
Algorithmic Techniques in
Computational Genomics

by

Laxmi Parida

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 1998

Approved:

Bud Mishra

c Laxmi Parida

All Rights Reserved, 1998

Dedicated to those who are reading this thesis.

iv

Acknowledgements

I am grateful to my advisor, Bud Mishra, who treated me more as an equal, and

less as a struggling student. I am grateful to David Schwartz at the Department

of Chemistry, NYU, for introducing me to Optical Mapping. My sincere thanks

to Richard Cole, Davi Geiger, Rohit Parikh and Alan Siegel for their continuing

support and interest in my work and career.

My sincere thanks to Aris Floratos, Muthu Muthukrishnan and Isidore Rigout-

sos for interesting collaborative e�orts and Chandrasekar for his careful reading of

various versions of the thesis.

I owe it to the many people around me for making my graduate years a pleasant

learning experience. Thanks in particular to Saugata Basu, Aris Floratos and Ian

Jermyn for their in�nite patience in being a kind audience to my ramblings and

providing useful insights. Thanks to Juan Carlos Porras and Archisman Rudra for

the long hours spent in the racquet courts that helped me retain my sanity and

provided data for the apeseque index.

Alpana, allow me to thank you for teaching me that the impossible is sometimes

possible.

I owe, much more than I can possibly express, to Tuhina, Ma and Bapa for

their patience, encouragement and support. My sincere gratitude to Tuhina for

her incredible understanding for so young a mind!

v

Contents

Dedication iv

Acknowledgements v

List of Figures x

List of Appendices xiii

1 Introduction 1

2 Molecular Biology 3

2.1 Living Organisms . 4

2.2 Structure of DNA/RNA . 4

2.2.1 Chromosome Structure . 8

2.3 Protein Synthesis (DNA!RNA!Protein) 10

2.4 Molecular Genetic Techniques . 12

2.4.1 DNA Fragmentation (Molecular Scissors) 13

2.4.2 Fractionating DNA fragments 14

2.4.3 DNA Ampli�cation (Molecular Copier) 15

2.4.4 DNA Sequencing . 20

2.4.5 Hybridization . 21

vi

I Physical Map Reconstruction 22

3 The Physical Map Problem 23

3.1 Genomics . 23

3.1.1 Reading the genome . 24

3.2 The Physical Map Problem . 26

3.2.1 Gel-based physical mapping 26

3.2.2 Physical mapping with probes 27

3.2.3 Optical mapping . 28

3.3 On Shotgun Sequencing of the Genome 30

3.4 Summary . 31

4 A Uniform Framework 32

4.1 The Problem Abstraction . 32

4.2 Modeling the problem . 35

4.2.1 Consensus/Agreement with data 35

4.2.2 Optimizing the characteristic of an alignment 45

4.3 Analysis of a Statistical Approach 48

5 Computational Complexity 53

5.1 On Complexity of Optimization Problems 53

5.2 Using an explicit map (The EBFC Problem) 55

5.3 Using mutual agreement of data (The CG, WCG Problems) 62

6 Theoretical Algorithms 64

6.1 The EBFC Problem . 64

6.1.1 Basic constructions . 65

6.1.2 A 0.878 approximation algorithm 67

6.1.3 A PTAS for a dense instance of EBFC 68

6.2 The CG and WCG Problems . 69

6.2.1 A 1.183 approximation algorithm 69

vii

7 Practical Algorithms 73

7.1 Solving the EBFC problem . 74

7.2 Handling real data (with sizing errors) 82

7.3 Experimental results . 91

8 Generalizations of the Problem 102

8.1 Modeling Other Errors . 102

8.1.1 Modeling spurious molecules 103

8.1.2 Modeling missing fragments 104

8.1.3 Modeling sizing errors of the fragments 106

8.1.4 Summary . 107

8.2 The K-Populations Problem . 107

8.2.1 Introduction . 107

8.2.2 Complexity . 111

8.2.3 A 0.756-approximation algorithm for a

2-populations problem . 117

8.2.4 An algorithm for the K-populations problem 121

8.2.5 Experimental results . 125

8.2.6 Summary . 125

II Sequence Analysis 130

9 Pattern Discovery 131

9.1 Introduction . 131

9.2 Basic Concepts . 132

9.3 Notion of Redundancy . 138

9.3.1 Generating operations . 139

9.3.2 Bounding the number of irredundant motifs 140

9.3.3 Detecting irredundant motifs 142

viii

10 Multiple Sequence Alignment 143

10.1 Sequence Alignment . 145

10.1.1 The Graph-theoretic Formulation 150

10.1.2 Measuring the quality of an alignment 154

10.1.3 Algorithm to compute the \best" alignment 156

10.2 Experimental Results . 158

10.3 Summary . 168

Appendices 170

Bibliography 190

ix

List of Figures

2.1 Cell Structure . 5

2.2 Structure of DNA . 6

2.3 Packaging of DNA . 9

2.4 Gel Electrophoresis . 14

2.5 Polymerase Chain Reaction . 16

3.1 Map resolutions . 25

3.2 DNA molecule . 29

3.3 DNA fragments . 30

4.1 Plots of signature functions . 44

4.2 Plots of signature functions . 49

4.3 Signature functions of a statistical model 51

5.1 MC to BMC reduction . 59

5.2 BMC to EBFC reduction . 60

6.1 BMC to MC reduction . 67

7.1 Construction of the graph for the MaST ordering 78

7.2 Di�erent site orderings . 78

7.3 EBFC problem - an example . 79

7.4 Solutions to the EBFC problem . 79

7.5 EBFC { another example . 80

7.6 EBFC { yet another example . 82

x

7.7 Illustration of the steps of the algorithm 83

7.8 Steps 3 and 4 of the algorithm . 84

7.9 Final step of the algorithm . 84

7.10 Example of pruning sites . 85

7.11 Distribution of cut sites . 88

7.12 Handling real data . 89

7.13 Pruning real data . 90

7.14 Synthetic data . 94

7.15 Clone: � DNA, Enzyme: AvaI {1 95

7.16 Clone: � DNA, Enzyme: AvaI {2 96

7.17 Clone: � DNA, Enzyme: EcoRI . 97

7.18 Clone: � DNA, Enzyme : ScaI . 98

7.19 Clone: � DNA, Enzyme : BamHI 99

8.1 BMC to 2-pop reduction . 116

8.2 BMC to MC reduction . 118

8.3 Illustration of K-populations algorithm (step 2) 122

8.4 Illustration of K-populations algorithm (step 3) 124

8.5 An example (2-populations problem) 126

8.6 An example (4-populations problem) 127

8.7 An example (6-populations problem) 128

8.8 An example (6-populations problem) continued 129

10.1 Pairwise incompatible motifs . 146

10.2 K-wise incompatible motifs . 148

10.3 Aligning incompatible motifs { 1 151

10.4 Aligning incompatible motifs { 2 152

A.1 BMC to EBFC reduction . 171

A.2 Grouping of elements of an EBFC matrix { 1 172

A.3 Grouping of elements of an EBFC matrix { 2 173

A.4 BMC to MC reduction . 175

xi

A.5 BMC to EBFC reduction . 176

B.1 MC to BMC reduction . 179

B.2 BMC to BSC reduction . 182

B.3 MC to BSC reduction . 183

xii

List of Appendices

A. The Exclusive BFC (EBFC) Problem 170

B. The Binary Shift Cut (BSC) Problem 178

C. Acronyms used in the thesis . 188

xiii

Chapter 1

Introduction

This thesis explores the application of algorithmic techniques in understanding

and solving computational problems arising in Genomics (called Computational

Genomics). In the �rst part of the thesis we focus on the problem of reconstructing

physical maps from data, related to \reading" the genome of an organism, and in

the second part we focus on problems related to \interpreting" (in a very limited

sense) the genome.

The �rst part depends on the underlying DNA technology used in a laboratory:

we study problems arising from one such DNA technology called Optical Mapping

(see Chapter 3 for a brief overview). At the time of writing this thesis, one of the

historic goals in biomedical research, that of sequencing the three billion bases of

the human genome, is yet to be achieved. It is only a matter of time (three to ten

years) before this goal is reached. However, the task of sequencing genomes of a

host of other microbial organisms and other living forms will be of continuing inter-

est to scientists. At this point, it is unclear as to which particular DNA technology

is here to stay. Keeping this volatile nature of the subject in mind, in Chapter 2 we

give a brief overview of some basic concepts in molecular biology. In the next chap-

ter we describe the Physical Map problem, and in Chapter 4, we present a uniform

framework for the computational problems. We describe two combinatorial models

of the problem termed Exclusive Binary Flip Cut (EBFC) and Weighted Consis-

tency Graph (WCG) problems (Chapter 5). We show that both the problems are

1

MAX SNP hard and give bounds on the approximation factors achievable. We

give polynomial time 0.878-approximation algorithm for the EBFC problem and

0.817-approximation algorithm for the WCG problem (Chapter 6). We also give

a low polynomial time practical algorithm that works well on simulated and real

data (Chapter 7). Naksha is an implementation of this algorithm and a demon-

stration is available at http://www.cs.nyu.edu/parida/naksha.html. We also

have similar results on complexity for generalizations of the problem which model

various other sources of errors (Chapter 8). We have generalized our complexity

and algorithmic results to the case where there is more than one population in the

data (which we call the K-populations problem).

In the second part of the thesis, we focus on \interpreting" the genome. We

consider the problem of discovering patterns (or motifs) in strings on a �nite al-

phabet: we show that by appropriately de�ning irredundant motifs, the number of

irredundant motifs is only quadratic in the input size (Chapter 9). We use these

irredundant motifs in designing algorithms to align multiple genome or protein

sequences (Chapter 10). Alignment of sequences aids in comparing similarities, in

structure and function of the proteins.

2

Chapter 2

Molecular Biology - a whirlwind

tour1

The term molecular biology was coined in 1939 by Warren Weaver, in a report to

the president at a time when X-ray crystallography was being fervently pursued to

unravel the structure of proteins. By now, about six decades later, it is a well estab-

lished �eld with open problems challenging natural scientists and mathematicians

alike.

In this chapter we briey describe the basics to understand the source of the

various computational problems, and familiarize ourselves with the vocabulary of

biologists and biochemists as much as we possibly can. This chapter is intended

to give only a nodding acquaintance with the terms and concepts in molecular

biology and the reader is referred to the citations mentioned for further details.

Roadmap. We begin by describing the classi�cation of all living organisms based

on the structure of the building unit of an organism { the cell, in Section 2.1. The

focus of our study is the DNA molecule(s) that resides in every cell: we discuss its

structure in Section 2.2. The DNA molecule is responsible for each protein found

in a living organism which is vital to the existence of the organism: we describe the

1Portions of this chapter also appear in the survey paper entitled \Computational Molecular Biology:

Problems and Tools", in the Journal of the Indian Institute of Science [42].

3

relationship between DNA and proteins in Section 2.3. We conclude the chapter

by describing the various prevalent molecular genetic techniques in Section 2.4.

2.1 Living Organisms

We start at the very beginning, a very good place to start: the classi�cation of

living organisms.

