorithm 1 and 2

- H2 Alg. i stands for the best H2 norm computed via algorithm i (default =30 iterations)
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- number* stands for a non stationary value reached by the criterion at the end of iterations (i.e. the sof
matrix and the actual H2 cost could be significantly improved by increasing the number of iterations of the
coordinate-descent algorithm.

- Inf is used when the closed-loop feedthrough matrix is not zero due to D11 6= 0 or D12 6= 0 and D12 6= 0

- number# stands for a value for which the coordinate-descent algorithm failed at step k second part

- ∗ stands for a complete failure of the algorithm

- pstl is the abbreviation for problem size too large

- Alg. 6.1 stands for algorithm 6 initialized with Ksof ∈ K
n1

sof

sof

- Alg. 6.2 stands for algorithm 6 initialized with Ksof ∈ K
n2

sof

sof .
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B Tables resuming obtained numerical results for H∞ optimal sof control
The following notations are used in tables 5, 6, 7, 8.

- Name* means that performance channels are artificially built up in COMPLeib for example Name

- OLS stands for Open-Loops Stability

- OLMS stands for open-loop marginal stable (a unique eigenvalue at 0 or multiple eigenvalue with 0 real part but scalar
associated Jordan blocks)

- OLNS stands for open-loop non stable max(real(eig(A)))>0

- n1
sof/nsf stands for the percentage of stabilizing static output feedback found by the algorithm 1

- H∞ s1|s2 stands for the best H∞ norm of the computed SOF samples with algorithm 1 and 2

- H∞ Alg. i stands for the best H∞ norm computed via algorithm i (default =30 iterations)

- number* stands for a non stationary value reached by the criterion at the end of iterations (i.e. the sof matrix and
the actual H∞ cost could be significantly improved by increasing the number of iterations of the coordinate-descent
algorithm.

- number# stands for a value for which the coordinate-descent algorithm failed at step k second part

- ∗ stands for a complete failure of the algorithm

- pstl is the abbreviation for problem size too large

- nk is the abbreviation for not known

- Alg. 6.1 stands for algorithm 6 initialized with Ksof ∈ K
n1

sof

sof

- Alg. 6.2 stands for algorithm 6 initialized with Ksof ∈ K
n2

sof

sof .
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