In preparation for a Math lecture:

Subgradients + Subdifferentiability of Convex Functions

Oddly, not in BV.

Assume f is convex + proper: \(\exists x \in \mathbb{R}^n, f(x) < +\infty \)

\[f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}, \quad \forall x, \quad f(x) > -\infty. \]

Define \(y^* \in \mathbb{R}^n \) as a subgradient of \(f \) at \(x \)

\[
f(x + z) \geq f(x) + y^*z \quad \forall z \in \mathbb{R}^n
\]

But...

If \(f \) is differentiable at \(x \), it is not

n=1: \(y \) is the slope of a line passing through \((x, f(x)) \) and lying underneath the graph of \(f \).

\[\left[\begin{array}{c} y \\ -1 \end{array} \right] \]

n \geq 1: \[\left[\begin{array}{c} y \\ -1 \end{array} \right] \] is normal to a hyperplane in \(\mathbb{R}^{n+1} \) passing through \(\left[\begin{array}{c} x \\ f(x) \end{array} \right] \) and lying below the graph of \(f \).

The set of all subgradients of \(f \) at \(x \) is denoted \(\partial f(x) \), the subdifferential of \(f \) at \(x \).

E.g. \(f(x) = |x| \), \(\partial f(0) = [-1, 1] \)
If f is differentiable at x, then
\[d_f(x) = \mathbb{E} \nabla f(x) \mathbb{I}. \]
In fact this is $I F F$
\[f \text{ is convex}. \]

Note that $d_f(x)$ is always a closed, convex, non-empty, compact set.

E.g. $f(x) = \max_{1 \leq i \leq n} f(x_i)$ ($= x^n$ in BV notation)

What's $d_f(x)$ for $x = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 3 \end{bmatrix}$? Need
\[
\max \left(\begin{bmatrix} 1 + z_1 \\ 3 + z_2 \\ 2 + z_3 \\ 2 + z_4 \\ 3 + z_5 \end{bmatrix} \right) \geq 3 + y^T z \quad \forall z \in \mathbb{R}^n
\]

Clearly $e_1 \notin d_f(x)$ as RHS is $3 + z_1$ (take $z = e_1$)

$e_2 \in d_f(x)$ as RHS is $3 + z_2$.

In fact $d_f(x) = \text{conv}(e_2, e_5) = \left\{ \begin{bmatrix} 0 \\ c \\ c \\ 0 \end{bmatrix} : c \in [0, 1] \right\}$

Does this remind you of something?

Answer: (Fenchel) conjugate.

FHM (Fenchel-Hall-Yang)
\[f(x) + f^*(y) \geq x^T y \]
with equality $I F F$ $y \in d_f(x)$.

Pf: Exercise in Borwein & Lewis.
Relationship to Directional Derivative

\[f'(x; d) = \lim_{t \to 0} \frac{f(x+td) - f(x)}{t} \]

Then \(y \in \text{dom } f \) if and only if \(f'(x; d) \) exists for all \(d \in \mathbb{R}^n \).

Proof: By the theorem.

Chain Rule: simplest version.

Let \(f: \mathbb{R}^n \to \mathbb{R} \) convex, \(d \neq 0 \in \mathbb{R}^n \).

Let \(A \in \mathbb{R}^{n \times m} \), \(b \in \mathbb{R}^m \).

Let \(h \) be the convex function on \(\mathbb{R}^m \) defined by

\[h(\xi) = f(A\xi + b) \quad \xi \in \mathbb{R}^m \]

Then \(\nabla h(\xi) = A^T df(A\xi + b) \)

means

\[\{ A^T y; y \in \text{dom } f(A\xi + b) \} \]

Works even if \(A \) does not have full rank, e.g., \(A = 0 \).

Optimality Condition

\(0 \in \text{dom } f \) if and only if \(x \) is a global minimizer of \(f \).

Proof: Immediate from definition.