Virus: A sub-microscopic organism that is incapable of reproduction outside a host

cell. It consists of a genome, DNA or RNA, and a protein body. Thus a virus has

no bio-synthetic activities: it resides in a host bacteria and multiplies using the

bacteria's mechanisms.

Prokaryotes: Unicellular; the only organelles in the cell are ribosomes and a genome

consisting of a single closed loop of DNA2. Note the absence of a nucleus in the

prokaryotes. Prokaryotes show almost no genetic diversity and reproduce asexually

via cell division3.

Example: bacteria.

Eukaryotes: Mostly multi-cellular; have various specialized organelles as shown in

Figure 2.1. Sexual reproduction, a mechanism for increasing the genetic diversity

is common.

Example: all higher order organisms like plants, mice, humans etc.

2.2 Structure of DNA/RNA

Our focus is on the chromosomes, found in the nucleus, which contain the blueprint

for the entire organism. In the following sections we study its structure and the

mechanism by which the blueprint is interpreted.

The \genetic material" in organisms are genes, which are composed of deoxyri-

bonucleic acid, DNA. DNA is a very large molecule, and is made of small molecules

called neulceotides. It consists of two complementary chains twisted about each

2Further, prokaryotes have no introns in their DNA sequence.
3omnis cellula e cellula: cells divide to multiply!

4

Plant Cell

Animal Cell

Endoplasmic Golgi ApparatusMitochondria
(various macromolecules
modi�ed, sorted &

cell secretion)
packaged for distribution or

Cellulose Cell Wall
(thus a plant cell is more
rigid)

Chloroplast
(site of photosynthesis)

Vacuole

(water �lled zones
used as storage vessels)

nucleus

chromatin
(DNA-histones
complex)

nucleolusnutrient oxidation)
production by
(site of energy

synthesis - has ribosome)

(principal site of protein
reticulum

Figure 2.1: Membrane-bound internal structures, called organelles, and their functions

in eukaryotic cells.

5

P

O

O

O

to base
C10

C20

to PO4

C50

O

Phosphate Group (PO4)

C40

C30

Pyramidine (CT)

Nucleotide
(monomer)

50-to-30
direction

50-to-30
direction

Sugar residue
Hydrogen Bond

DNA Backbone

30 end

30 end

50 end

50 end

O

DNA cleaves along this

Purine (AG)

organic bases
Planar Nitrogenous

to PO4

H (deoxyribose sugar in DNA)
/ OH (ribose sugar in RNA)

Figure 2.2: Structure of DNA. The plane of the planar bases (A,G,C,T) is perpendicular

to the helix axis, shown as a string of balls in the picture. Note the opposite directions

of the two backbones. The backbone is made of the phosphate group (PO4)
�3 and the

sugar, C5O4H10. The base, the phosphate and the sugar form the unit of nucleotide:

this is also the unit that is added during the synthesis of DNA.

6

other in the form of a double helix. Each chain is composed of four nucleotides

that contain a deoxyribose residue, a phosphate, and a pyramidine or a purine

base. The pyramidine bases are thymine (T) and cytosine (C); the purine bases

are adenine (A) and guanine (G). The \sides" of the double helix consist of de-

oxyribose residues linked by phosphates. The \rungs" are made of an irregular

order of pyramidine and purine bases. The two strands are joined together by

hydrogen bonds existing between the pyramidine and the purine bases: Adenine

is always paired with thymine (AT) and guanine is always paired with cytosine

(GC). See Figure 2.2. These are also called the base pairs.

RNA is very similar to DNA with the following di�erences:

1. It is single stranded, i.e., only one backbone, with the bases, is present;

2. OH is attached to C20 of the sugar residue, instead of H, in the backbone, as

shown in Figure 2.2, and,

3. Uracil replaces the pyramidine base Thyamine.

Orientation of DNA strands: Note that the structure of the sugar is asymmetric,

i.e., its bottom and top ends (where it is attached to the neighboring phosphates)

are not identical. These are designated 50 and 30 to distinguish the two ends. Also

the backbone pair is oppositely directed. Thus, the ends of the DNA strands are

designated 50 and 30.

Size of DNA: How large is the macromolecule? Let us look at its size in terms

of the base pairs. The human genome contains 23 pairs of chromosomes which

consists of approximately 3:6 � 109 base pairs. In contrast, the chromosome of

Escherichia Coli contains only 4� 106 DNA base pairs. Also, mitochondrial DNA

(mt-DNA)4 is about 16� 103 bases in length, and is circular rather than linear.

DNA can be classi�ed in at least two ways:

By structure.

4As the name suggests this is non-genomic DNA found in the mitochondria. It codes some 13 proteins

in humans and mutation in the mt-DNA is responsible for diseases like Leber's optic atrophy and is

transmitted solely by mothers { an example of nonmendelian inheritance.

7

1. Repetitive DNA (SINES & LINES) : The major human SINE (short interspersed

repeated sequences) is the Alu DNA sequence family which is repeated be-

tween 300; 000 and 900; 000 times in the human genome. The function of

Alu is unknown and the reason for their very high frequency in the human

genome remains a mystery. LINES (long interspersed repeated sequences)

has a consensus sequence of 6400 base pairs. This is repeated between 4000

and 100; 000 times. As with the Alu sequence the function of these sequences

are unknown.

2. Unique sequence DNA: This contain sequences that code for mRNA (mes-

senger RNA). In general, genes are comprised of unique sequence DNA that

encodes information for RNA and protein synthesis. Mitochondrial DNA

consists mostly of unique sequence DNA.

By function.

1. Exons: These are the functional portions of the gene sequences that code for

proteins. Roughly speaking, these correspond to the genes. A gene is a hered-

itary unit that is responsible for a particular characteristic in an organism.

2. Introns: These are the noncoding DNA sequences of unknown function that

interrupt most mammalian genes.

2.2.1 Chromosome Structure

The genome of an organism consists of smaller units, chromosomes: corn has 20,

certain fruities have 8 chromosomes, rhinoceroses 84, humans and bats have 46.

Each chromosome contains a single molecule of DNA organized into several

orders of packaging to construct a metaphase chromosome: the length of this is

about 0:0001 times the length of its DNA. DNA, along with the binding proteins,

is called chromatin. Histones are the structural proteins of the chromatin and

are the most abundant proteins in the nucleus. Figure 2.3 shows some interesting

details of the packaging of DNA.

8

2 nm

11 nm

30 nm

300 nm

700 nm

1400 nm

About 60 bases
About 146 bases

nucleosome

A chromosome with

a single DNA molecule

8 histones packaged

telomeres
centromere

Figure 2.3: Packaging of DNA: the �gure gives a sense of the scale we are dealing with.

9

Euchromatin forms the main body of the chromosome and has relatively high

density of coding regions or genes. The chromosome bands de�ne alternating par-

titions of euchromatin with di�ering properties.

R bands: These stain light with a procedure called the G banding procedure. They

have a relatively high content of guanine and cytosine, have the majority of SINES

(see Section 2.2), and have the highest gene density.

G bands: These stain dark with the G banding procedure. They have a higher

content of adenine and thymine, have the majority of LINES (see Section 2.2), and

have relatively fewer genes.

Heterochromatin is chromatin that is either devoid of genes or has inactive

genes.

Each chromosome consists of two parallel strands, the sister chromatids, which

are held together by a centromere. The centromere consists of speci�c DNA se-

quences that bind proteins. Telomeres are DNA sequences found at the ends of

the chromosomes, which are required to maintain chromosome stability. Chromo-

somes without telomeres that tend to recombime with other chromatin segments

are generally subject to breakage, fusion, and eventual loss. The terminal segments

of all chromosomes have a similar sequence (TTAGGG), which is present in sev-

eral thousand copies. Telomere sequences facilitate DNA replication at the end of

chromosomes.

2.3 Protein Synthesis (DNA!RNA!Protein)

This section describes how the \blueprint" is put into e�ect. Every protein, found

in the living body, is synthesized by \executing the program encoded in the DNA".

The protein synthesis occurs in the following steps:

1. Transcription: A DNA segment, a gene, serves as the template for the synthesis

of a single stranded RNA, messenger RNA (mRNA). Note that the base

Uracil (U) replaces the base T.

This is similar to DNA replication (See Section 2.4.3.) and requires the essen-

tial ingredients: catalytic agent, the RNA polymerase; the Master template,

10

the DNA segment and the building blocks, the NTPs (ribonucleoside triphos-

phates). Note the absence of the primer.

(a) The RNA polymerase attaches itself to the promoter segment of the

double stranded DNA.

(b) The DNA segment denatures.

(c) The RNA polymerase facilitates the hydrogen bonding of exposed bases

with the complementary NTPs. The RNA polymerase further catalyzes

the covalent bonding between the bases (see DNA replication for more

details). Thus the mRNA grows in the 50-to-30 direction.

(d) The DNA segment renatures.

2. Splicing: In eukaryotes, both the exons and the introns are transcribed. The

resulting primary transcript is spliced; that is, each intron is removed and

the exons are linked together.

This step is absent in prokaryotes. The mRNA leaves the nucleus via the

pores and enters the cytoplasm for the next step.

3. Translation: The mRNA serves as a template for stringing together the amino

acids in the protein. The succession of codons (triplets of adjacent ribonu-

cleotides) determines the amino acid that composes the protein.

Again, this process is similar to DNA replication and requires the essential

ingredients: the ribosome5 functions as the catalytic agent; mRNA as the

master template. The building blocks are the amino acid monomers, but the

process of assembly requires a transfer RNA (tRNA).

(a) Getting the building blocks ready: A tRNA is a tiny clover-leaf-shaped

molecule that has at one end a triplet of ribonucleotides, an anticodon,

that binds with a complementary codon on the mRNA, and, an attach-

ment site for a single amino acid at the other end. A catalyst, aminoacyl

5A very large molecule composed of ribosomal RNA and at least �fty di�erent proteins.

11

synthetase, converts the tRNA to an aminoacyl-tRNA by attaching the

appropriate amino acid to the other end.

(b) The ribosome travels along the mRNA in the 50-to-30 direction synthe-

sizing a polymer of amino acids, a protein.

i. An aminoacyl-tRNA attaches itself to the START codon of the

mRNA.

ii. An appropriate aminoacyl-tRNA attaches to the next codon and the

amino acid at its end forms a peptide bond with the previous amino

acid. The tRNA of the previous one is released. Thus a chain of

amino acids is formed with the last monomer still attached to the

tRNA.

iii. The process continues until a STOP codon is reached.

The ribosome detaches itself and the protein is released into the cyto-

plasm.

2.4 Molecular Genetic Techniques

This section is intended to familiarize the reader with ways of manipulating DNA.

However in the rest of the thesis (especially Part I) we deal with yet another DNA

technology called Optical Mapping.

We look at the prevalent techniques for manipulating and analyzing DNA. They

can be categorized as:

1. DNA Fragmentation,

2. Fractionating DNA fragments,

3. DNA Ampli�cation,

4. DNA Sequencing, and

5. Hybridization.

12

2.4.1 DNA Fragmentation (Molecular Scissors)

Since a single molecule of DNA has about 130 million base pairs, it is important

to \chop" the molecule into manageable pieces.

DNA molecules are fragile, and mechanical aspects of sample preparation, such

as stirring and pipetting, break some of the covalent bonds of the backbones. But

the disadvantage is that it is not repeatable, that is, is not expected to break

at the same sites. Restriction Enzymes6 are biochemicals capable of cutting the

double-stranded DNA, by breaking two -O-P-O- bridges on each backbone of the

DNA pair, at speci�c sequences called restriction sites.

Note that restriction enzyme is a naturally occurring protein in a bacteria that

defends the bacteria from invading viruses by cutting up the DNA of the latter.

How does the bacterium's own DNA escape the assault? The bacterium produces

another enzyme that methylates the restriction sites of its own DNA { this prevents

the cleaving action of the restriction enzyme.

Restriction Sites: Let us look at an example to see the e�ect of the cleaving.

The restriction enzyme EcoRI recognizes and binds to the palindromic sequence

50-GAATTC-30

30-CTTAAG-50

If allowed to interact for a suÆciently long time, it cuts the DNA as shown below

(j denotes a cut):
50-GjAATT C-30

30-C TTAAjG-50

The staggered cuts produce fragments with very \sticky" single stranded ends.

These can combine with other matching strands. Some restriction enzymes might

cut straight without producing \sticky ends". For example, HaeIII,

50-GGjCC-30

30-CCjGG-50
6Arber, Smith, and Nathan received the Nobel prize for their discovery of restriction enzymes in 1978.

13

What is the average length of a fragment cut by a restriction enzyme? This

is easy to compute: let it be an \n-base cutter", then the pattern occurs on an

average every 4n base pairs. This is the best estimate we have in the absence of

any more information: reality might be quite di�erent.

2.4.2 Fractionating DNA fragments

The DNA could be fragmented by any method including the one above and sorted

as follows.

By Length { Gel Electrophoresis: This is a process whereby the fragments are sepa-

rated according to their size or electrical charge, on a slab of gelatinous material,

under the inuence of an electric �eld.

The phosphate groups in the DNA are negatively charged; hence under the

inuence of an electric �eld, the fragments migrate towards the anode. The rate

at which it migrates is approximately inversely proportional to the logarithm of

its length.

Cathode

Anode

test samples

Flow of the fragments

wells for the samples

calibrating sample

Gel Medium

Figure 2.4: Gel Electrophoresis: The fragments are separated by lengths. The left-

most known sample calibrates the tracks (vertically) - thus the lengths of the remaining

samples can be read o� using the �rst reference.

14

On a slab of gel, wells are made at the top (see Figure 2.4). The leftmost well

contains the calibrating fragments, that is, a sample whose lengths are known.

The relative positions of the rest of the columns of fragments with respect to this

calibrator give an estimate of the lengths.

Large fragments, over about 50; 000 base pairs, do not move well under the

inuence of steady electric �eld: pulsed-�eld gel electrophoresis employs a �eld

that is temporarily constant in both direction and magnitude. This solves the

problem of large fragments.

By Structure { Renaturing: A double strand of DNA denatures at around 100ÆC.

When the temperature is lowered, the strands randomly renature. Rapid renatur-

ing implies high repetitive sequences and slow renaturing indicates unique sequence

DNA. This technique is used to separate sequences by the repetitive pattern.

2.4.3 DNA Ampli�cation (Molecular Copier)

Most techniques used in the analysis of DNA rely on the availability of many copies

of the segment. We �rst discuss the DNA replication process appearing in nature

(during cell division { mitosis and meiosis), and then discuss the molecular genetic

technique of making copies.

Cell Division (Mitosis & Meiosis). There are two kinds of cells: somatic and

germ, (also called gamete) cells. For lack of a better description, somatic cells are

regular cells and germ cells are the reproductive cells. Both the cells multiply by

division, in a process called mitosis. Germ cells also have a special cell division

called meiosis. We shall not get into the details of each of this but give a general

overview of the processes.

Chromosomes eluded mankind until early this century, even after the advent of

powerful microscopes. It was seen, early this century, that during the cell division

process, mitosis, certain structures became visible when appropriately dyed { hence

the term chromosomes. These condense during mitosis, becoming visible under a

microscope.

The meiosis process is more interesting than the mitosis, in the sense that

15

New DNA

50 30

50 30

50
50

5050

50

50
50

50
50

50

50
50

50

30

30

30
30

30

30

30
30

30

Cycle 1

b

c

c

d

a

a

b

d

Cycle 2

PCR Primers

Figure 2.5: PCR is based on the ampli�cation of a DNA fragment anked by two primers

that are complementary to opposite strands of the sequence being investigated. In each

cycle, (a) heat denaturation separates the strands. (b) Primers are added in excess and

hybridized to complementary fragments. (c) dNTPs and polymerase are added while

the temperature increases. (d) The primer is extended in the 30 direction as new DNA

is extended in the 50 direction.

16

mitosis is an exact copying mechanism so far as the chromosomes are concerned,

whereas meiosis produces some variations, called cross-over, leading to genetic

variations. In this, the pair of homologous chromosomes in diploids exchange

material from corresponding regions. The cross-over information can be used to

form a genetic map based on traits. Many of these traits are linked, in the sense

that these traits are passed on together, as a single package, to the o�springs:

for example, color of eyes, size of wings and color of the body in Drosophila. But

occasionally, the traits switch groups and this is attributed to cross-over. The more

often a linked pair get separated, the further apart they are on the chromosome.

Thus a map can be formed for each chromosome, listing the traits (or the genes

corresponding to the traits) in linear order with rough distances between them.

The unit of this distance was named morgan 7, by the biologist J. B. S. Haldane.

DNA Replication. Let us look at the chief actors and the roles they play in the

replication process:

Primer: This is the initiator of the new strand. The usual primer is a very short

strand of RNA with four to twelve nucleotides.

Catalytic Agents(DNA polymerase): An enzyme that catalyzes the polymer forma-

tion process.

A Master template: The parental DNA strand.

Building Blocks(dNTPs/deoxyribonucleoside triphosphates): As expected, they are

of four kinds : dATP, dCTP, dTTP and dGTP corresponding to the four bases.

Starting from a single double-stranded parental DNA molecule, the replication

process gives two identical double-stranded daughter molecules. Both the daughter

molecules are such that one of the strands is that of the parent and the other is

the new synthesized strand.

The replication of the entire strand of DNA occurs in parallel in short strands

all over the molecule and merges �nally in a rather complex way. Let us look

at the steps involved in the replication at a single site, anked by two origins of

7Thomas Hunt Morgan and colleagues, early this century, gave a physical basis to the then forgotten

Mendelian theory by demonstrating a structural relationship between genes and chromosomes.

17

replication.

1. The parent strand uncoils or denatures.

2. The two uncoiled strands replicate.

(a) A base in the parental strand attaches to the dNTP, by hydrogen bonds,

containing the complementary base. Thus the dNTP is �xed in position.

(b) The DNA polymerase catalyzes the creation of an -O-P-O- bridge be-

tween the bases, thus forming covalently bonded bases.

Note that the chain grows only in one particular direction, the 50-to-30 di-

rection. As a result one strand duplicates continuously but the other (which

must proceed in the opposite 30-to-50 direction) does so in short strands called

Okazaki fragments.

3. The two new pairs of strands recoil or renature or anneal.

How erroneous is the process? The chances are one in a billion that a base in the

synthesized daughter DNA would be incorrect!

Controlled DNA Ampli�cation. Two molecular genetic techniques for making

copies are:

1. Molecular Cloning: In this method some living cells are used to replicate the

DNA sequences. The necessary ingredients are:

(a) Insert: The DNA segment that is to be ampli�ed.

(b) Host Organism: This is the host cell, usually a bacterium, whose repli-

cation mechanism is being exploited.

(c) Vector: This is a DNA segment, with which the insert is combined. This

is usually a plasmid, a nongenomic DNA in the host organism. Some

common examples of host organism, vector pairs are shown below along

with an approximate size of the vectors (in kilo base pairs) that it can

carry stably.

18

Host Vector Sizes

(in kbp)

1 Escherichia Coli (a) � phage genome 40

(found in a vertebrate's (b) plasmid (natural) 4

intestine) (c) cosmid (synthetic) 40

(d) bacterial arti�cial chromosome 150

(BAC)

2 Saccharomyces cerevisiae yeast arti�cial chromosome (YAC) 1000

(baker's yeast) (synthetic)

The following steps are involved:

(a) Preparing the recombinant DNA: This is done in vitro, that is, outside a

living cell. The insert is combined with the vector, say the plasmid. The

plasmid is circular, hence it is linearized by digesting with an appro-

priate restriction enzyme. The DNA strand is digested with the same

restriction enzyme, so that the \sticky" ends ligase in the presence of

the enzyme, DNA ligase.

The rest of the steps are carried out in vivo, that is, inside the living

cell.

(b) Host Cell Transformation: The host cell is exposed to the ligation mixture

so that the recombinant DNA may enter the cell. This process is not

fully understood, although it can be fairly well controlled.

(c) Cell Multiplication: The solution with the transformed host cells is moved

to culture dishes and allowed to multiply in a solid growth medium.

(d) Colony Selection: A colony of cells is produced in the dishes. Note that

there is a possibility that the recombinant DNA failed to transform a

host cell in step (b). At this step, the di�erent colonies are checked for

the presence of the recombinant DNA by various methods (say checking

for the expression of a characteristic of the recombinant DNA).

19

2. Polymerase Chain Reaction (PCR)8: This is an in vitro process which is

remarkably simple to understand. The requirement is to amplify a segment of

the paired DNA. Recall the essential ingredients for DNA replication:primer,

catalysts, template and the dNTPs. But here we wish to replicate only a

certain segment; hence two primers, which form the complementary ends

of the segment are used. Further, we replicate many times, hence repeated

denaturing and renaturing is carried out by changing the temperature. The

steps are shown in Figure 2.5. Every cycle doubles the number of existing

segments, thus the number of cloned segments increases geometrically.

2.4.4 DNA Sequencing

We discuss two sequencing methods, the Maxam-Gilbert Method and, the Sangar

Method9 which have the following important characteristics:

1. They work on short segments of about 500 to 2000 base pairs.

2. The �nal step involves reading o� the sequence from a radiogram of a gel elec-

trophoresis process. Hence it can be done mechanically and thus automatic

sequencing machines exist.

For the details of the methods the reader is directed to the references in [12]. We

briey sketch the underlying principle: both operate on the ability to identify the

base at one end of the segment, with the other end being �xed or labeled. Since the

gel electrophoresis fractionates by length, the longest length gives the rightmost

base, the shortest gives the leftmost and so on. Thus the rows in the Gel Elec-

trophoresis correspond to the di�erent lengths and the four columns correspond to

the four bases A, C, G and T. The natural question is whether Gel Electrophoresis

can actually resolve segments di�ering in length by a single base: the answer is

yes.

8Mullis and Smith received the Nobel prize in 1993 for this technique, which has become a household

term after the O. J. Simpson trial.
9Sangar and Gilbert received the Noble prize, in 1980, for their work on sequencing techniques.

20

� In the Maxam-Gilbert Method, a clever scheme of cleaving at base A or C or

G or T is employed. Thus one has four test tubes each with segments cleaved

at one of the bases.

� In the Sangar Method, a complementary segment is allowed to grow and stop

selectively at the four bases. Thus this newly synthesized strand terminates

at the four di�erent bases in a controlled manner in di�erent test tubes.

The samples from the separate test tubes, in both methods, are used to produce

the four di�erent lanes in the gel electrophoretic method.

2.4.5 Hybridization

This refers to the hydrogen bonding that occurs between any two single-stranded

nucleic-acid fragments that are complementary along some portion of their lengths.

If a short fragment of known sequence is labeled with a uorescent molecule

and allowed to interact with denatured chromosomes, the presence or absence of

the complementary segment in the chromosome can be ascertained. In particular,

in-situ Hybridization (ISH), can be used to locate a sequence in a chromosome, or the

position within a single chromosome. Southern Hybridization is used for identifying

among a sample of many di�erent DNA fragments, the fragment(s), identi�ed by

length, containing the particular sequence.

In the following chapter we discuss the Human Genome Project and the related

techniques and problems.

21

Part I

Physical Map Reconstruction

22

Chapter 3

The Physical Map Problem

3.1 The Human Genome Project

Genomics encompasses the study of the genome, the totality of a cell's genetic

information, and related issues. The purpose of the Human Genome Project is to

understand the DNA sequences that determine an organism's phenotypic (physical

or expressed) characteristics.

Classical Genetics refers to those aspects of genetics that can be studied by

observing traits or phenotypes. Molecular Genetics is studied with reference to

the molecular details of genes.

The Human Genome Project [12] is the �rst internationally coordinated e�ort

to read the entire genetic DNA text of three billion base pairs that constitute the

human genome. This is a �fteen year project started in 1990, and coordinated by

the U.S. Department of Energy and the National Institutes of Health. Its main

objectives are:

1. Identify the 100,000 genes in the human DNA.

2. Determine the sequences of the DNA, store this information in databases and

develop tools for data analysis.

3. Although not the primary goal, study the genetic makeup of several non-

human organisms such as Escherichia coli, the fruit y and the laboratory

23

mouse which would help achieve the other goals.

The practical bene�ts to learning about DNA are at least two-fold.

1. In the course of the analysis, disease causing genes would be identi�ed. Also,

DNA sequence di�erences between people can possibly reveal susceptibility to

diseases such as cancer. It would perhaps be feasible then for new strategies

to be developed for their diagnosis, prevention, therapy and cure.

2. Learning about other nonhuman organisms will help in understanding their

natural capabilities; these may help solve challenges in energy sources and

even environmental cleanup apart from uses in health care [55]. The genome

project is also providing enabling technologies essential to the future of the

emerging biotechnology industry, and catalyzing its growth. These tech-

nologies will allow us to eÆciently characterize the organisms, say in the

ocean, with applications such as better fuels from biomass, bioremediation,

and waste control. They will also lead to a greater understanding of global

cycles, such as the carbon cycle, and the identi�cation of potential biological

interventions. See [55] for details.

3.1.1 Reading the genome

What is the problem in reading the DNA sequence? Recall from Section 2.2 that

a single DNA molecule is very long! In its native state it is highly coiled and

condensed as shown in Figure 2.3. It is inconceivable that a single DNA molecule

can be read (or sequenced) at one go and so the following steps are used.

1. Dis-assemble: Break up a single DNA molecule into smaller segments. Mere

handling of large DNA molecules breaks them up mechanically in a rather

unrepeatable fashion. They can be further broken up into smaller pieces by

restriction enzymes (in a repeatable fashion). This is the task of producing

clones and clone libraries. See [12] for details.

2. Read/Sequence: At this step, the smaller pieces are handled. The task is so

daunting, that as an intermediate �rst step, it suÆces to locate critical sites

24

along the molecule (called the Physical Map): the sites are locations where a

restriction enzyme cleaves the DNA molecule. Reading the entire sequence is

called sequencing, and the information obtained is called the Sequence Map.

Classical linkage analysis is used to determine the arrangement of genes on

the chromosomes. By tracing how often di�erent forms of two variable traits

are co-inherited, we can infer whether the genes for the traits are on the

same chromosome: such genes are said to be linked. The genetic distance,

measured in centi-morgans, is a measure of the proclivity of the genes to

crossing-over1 (which could very well be just the distance in base pairs!).

This map is called the genetic map. Of course, the study of this map started

o� before the inception of Molecular Genetics. Nevertheless, they continue

to remain an important objective as they determine the locus of the gene or

allele of a trait. Figure 3.1 shows a comparison of the maps.

Restriction enzymes cut a DNA molecule at certain speci�c base pair patterns

termed the sites. A biologist obtains valuable information from the order of

the sites along with the distances between them. This is called the Physical

Mapping Problem or the Ordered Restriction Map Problem.

Genetic Map

Sequence Map

Physical Map

(about 2� 108 bases)

(about 100; 000 bases)

(about 1000 bases)

Figure 3.1: The relative \resolution" of each map.

3. Assemble: Now the task is to put the \annotated" (with the location of

1Also see Section 2.4.3.

25

the restriction sites), segments, of the second step, back together again (the

inverse of the �rst step). This is called the contig problem.

3.2 The Physical Map Problem

As we have seen earlier, building physical maps of a chromosomal region is an

important step towards the ultimate goal of many e�orts in Molecular Biology

(including the Human Genome Project), namely to determine the entire sequence

of Human DNA and to extract the genetic information from it [28, 12]. A physical

map merely speci�es the location of some identi�able markers (restriction sites

of up to 20 base pairs) along a DNA molecule. Physical maps provide useful

information about the arrangement of the DNA, and they serve as recognizable

posts to help search it.

3.2.1 Gel-based physical mapping

There are several known technological approaches to building physical maps; each

has associated computational problems [1, 21, 31, 47, 46, 35]; most approaches use

restriction enzymes. Recall that a restriction enzyme is an enzyme that recognizes

a unique sequence of nucleotides; it cleaves every occurrence (called a restriction

site) of that sequence in a DNA molecule (Section 2.4.1).

In a well-established approach to physical mapping, a restriction enzyme is ap-

plied to cleave the double stranded DNA molecule at the restriction sites producing

pieces of the molecule. The sizes of the restriction fragments, i.e., the number of

nucleotides they contain, are measured using gel electrophoresis (see Section 2.4.2).

However, in this process, the information about their relative positioning is lost.

Thus we are faced with the problem of assembling these pieces into their relative

order: this leads to diÆcult combinatorial and computational problems most of

which are NP-hard, and many of which have been extensively studied from the

point of workable heuristics (See [28, 21, 1] etc. and Section 3 of [48] for several

open problems in this area).

26

A major e�ort along these lines is the current Multiple Complete Digest (MCD)

mapping project at the University of Washington Genome Center [15]. In MCD

mapping two or more restriction enzymes are used. Single Complete Digest (SCD)

mapping and Double Complete Digest (DCD) mapping are cases where exactly

one and exactly two enzymes respectively are used to generate the data. The

project uses cosmid clones. We use the DCD problem to illustrate the nature of

the underlying computational problems. For the DCD problem, each clone has two

sets of fragment lengths (since this is a double digest problem). Let the problem

have N clones Xi, 1 � i � N and let the fragments associated with each clone

be as follows: Xi = ffxi11; xi12; : : : ; xi1ni1g; fx
i
21; x

i
22 : : : ; x

i
2ni2
gg, where nij, j = 1; 2,

is the number of fragments using the restriction enzyme numbered j of clone Xi.

Since the ordering information is lost, xi11; x
i
12; : : : ; x

i
1ni1

are in no particular order.

The task is to obtain a consensus ordering of fragment lengths such that both set

of fragments of each clone agree with this ordering. Using di�erent criteria for the

\best solution" (optimization) gives rise to interesting computational problems as

discussed in [15]. Most of the problems, not surprisingly, are NP-hard and the

authors discuss the various heuristic based algorithms they employ to handle the

data in practice.

3.2.2 Physical mapping with probes

This is the construction of physical maps using an approach called STS-content

mapping [12]. In this strategy, each clone corresponds to an interval of the chro-

mosome and each probe corresponds to a unique point (or a very small interval) on

the chromosome. While the order of the clones is unknown, it can be determined

whether a probe belongs to a clone or not by hybridization (see Section 2.4.5).

Thus given a set of clones C1; C2; : : : ; Cn and a set of probes P1; P2; : : : ; Pm, along

with information for every pair (Ci; Pj), 1 � i � n, 1 � j � m, whether probe Pj

is present or not in clone Ci, the task is to obtain an ordering of the probes that

would indicate the ordering of the markers giving a physical map. The problem is

compounded by the presence of false positive and false negative errors in the ex-

periments. See [1] and the references therein for the modeling of the corresponding

27

computational problems.

3.2.3 Optical mapping

An alternative approach to physical mapping is based on a technology invented by

David Schwartz at the W. M. Keck Laboratory for Biomolecular Imaging, Dept.

of Chemistry, NYU, called the Optical Mapping technology [54, 36, 53, 58]: cur-

rently it is a collaborative e�ort between researchers from various departments

including the Departments of Pediatric Genetics, Biology and Computer Science

[8]. At a very high level, here is an overview of the method. A single strand of a

DNA molecule is attached to the surface of a slide by electrostatic forces. Then

it is treated in a controlled manner with a restriction enzyme. The molecule still

remains attached to the slide although the restriction sites get digested by the en-

zyme. Now by applying appropriate uorescent dyes, the molecule may be viewed

under a microscope or recorded by a camera as an image on a computer. For a

more detailed description of this complex process, see [58, 36, 54].

As it is clear from our overview of the method, the relative order of the pieces

is not lost. In fact, the image itself is a physical map (although perhaps not at

desirable levels of resolution, and not in a form compatible with genomic data we

handle now). See Figures 3.2 and 3.3 for example images (reproduced from [19]).

However, Optical Mapping also faces diÆculties which are discussed in Section 4.1.

A vision process identi�es the DNA molecules along with the restriction sites

and estimates the mass of these molecule fragments. The critical issue in this

phase is not just assigning the fragments of the molecule to the right molecule

(the problem is compounded by criss-crossing or very closely laid out molecules)

but also making an accurate estimate of the mass (or length in terms of base

nucleotides) of each fragment. We then formulate the restriction map problem to

extract the maps from the estimated fragment masses.

28

Figure 3.2: A prototypical image reduced by a factor 4 and the detection of its many

DNA fragments.

29

Figure 3.3: The detection of the \backbone" of a DNA fragment is shown as a bright

contour running along the length of the molecule.

3.3 On Shotgun Sequencing of the Genome

Recently, there was a shift in the sponsor of the Human Genome Project from

the government sponsor National Institutes of Health to a private venture Perkin-

Elmer who propose to complete the task of sequencing the human genome in three

short years at a cost of only $200 million dollars (as opposed to the earlier $3

billion) [56].

The critical factor in favor of this \audacious" (as reported in New York Times,

May 12, 1998) takeover is the increase in the capacity of the capillary-based se-

quencing machine that can process up to 1000 samples a day with minimal hands-

on operator time (about �fteen minutes compared with eight hours for the same

number of samples earlier on) [56] (See Section 2.4 for the process of automatic

sequencing). The reduction in operation labor coupled with automation makes

the task of sequencing the genome with adequate coverage feasible. The proposal

is to use BAC clones with 46 times (called 46X) coverage. The next challenge is

to assemble the data into contiguous blocks and to assigning these to the correct

locations in the genome. They propose to use a set of algorithms called the TIGR

Assembler aided by a large number of sequence tagged sites (STS) markers and

manual inspection to correct ambiguous or conicting assembly structures.

30

3.4 Summary

As can be seen a variety of DNA technologies are being used to attain the goal

of sequencing the human genome. It is only a matter of time (three to ten years)

before the human genome will be sequenced using either one of the prevalent DNA

technologies or a combination of them. However, the underlying biotechnology will

be of continuing interest to scientists for sequencing and studying various other

non-human organisms.

31

Chapter 4

A Uniform Framework1

We begin this chapter by giving a problem abstraction for the Ordered Restriction

Map problem arising in Optical Mapping. It is plausible to tackle this problem

using various approaches: in the next section we present a uniform framework for

the problem and show that various models reported in literature for this problem

are such that each is a speci�c instance of this basic framework. We achieve

this by identifying two \signature" functions f() and g() that characterize the

models. We identify the constraints these two functions must satisfy, thus opening

up the possibility of exploring other plausible models. We show that for all of

the combinatorial models proposed in literature, the signature functions are semi-

algebraic. We also analyze a proposed statistical method in this framework and

show that the signature functions are transcendental for this model. We believe

that this framework will provide useful guidelines for dealing with other inferencing

problems arising in practice.

4.1 The Problem Abstraction

In this section, we present a simpli�ed model for the problem in an e�ort

1. to gain insight into the problem with respect to its computational complexity

1This chapter also appears as \A Uniform Framework for Ordered Restriction Map Problems", in the

Journal of Computational Biology, 1998 (in press).

32

and study the interplay of various error sources, and,

2. to develop algorithms (theoretical or practical) for the problem.

We de�ne the Physical Map/ Ordered Restriction Map problem informally as

follows: we view this as a game played by Ann and John. John has a string S, of

length n, of 0's and 1's. He makes m copies of this string and using some process,

alters the m copies in some controlled manner. John assures Ann that the number

of these alterations is not very large. Now, this altered set of m strings, called the

data set, is made available to Ann and she is required to guess the original string

S John started with. Ann makes a (reasonable) guess by providing an S 0. The

problem that Ann solves is the Ordered Restriction Map problem.

We now look at the (reasonable) alterations John can make.

False Positives: John can change some 0's to 1's in the m copies. But he must

assure Ann that the number of such changes is very small.

In practice, these may be due to actual false cuts or due to errors in the pre-

processing stage.

False Negatives: John can change some 1's to 0's in the m copies. But he must

assure Ann that the number of such changes is no more than mpj for each column

j. Note that in the absence of this restraint on John (and with False Positives),

Ann will have no way of guessing a reasonable S 0.

pj is the digestion rate of the experiment or mpj is the minimum number of 1's

required for a column j to be designated a consensus cut site 2.

Sizing Errors: John moves the positions of some 1's in a small neighborhood, that

is, for some integer Æ > 0, he can move the position of a 1 in the molecule at j to

anywhere between j � Æ and j + Æ.

This corresponds to the possible sizing errors of the fragments. The input data

does not depict the location of restriction sites accurately because of the error

inherent in measuring the lengths of fragments that remain after digestion by the

restriction enzyme. Thus a 1 at some site in the molecule might in fact signal

2It may be noted that if the number of false positives for column j is mqj , then Ann cannot make a

reasonable guess if the following holds: pj + qj � 1, for any j.

33

a restriction site in one of its neighbors. This fuzziness is the result of coarse

resolution and discretization, other experimental errors, or errors in preprocessing

the data prior to constructing physical maps such as in the image processing phase.

Orientation Uncertainties: John ips some of the strings: if s = x1x2 : : : xn�1xn is a

string with xi = 0 or 1; i = 1; 2; : : : ; n, the ipped string is xnxn�1 : : : x2x1.

When the molecule is laid out on a surface, the left-to-right or right-to-left

order is lost. However, the orientation information may be given in the data

(using a more elaborate chemical protocol) with a vector arm on one �xed side of

the molecule [58]. The model can view this as a consensus cut site at one end of

the map. Notwithstanding this, there is a non-zero probability of the orientation

of the molecule still being unknown.

The correspondence of the Ann and John game to the Ordered Restriction Map

problem is as follows: a string is a molecule, the length of the string corresponds to

the number of sites on each molecule, the 1's in the string refer to cuts and the 0's

refer to no-cuts at that site. The string S is called the map, and the 1's on S are

the consensus cut sites. The changes that John makes correspond to the various

experimental and/or pre-processing inaccuracies that creep in at various stages.

Ann is required to produce an S 0 or a map, which is an n-length string that

designates each site as a consensus cut site or not. Thus the map enables the

following assignments:

1 & 2) Assigning each cut as a true positive or a false positive.

3) Assigning a location to each consensus cut site.

This map gives an alignment of the molecules that optimizes a suitable cost func-

tion.

Alignment of the rows/molecules refers to assignment of the following:
4) Labeling the orientation of the molecule as ipped or not.

Circular Ordered Restriction Map Problem. If John take the string S and

glues the two free ends producing a \seamless" ring, the corresponding problem is

the circular DNA problem. In this version John makes m altered rings (instead

34

of linear molecules as in the previous case) available to Ann. The seamlessness

refers to Ann not having any information about where John glued the ends. The

problems in the linear version also appear in the circular con�guration and we do

not explicitly categorize any of these in the rest of the chapter.

The Cost of an alignment is a function (measure) of the alignment with respect

to a map, which we optimize. In the next chapter we explore various forms of

\reasonable" cost functions. Recall that a 1 in S 0 at location j implies that there

are at least mpj 1's in the aligned data set in column j. For the rest of the thesis

let mpj = cj, that is cj is the minimum number of 1's required in column j for it

to be a consensus cut column.

4.2 Modeling the problem

Given the problem as described in the last section, we can identify two natural

approaches to the problem of inferring an ordered restriction map from a set of

erroneous samples: (1) using data consensus or agreement, and, (2) optimizing

a characteristic function of the data. We discuss these two approaches in the

following sections.

4.2.1 Consensus/Agreement with data

This approach uses the mutual agreement between the molecules to obtain an

alignment of the molecules and a map. There are two views to this: one uses an

explicit hypothesis and the other does not. We discuss these views in the next two

sections.

Consensus/Agreement with a hypothesis

Let hypothesis H have K restriction sites each at location lj; j = 1; 2; : : :K. As

the location of a site is not exact, assume that it has a distribution Gj() about the

correct location lj in H, with standard deviation �j. Further assume that given H
and a molecule i with some �xed alignment, we can designate every cut site in the

35

molecule as true or false. A true site will correspond to lj of H, for some j, at a
small distance dj from it, and, a false site will have no such correspondence. For

an alignment of the rows/molecules de�ne the following:

Tj =
mX
i=1

(number of true sites in molecule i at j); (4.1)

Fj =
mX
i=1

(number of false sites in molecule i at j): (4.2)

Let F =
P

j Fj. Then M(H; i), the match for an alignment of molecule i with

hypothesis H is de�ned as

M(H; i) =X
j

ffj(Tj)Gj(dj) + gj(Fj)g ; (4.3)

and the problem is to maximizeM. fj() and gj() are \suitable" functions on the

number of true and false sites respectively at a location j, depending on whether

j is a consensus cut site or not in the hypothesis H. We call these functions the

signature functions of the model. An alternate form of M can be obtained by

de�ning function ~g() on F instead of Fj in equation (4.3). See Section 4.3 for an

example.

Agreement with a hypothesis uses the following optimization function:

max
(over all hypotheses H & alignments)

(
mX
i=1

M(H; i)
)
: (4.4)

Properties of functions fj() and gj(). What must be the conditions on fj() and

gj() (or ~g()) so that the \mutual agreement" of the molecules (or data) is not

violated?

1: fj(x) < fj(y); 8x < y; and x; y � cj:

2: gj(x) � gj(y); 8x > y; and x; y � cj:

3: gj(x) > fj(x); 8x < cj;

4: gj(x) < fj(x); 8x > cj:

fj(x)

gj(x)
x = cj

x

36

The �rst condition states that the \agreement" must increase with increase in

matches; the second condition has the same spirit. These conditions ensure that

a consensus cut column at j has at least cj 1's. Hence one can see that the cost

functions can be \designed" using the constants cj (or probabilities pj) by de�ning

appropriate fj() and gj() that satisfy the above conditions.

Let dj in equation (4.3) be very small, for all j. This leads to the idealized

version of the problem, where the location of a site is supposed to be exact; thus

the molecules can be represented as a string of 0's and 1's. Thus the data can be

represented in a m� n binary matrix [Mij] with each entry as either 0 or 1. Each

row represents a molecule and each column refers to a site on the molecule: thus

there are m molecules and n sites. A 1 at position (i; j) means that the jth site

(column) of the ith molecule (row) is a cut. A 0 indicates the absence of a cut.

A hypothesis is a map or a n-length vector with 1's representing a consensus cut

site and 0 representing its absence. Let D = fp1; p2; : : : ; png be the digestion rates

of the locations j = 1; 2; : : : ; n. The di�erent problems that respect the \mutual

agreement" criteria appear in the following sections.

Problem Instances. Binary Flip Cut (BFC) [38, 18]: Given Mij and the digestion

rates D, �nd an alignment of the rows/molecules and a map that maximizes the

number of 1's in the consensus cut columns (which is at least mpj for the con-

sensus cut column j). The alignment takes orientation uncertainties into account;

incorporating the missing fragment errors gives rise to Binary Shift Cut (BSC) prob-

lem [3, 14, 43], and incorporating the good/spurious molecule error gives Binary

Partition Cut (BPC) problem [3, 43]. The signature functions for these problems

are:

f(x) = x� cj and g(x) = 0;

where cj is the minimum number of 1's or cuts required in a column j for it to be

a consensus cut column.

Exclusive Binary Flip Cut (EBFC) [38, 18, 41]: Given Mij �nd an alignment that

maximizes the number of 1's in consensus cut columns where only one of j or

j = n � j + 1 is a consensus cut and further the column with the higher number

37

of 1's (between j and j) is the consensus cut.

The EBFC problem can be de�ned alternately in terms of the digestion rate,

pj = cj=m. Note that this is an equivalent de�nition of the EBFC problem:

Pj = jfijMij = 1 AND Mij = 1gj
�Pj = jfijMij = 1 XOR Mij = 1gj

cj = Pj +
�Pj
2

(4.5)

The signature functions for this problem are:

f(x) = x� cj and g(x) = cj � x;

where cj is as de�ned above.

Balanced BFC: Given Mij, �nd an alignment of the rows/molecules and a map

that maximizes the total number of 1's in the consensus cut columns and the

number of 0's in the columns that are not consensus cut columns. We can model

each of the other error sources similarly. The signature functions for these problems

are:

f(x) = 2x�m and g(x) = m� 2x;

where m is the number of rows in the matrix or the number of molecules. Thus,

in these problems cj = m=2.

Conservative BFC: This gives a conservative evaluation of the cost per consen-

sus cut column and is de�ned as follows. Given Mij, �nd an alignment of the

rows/molecules and a map that maximizes the number of 1's less the number of

0's in the consensus cut columns. In a similar spirit as before, we can model each

of the other error sources as well. The signature functions for these problems are:

f(x) = x and g(x) = m� x;

where m is the number of rows in the matrix or the number of molecules. Thus,

in these problems cj = m=2.

It is interesting to note that problems with linear f() such as EBFC, BFC

and others give rise to inapproximable combinatorial problems as discussed in Sec-

38

tion 8.2.2. However, attempting to simplify the cost function any further trivializes

the problem as we show in Lemma 1 below.

Lemma 1 If fj(x) is a linear function and fj(x) = gj(x), 0 � x � m, M() is a

constant function.

Proof: Under these conditions, every column (irrespective of the alignments of the

rows) can either be or not be a consensus cut column without a�ecting the cost.

If fj(x) = �x+�, for some � > 0, then the cost function is always �A+n� where

A is the number of 1's in the input matrix and n is the number of columns. (Note

that this is not true if the functions are not linear since h(a + b) 6= h(a) + h(b)

where h() is a non-linear function.) QED

Consensus/Agreement without (explicit) hypothesis

In this section we focus on the approach which can be broadly described as guessing

the correct alignment of molecules by studying a few molecules (say d � 2) at a

time and building the entire solution from this (possibly with some back-tracking).

We formalize the problem as the d-wise Match (dM) problem. Let the number of

molecules be m, each having n sites. For a �xed d (d � 2 and d << m), we

assume that we can orient the d molecules so that they have maximum agreement

between them. This is done by enumerating all the 2d�1 possible con�gurations

where each molecule can have left-to-right or right-to-left orientation with respect

to a reference molecule whose orientation is �xed. This assigns an orientation to

each molecule of the sample size of d molecules. We associate a cost with each

con�guration of the d molecules, X, as AX(i1; i2; : : : ; id), and de�ne the cost as

follows, for some �xed Æ > 0:

AX(i1; i2; : : : ; id) =
of cut sites that are within Æ of each other in

all the d molecules, given X.
(4.6)

Another simple extension to this cost function is

AX(i1; i2; : : : ; id) =

8>><
>>:
of cut sites that are within Æ of each other �
of the remaining cuts, in all the d molecules,

given the con�guration X.

9>>=
>>; (4.7)

39

and in principle, this alignment could model other errors as well. Given the sample

of d molecules, we assign the con�guration Xmin that maximizes the cost (de�ned

by equation (4.6)). This con�guration Xmin implicitly assigns an orientation to

each of the d molecules. Thus, orientation can be assigned to each molecule of

every possible d-sized sample of the m molecules. If the orientation of any one of

the molecules is changed, the cost associated with the molecules increases by say

Æ. Also, a molecule belongs to
�

m
d�1
�
samples and could have di�erent orientations

assigned to it in the di�erent samples. The aim is to assign an orientation to

every molecule, so that the sum of the deviation Æ from the optimal in each of the�
m
d

�
samples is minimized, or, the cost of alignment due to each of the samples is

maximized. This optimization problem is termed the d-match (dM) problem. It is

assumed that once the orientation of each molecule is known, the positions of the

consensus cut sites can be estimated quite simply.

We give the following lemmas to identify the signature (f() and g()) functions

of this model.

Lemma 2 Matching with d-wise agreement is equivalent to the following optimiza-

tion problems.

max
(over all con�gurations)

X
j

Tj
d

!
; using equation (4.6)

and,

max
(over all con�gurations)

X
j

2

Tj
d

!
�

m

d

!!
; using equation (4.7) (4.8)

where Tj represents the number of cuts at the position j in that con�guration.

Proof: Consider a con�guration. The number of matches per column is
�
Tj
d

�
.

Using equation (4.6), we need to maximize this over all the columns, hence the

result.

The number of mis-matches is
�
m
d

�
�
�
Tj
d

�
. Thus, using equation (4.7), we need

to maximize the following
Tj
d

!
�

m

d

!
�

Tj
d

!!
; (4.9)

40

hence the result. QED

Corollary 1 The pair-wise matching problem is equivalent to the following opti-

mization problem:

max
over all con�gurations

0
@X

j

Tj(Tj � 1)

1
A ;

where Tj represents the number of cuts in the position j in that con�guration.

For the sake of simplicity, we study the pairwise or 2-wise match problem which

is as follows. Given m molecules with n sites each, with false positive and negative

errors and orientation uncertainties, and a �xed Æ > 0, �nd an alignment to the

molecules so that it has the maximum 2-wise match where AX(i1; i2) is de�ned as

AX(i1; i2) =
of cut sites that are within Æ of each other in both the

molecules, given X,
(4.10)

and X denotes an alignment, �.e., (1) both are in the same orientation, say left-

to-right, or (2) they have an opposite orientation, say one is left-to-right and the

other is right-to-left. Thus it is the following optimization problem:

max
(over all alignments)

8<
:

mX
i1=1

mX
i2 6=i1

AX(i1; i2)

9=
; : (4.11)

Informally, the task is to maximize the sum of the pairwise match cost.

For the d = 2 case, we map the problem to a graph problem. Notice that if

there are only two molecules, there can be only one alignment (either both are in

the same orientation or one of them is in the opposite orientation) and there is

no conict. If there are 3 molecules, it is possible that considering two of them

assigns an orientation to each of the molecules and the third molecule may or may

not support this decision. In general for n molecules we capture this in a graph

structure as described below.

Given a 2-wise match problem, a complete graph G is constructed with every

vertex vi corresponding to a molecule i.

Edge Labels. Let X = S denote an alignment where both the molecules i and

41

j have the same orientation, and X = O denote the alignment where one of

them is is left-to-right while the other is right-to-left. Every edge eij = vivj with

AS(i; j) 6= AO(i; j) is labeled by label L(vivj) as follows:

L(eij) =

8<
: Same AS(i; j) > AO(i; j);

Opposite AS(i; j) < AO(i; j):

Recall that AX(i; j) is the cost of the alignment X using equation (4.10). We re-

move those edges that have AS(i; j) = AO(i; j); thus the graph G is not necessarily

a complete graph.

Edge Weights. Weight Wt(eij) is de�ned as Wt(eij) = max(AS(i; j); AO(i; j)).

We de�ne a predicate on any set of three vertices (of the complete graph) as

follows: vi; vj; vk are consistent if either all three edges or exactly one edge is labeled

Same.

It can be veri�ed that the three molecules can be assigned unique orientations

only if all of the three pairwise labels are Same or exactly two of the pairwise

labels are Opposite. Thus a consistent set of vertices give a unique alignment

to the corresponding set of molecules. Further, a labeled graph G is said to be

consistent if every three vertices vi; vj; vk is consistent.

Given the labeled and edge weighted graph G, the problem is to obtain a set of

edges S, such that for all edges e 62 S the labels of the edges is changed from Same

to Opposite or vice-versa, so that (1) the graph with these new labels is consistent,

and, (2) the sum of the weights of the edges e 2 S is maximized. This is called

the Weighted Consistency Graph (WCG) problem.

We de�ne a special case of the WCG problem, the Consistency Graph (CG)

problem: Given a labeled graph G, �nd the maximum number of edges that

retain the labels to get a consistent graph.

Table 4.1 summarizes these problems and their signature functions and Fig-

ure 4.1 plots these functions for convenience.

42

Problems using data consensus/agreement

Problem dj Errors f(x) g(x) cj

linear form

Excl. Binary Flip Cut implicit

(EBFC) [18, 41] Orien. (eqn 4.5)

Binary Flip Cut (BFC)

[18, 41, 43] �xed

Binary Shift Cut Missing

(BSC) [3, 14] frags.

A-1 Binary Partition Cut Bad x� cj 0 user

(BPC) [3, 43] mols de�ned

Weighted Flip Cut Orien.,

(WFC) [41] any sizing

Binary Sizing-error sizing

Cut (BSeC) [3] errors

A-2 Balanced probs all 2x�m m� 2x implicit

A-3 Conservative probs �xed x m� x (m=2)

Weighted Consistency Graph (WCG) quadratic form

A-4 Pairwise match
�x
2

�
under M1 (eqn 4.6) � Æ 0 No cj

A-5 Pairwise match all 2
�x
2

�� �m2 � implicit

under M2 (eqn 4.7) (eqn 4.9)

d-wise match degree-d

A-6 under M1 (eqn 4.6) � Æ
�x
d

�
0 No cj

A-7 under M2 (eqn 4.7) all 2
�x
d

�� �m2 � (eqn 4.8)

transcendental form

A-8 Statistical � Æ x ln(xm)+ ~g(x) = implicit

Model [3] all (m� x) x ln x
m

ln(1� x
m) �x

Table 4.1: Problems using the consensus/agreement criterion (identi�ed primarily by

monotonically increasing fj()). All the problems also model false positive and false

negative errors. Recall that cj = mpj is the minimum number of 1's or cuts required in

a column j for it to be a consensus cut column.

43

Linear Quadratic degree-d (d = 4)

x

y

x

y

x

y

(a) Problem(s) A-1. (c) Problem A-4. (e) Problem A-6.

x

y

x

y

x

y

(b) Problems A-2 to A-3. (d) Problem A-5. (f) Problem A-7.

Figure 4.1: The plots of the fj(x) and gj(x) functions for the di�erent problems using

the consensus/agreement criterion. fj(x) is the increasing function in all plots. gj(x) is

the decreasing function in (b) and the horizontal line in the others. In each case, cj is

given by the zero of the polynomial fj(x)� gj(x). (To create the plots certain values of

m were assumed; since the purpose of these plots is to indicate the shape of these curves,

we skip the other details that are not vital to the study of these functions.)

44

4.2.2 Optimizing the characteristic of an alignment

We would like to identify reasonable characteristics of an alignment that can be

quanti�ed and formulate the problem as optimizing this quantity. We give some

such formulations in the following sections.

Optimizing K, the number of consensus cuts

Minimizing the number of consensus columns (BFCminK): Given Mij and the diges-

tion rates S, �nd an alignment of the rows/molecules and a map that minimizes

the number of consensus cut columns. In a similar spirit one can de�ne BSCminK

and BPCminK . The signature functions for this model are:

f(x) =

8<
: 1 x < cj

0 otherwise
and g(x) = 0:

One can see that this is not a good model since the signature functions do not

satisfy properties (1), (3) and (4) described in Section 4.2.1.

Maximizing the number of consensus columns (BFCmaxK): Given Mij and the

digestion rates S, �nd an alignment of the rows/molecules and a map that max-

imizes the number of consensus cut columns. This cost function was suggested

in [3]. In a similar spirit one can de�ne BSCmaxK and BPCmaxK. The signature

functions for this model are:

f(x) =

8<
: 0 x < cj

1 otherwise
and g(x) = 0:

Notice that the f() function for both these models is a step function.

Optimizing discrepancy

De�ne a discrepancy dj, between a column j and its conjugate j as the di�erence in

the number of 1's between the column j and j, given an alignment. Now, di�erent

cost functions can be de�ned based on dj. Note that discrepancy is meaningful

only in the context of EBFC problems.

45

1. EBFCmax;�, EBFCmin;�: Obtain an alignment and a map that maximizes the

sum of the discrepancies. EBFCmin;� can be de�ned in a similar manner. It

can be veri�ed that EBFCmax� attains its optima at the same alignment as

EBFC (thus these two problems are identical). The signature functions for

EBFCmax;� are:

f(x) = x� cj and g(x) = cj � x;

where cj is de�ned by equation (4.5).

EBFCmin;� is a dual of the EBFCmax;� problem and attains the the optima

at the same con�guration as that of EBFCmax;�. Thus in a sense EBFC,

EBFCmax;� and EBFCmin;� are equivalent problems!

2. EBFCmin;max, EBFCmax;min : Obtain an alignment and a map that minimizes

the maximum of the individual (j = 1,2, . . . , n/2) discrepancies. EBFCmax;min

is de�ned in a similar manner. Note that the former attempts to concentrate

the 1's in the consensus cut columns while the latter attempts to distribute

the 1's as evenly as possible.

The signature functions for both these models are:

f(x) = x and g(x) = m� x:

However the optimizing functions for EBFCmin;max and EBFCmax;min are

minj
n
max

n
Mj;M�j

oo
and maxj

n
min

n
Mj;M�j

oo

respectively whereMj = fj(Tj)Gj(dj)+gj(Fj) and �j is the conjugate position

of j.

3. EBFCmax;max, EBFCmin;min: These can be de�ned in the same spirit but do not

appear to be interesting functions and they are very simple to compute.

These forms are summarized in Table 4.2.

46

Problems using characteristic optimization

Problem Errors Modeled Cost Function On cj

fj(x) gj(x)

step function

B-1 Minimizing K all errors

8<
: 1 x < cj

0 otherwise
0 user de�ned

B-2 Maximizing K all errors

8<
: 0 x < cj

1 otherwise
0 user de�ned

linear function

B-3 EBFCmax;� Orientation x� cj cj � x implicit

uncertainties (eqn 4.5)

x m� x

B-4 EBFCmin;max orientation minj
n
max

n
Mj;M�j

oo
implicit

B-5 EBFCmax;min uncertainties maxj
n
min

n
Mj;M�j

oo
(eqn 4.5)

Table 4.2: Classi�cation of problems using the optimization of a characteristic of an

alignment. Mj = fj(Tj)Gj(dj)+gj(Fj) and �j is the conjugate position of j. Notice that

the the cost function for the EBFCmin;max and EBFCmax;min problems is di�erent from

equation (4.4) and is shown in the table; however the \signature" functions are linear.

47

4.3 Analysis of a Statistical Approach

A statistical model for the restriction map problem is presented in [3]: we will

analyze this model in the context of our framework and show the following: (1) the

signature functions f() and g() take transcendental forms in this model (problem

A-8 in Table 4.1), and (2) make some observations about the model and suggest

possible modi�cations.

Signature functions f() and g(). We will not give a complete de�nition and

description of the proposed model here. The reader is advised to look at [3] for

notation and other details.

We will use the same notation as in [3]. Pr[D
(k)
j jH; good] denotes the probability

of the molecule j aligned (alignment index k) with the hypothesis H and molecule

j being a good (not spurious) molecule. Pr [DjjH; Ajk] denotes the probability

of the molecule j aligned (alignment index k) by Ajk with the hypothesis H.
c1; c2; : : : ; cN are the consensus cuts and s1; s2; : : : ; sN are their locations in the

hypothesis H. h1; h2; : : : ; hN denote the distances of each of these cuts, if they

exist, in the molecule j from the exact locations under the alignment Ajk. M is

the number of molecules and N is the number of consensus sites in the molecule.

�f is the expected number of false cuts. Fjk is the number of false cuts in the

data Dj for the alignment Ajk that do not match any hypothesis H. Using this

notation, at the heart of the model is the following de�nition (equation (1) in [3],

which we reproduce here):

Pr[D
(k)
j jH; good] =

"
NY
i=1

pci

e�(sijk�hi)
2=2�2ip

2��i

!mijk

(1� pci)
1�mijk

#
��Fjkf e��f (4.12)

However, for the sake of ease of understanding, we use the example that the authors

use to explain the above formula (which we again produce here) shown below:

Pr [DjjH; Ajk] = pc1
e�(s1�h1)

2=2�21p
2��1

� (1� pc2)� �fe
��f � : : :� pcN

e�(sN�hN)2=2�2Np
2��N

(4.13)

This de�nes the underlying cost function for the statistical algorithm where Prjk =

Pr [DjjH; Ajk]. To understand this function better, consider the special case where

48

x0 140120100806040200

y

00

-50

-100

-150

-200

-250

-300

Figure 4.2: The plot of f(x) = x ln(a�xM) + (M � x) ln(1 � x
M) with M = 100 and

a = 0:1; 0:3; 0:5; 0:7; 0:9; 1:0. The "perfect" cup shape is obtained when a = 1:0; the

curve with the lowest dip corresponds to a = 0:1.

every molecule is good. Then, the cost function that equation (4.13) suggests can

be viewed as form (4.4). In [3] the log-likelihood, L, which is to be maximized, is

computed as (we again reproduce here):

L �X
j

lnPr[DjjH]: (4.14)

Note that in the special case where every molecule is good, by the de�nition of

Pr[DjjH] in [3], the following holds:

Pr[DjjH] = 1

2

X
k

Pr[DjjH; Ajk]: (4.15)

Under the assumption that, when a molecule is matched against a hypothesis,

the alignments that do not match give a very low probability, that is Pjk � 0,

L corresponds to M of equation (4.4). Now, to understand how this function

behaves, consider the special case where Gl has a constant �l, for all l; for di�erent

values of the constant we get plots of the function as shown in Figure 4.2 (using the

49

equation (4.16) discussed below). For further discussion, we choose the curve which

corresponds to Gl() = 1 3. Let x =
PM

j=1mijk for a con�guration. Under alignment

Ak, mijk is the indicator variable for molecule j and cut i of the hypothesis H.
Since pci is the probability of cut i, pci = x=M . Let y =

PM
j=1 Fjk, where Fjk is the

number of false cuts in data Dj. By de�nition, �f = y=M ,

Notice that equation (4.12) uses indicator variables sijk and mijk and a count

variable Fjk that gives the number of false cuts per molecule j for the alignment Ajk

(although sijk does not appear explicitly in the equation it is nevertheless used,

see [3] for details). The number (and the values) of the variables sijk and mijk

depend on the number of cuts in the hypothesis H and the value of Fjk depends

on decisions whether cuts in a molecule correspond to cuts in the hypothesis H or

not. Hence we can e�ectively discretize the model depending on the number and

values of these variables.

As pcj = eln pcj , if there are x molecules showing a cut at location j (thus M�x
that do not) for an alignment Ak, we have (using equation (4.14)),

f(x) = ln
��
eln pcj

�x �
eln(1�pcj)

�M�x�
= x ln pcj + (M � x) ln(1� pcj)

= x ln(x
M
) + (M � x) ln(1� x

M
)

(4.16)

assuming Gj() = a = 1:0 (see Figure 4.2). Similarly, if there are y false cuts, then,

~g(y) = M
�
ln e��f

�
+ y ln�f

= �M�f + y ln�f

= y
�
ln y

M
� 1

� (4.17)

Observations. Having the optimizing function in sharp focus helps us observe

some properties of the model.

� f(x) is such that f(a + b) < f(a) + f(b), for a + b < M=2 and f(a + b) >

f(a)+ f(b) for a+ b > M=2. Thus for a+ b > M=2, the model prefers to put

3Notice that if Gl() = a = 0:1 is used, the ~g() curve in Figure 4.3 is such that f(x) < ~g(x), for all

x > Æ > 0, where Æ is a very small number, which is not desired.

50

x 14012010080604020

y

00

-50

-100

-150

-200

(a)k = 1:0

x 14012010080604020

y

00

-50

-100

-150

-200

x 14012010080604020

y

00

-50

-100

-150

-200

(b) k = 0:25 (c) k = 0:5

Figure 4.3: The plots of the f(x) and g(x) functions for the statistical model (f(x) is the

cup-shaped curve and the other is the g(x) curve). (a) shows the f() and ~g() functions

for equation (4.12) and (b) and (c) show the f(x) and g(x) functions for equation (4.18).

51

the 1's into one consensus site and for a + b < M=2 it tries to distribute the

cuts between j and its conjugate �j.

Thus if the digestion rate is < 50%, then the model will attempt to maximize

the number of cuts (spread the true positives to its conjugates) and for a

digestion rate > 50% will minimize the number of cuts (concentrate the cuts

along one column). This dichotomy is due to the cup-shaped f() as shown

in Figure 4.3 (which also violates property 1 of the f() function described in

Section 4.2.1, for digestion rates < 50%).

� For digestion rates lower than approximately 20%, it is conceivable that the

model does not e�ectively distinguish between true positives and false pos-

itives. Using some straightforward calculations, we can show that f() and

g() functions are such that for x < v, f(x) � g(x), for v = 0:2. (Also see

Figure 4.3.) This problem can be circumvented by modeling the false cut at

di�erent locations separately, and, using a term kj � 1 that ensures that the

digestion rate is at least pj; 0 < pj � 1.

For clarity, we skip the subscript j of kj, pj in the rest of the discussion. Now

equation (4.13) can be modi�ed as:

Prjk = pc1
e�(s1�h1)

2=2�21p
2��1

�(1�pc2)�k�fle��fl�: : :�pcN
e�(sN�hN)2=2�2Np

2��N
(4.18)

k can be viewed as a factor that \discourages" �fl to be large and the extent of

this \discouragement" is governed by equation (4.20) as shown below. Thus

equation (4.17) modi�es as follows 4:

g(y) = y

ln
ky

M
� 1

!
: (4.19)

k is such that

g(x) < f(x); for x > pM: (4.20)

Figure 4.3 shows a plot of the functions f() and g() for di�erent values of k.

This concludes the analysis of the statistical model in our framework.

4Note that equation (4.17) de�nes ~g(), but this de�nes gj() due to modi�cation (1).

52

Chapter 5

Computational Complexity

We begin by giving a brief overview of computational complexity of optimization

problems. Then we formulate the problems using the two approaches of the last

chapter and discuss their computational complexity. We postpone the discussion

on the algorithms for the problems, both theoretical and practical, to Chapters 6

and 7.

5.1 On Complexity of Optimization Problems

The theory of NP-Completeness developed by [11, 27, 33] show that many decision

problems of interest are NP-complete. A natural decision version of optimization

problems such as the traveling salesperson problem, maximum clique and others

are also NP-complete, implying that the optimization versions are NP-hard. Thus

if P 6= NP, no polynomial time algorithm can give the optimal solution to these

problems.

In this context, it is meaningful to ask the question whether there exists a

polynomial-time approximation algorithm for an NP-hard problem. An algorithm

is said to approximate a solution within a factor of �, where � � 1, if the algorithm

guarantees a solution whose cost is within a factor of � of the optimum, for every

instance of the problem. It has been shown that NP-hard optimization problems

can be classi�ed further depending on the extent of approximability guaranteed by

53

the algorithm [26, 52, 5]. Some NP-hard problems such as knapsack problem [17]

have a Fully Polynomial Time Approximation Scheme (FPTAS), i.e., for any � > 0,

the algorithm guarantees a solution that is within a factor of 1 + � in time that

is polynomial in the input size and 1=�. If the algorithm is polynomial time in

the input size only (but depends arbitrarily on 1=�), then the algorithm belongs

to a scheme called the Polynomial Time Approximation Scheme (PTAS). Most

problems of interest are not known to admit a PTAS. However, many of these

problems, such as maximum cut, vertex cover, Eucledian Steiner Tree, metric

traveling salesperson have a constant factor approximation algorithm. The class

of these problems is called APX. The unrestricted traveling salesperson problem

is not in APX [52] and neither is the clique problem [7].

In [40], the authors use second order logic to de�ne a class of NP optimization

problems called MAX SNP as well as a notion of completeness for this class.

See [40] for a rigorous de�nition of this class of optimization problems. In [6], the

authors show the following result: a problem is MAX SNP hard if it is NP-hard

and there exists a constant � > 0 such that approximating this problem within a

factor of 1 � � is NP-hard. In the rest of the chapter, we will use this result to

show the MAX SNP hardness of the di�erent problems.

In the reductions presented in the following sections and in later chapters, we

use the maximum cut problem. This problem is known to be MAX SNP hard,

hence does not admit a PTAS unless P = NP [5, 6]. However, a dense instance

of the problem admits a PTAS [4]. Let 1 � � denote the upper bound on the

polynomial time approximation factor for the maximum cut problem. Then 1��

can be no more than 0:94, unless P=NP [23]. The best known lower bound for

1� � is 0:878 [20].

The approaches to the ordered restriction map problem, as seen in the last chap-

ter, can be broadly categorized as (1) using mutual agreement amongst the data

in the population, and, (2) using an explicit map. We discuss the computational

complexity of these approaches in the next two sections.

54

5.2 Using an explicit map (The EBFC Problem)

Recall that in this approach, in some sense we guess a map that best \�ts" the

the input data. In 4 this notion has been formalized to give rise to appropriate

optimization problems. We discuss one such problem below (the BFC problem).

We formalize the problem as follows. Given m molecules with n sites each, and,

pj as the digestion rate for column j, obtain an alignment of the molecules such

that the total number of 1's in the consensus cut columns, J , which is at least mpJ

in each, is maximized (pJ is the digestion rate for site J). This is called the Binary

Flip Cut (BFC) problem [18, 38]. We show that BFC is MAX SNP hard and give

an upper bound on the polynomial time approximation factor of the problem. [3]

showed that the problem is NP-hard but the cost function was di�erent, we call

this altered cost function BFCmax, for uniformity of notation. In BFCmax, the total

number of consensus cut columns, K, which is at least mpJ in each consensus cut

column, is maximized. We show at the end of this section that even BFCmax is

MAX SNP-hard and give an upper bound on the polynomial time approximation

factor of the problem.

We associate indicator variables Xi, i = 1; 2; : : : ; m, with every row which takes

a value 1 if the molecule is ipped and 0 otherwise. Let Yj, j = 1; 2; : : : ; n, be an

indicator variable associated with every column that takes on a value of 1 if it is a

consensus cut and 0 otherwise. De�ne conjugate of column j to be j = n� j + 1.

BFC can be modeled as the following optimization problem:

max

8<
:

nX
j=1

Yj

mX
i=1

�
Mij(1�Xi) +MijXi

�
�mpj

!9=
; : (5.1)

Note that the term mpj is used to ensure that the number of 1's along a consensus

cut site j (with the rows ipped, if required) is at least mpj. In other words, for a

given alignment (which is an assignment of boolean values to Xi, i = 1; 2; : : : ; m,

and Yj, j = 1; 2; : : : ; n) we count the number of 1's in every column j, that has

Yj = 1, less mpj.

Assume n is even1. Suppose, for every pair of columns, j and �j, we know

1If n is odd, we simply remove the middle site, that is, the site (n+1)=2, and the problem is unchanged.

55

whether both are consensus cut or neither are consensus cuts, then the remaining

columns are such that exactly one of j and �j is a consensus cut. This problem is

called the exclusive BFC (EBFC) problem ([18, 38]). This problem was shown to

be NP-hard in [14] using a similar reduction as in [3] to show the hardness of the

BFCmax problem. In the practical algorithm presented in Section 7.2 information

about the digestion rates is used to extract the EBFC problem. Later in this

section we show that EBFC problem can also be viewed as a special case of the

the BFC problem de�ned by cost function in (5.1).

Formally, the EBFC problem ([18, 38]) is as follows. Given m binary molecules

of length n each, determine the ip for each molecule and an assignment of either

j or �j as a cut (but not both) for j, 1;� j � n=2, such that the total number of

1's in the cut sites is maximized.

We prove the following lemma about the EBFC problem.

Lemma 3 EBFC is a special case of the BFC problem.

Proof: Let

Sj = jfijMij = 1 AND Mij = 1gj;
�Sj = jfijMij = 1 XOR Mij = 1gj;

where j = n� j + 1. Further, let

pj = pj =
�Sj + 2Sj
2m

: (5.2)

Note that Sj is the count of the number of symmetric cuts and �Sj is the total

number of non-symmetric cuts in columns j and j. Irrespective of the assignment

of orientations to the molecules/rows, j and j always has at least Sj many 1's.

The 1's corresponding to �Sj get distributed between j and j depending on the

alignment. We claim that under this de�nition of pj the BFC problem is the

same as the EBFC problem. It can be veri�ed that under these conditions that

Yj + Yj = 1 holds for all j, since the de�nition of pj ensures that only one of j or

j is a consensus cut in the optimal alignment (and that is the one with the larger

56

number of 1's). If the number of 1's is equal in both, we can arbitrarily pick only

one without changing the cost. QED

For the sake of completeness we give the following de�nitions.

Max Cut (MC) problem: Given a graph, �nd a partition of the vertices into disjoint

sets, S1 and S2, that maximizes the number of edges with one vertex in S1 and the

other in S2.

Bipartite Max Cut (BMC) problem: Given a bi-partite weighted graph with edge

weights 2 f+1;�1g, �nd a partition of the vertices into disjoint sets, S1 and S2,

such that the sum of the weights of edges with one vertex in S1 and the other in

S2 is maximized.

Theorem 1 EBFC is NP-hard. Further, there exists a constant � > 0 such that

approximating EBFC within a factor of 1� � is NP-hard.

Proof: We reduce an instance of an MC problem to an instance of an EBFC

problem: we show this reduction in two steps (steps 1 and 2) for the sake of

clarity. Showing merely the relationship between the optimal solutions for the two

problems would show that the EBFC problem is NP-hard; however, we also show

how a solution to the Max Cut problem can be constructed given any solution (not

necessarily optimal) to the EBFC problem. Further, we show that if the cost of

the former is close to the optimal, so is the cost of the latter.

The proof proceeds in the following three steps. Let C�
X denote the cost of an

optimal solution and CX denote the cost of an arbitrary solution to X.

Step 1. We show the reduction of an instance of the MC problem with e edges to

an instance of the BMC problem with

(1:1) ono-to-one correspondence between the two solutions,

(1:2) C�
MC = C�

BMC=2, CMC � CBMC=2, and,

(1:3) the number of negative edges in the BMC is 2e.

Step 2. We show the reduction of an instance of the BMC problem to an instance

of the EBFC problem with

(2:1) ono-to-one correspondence between the two solutions, and,

(2:2) CEBFC � e� = CBMC ,

57

where e� is the number of edges with negative weights in BMC.

Step 3. Finally, we show that the reduction is gap-preserving.

For some � > 0, letC� denote the optimal solution and ~C denote an approximate

solution with ~CEBFC � (1� �)C�
EBFC .

~CMC � ~CBMC

2
(using Step 1.2)

=
~CEBFC�2e

2
(using steps 1.3 & 2.2)

� (1��)C�

EBFC�2e
2

(by de�nition of ~CEBFC)

=
(1��)(C�

BMC+2e)�2e
2

(using Step 2.2)

=
(1��)C�

BMC�2e�
2

= (1� �)
C�

BMC

2
� e�

� (1� �)C�
MC � (�)2C�

MC (since C�
MC � e=2)

= (1� 3�)C�
MC

(5.3)

This shows that given a PTAS for EBFC, we can construct a PTAS for MC, which

is a contradiction, hence EBFC does not have a PTAS.

Now, we show each of the steps from 1 to 2. We outline the construction here

and the details appear in Appendix A for the interested reader.

Step 1. MC to BMC reduction (see Figure 5.1).

Consider an MC problem with vertices and edges (V;E); n = jV j; e = jEj. Let a
solution be of size K, and, the partition of the vertices induced by this solution be

S1 and S2.

Reduction: Construct an instance of BMC with (~V ; ~E) as follows: For each

vi 2 V , with degree di, construct 2(di + 1) vertices,

Vgadgeti = fv0i0; v0i1; : : : ; v0idi ; v00i0; v00i1; : : : ; v00idig:

Further, wt(v0ij; v
00
ij) = wt(v0i0; v

00
ij) = wt(v0ij; v

00
i0) = �1; j = 1; 2; : : : ; di. Thus, vi

gives rise to 3di edges with negative weight. Also if v1v2 2 E then wt(v010v
00
20) =

wt(v020v
00
10) = +1. It can be seen that this construction gives a bipartite graph with

~V = V 0 [V 00 where v0x 2 V 0; v00x 2 V 00.

Thus the BMC has 2n + 2e vertices, and, 2e edges with weights +1, and, 2e

edges with negative weights. Recall for any graph
P

i di = 2e.

58

v0

10

v0

11

v0

12

v0

13

v0

20

v0

21

v0

31

v0

30

v0

32

v0

40

v0

41

v0

42

(Vgadget1)

(Vgadget2)

(Vgadget3)

(Vgadget4)

v00

10

v00

11

v00

12

v00

13

v00

20

v00

21

v00

30

v00

31

v00

32

v00

40

v00

41

v00

42

v1

v2

v3v4

Figure 5.1: An example to show the reduction of an MC instance to a BMC instance.

The bipartite graph is shown on the right: the solid edges have +1 weight and the dashed

edges have weight �1. The \gadgets" corresponding to each vertex vi, i = 1 : : : 4 of the

original graph, is shown enclosed in a dotted box.

59

v0010 v
00
11 v

00
12 v

00
13 v

00
20 v

00
21 v

00
30 v

00
31 v

00
32 v

00
40 v

00
41 v

00
42 v

00
42 v

00
41 v

00
40 v

00
32 v

00
31 v

00
30 v

00
21 v

00
20 v

00
13 v

00
12 v

00
11 v

00
10

v010 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0
p

v011 0 1 1
p

v012 0 1 0 1
p

v013 0 1 0 0 1
p

v020 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 �
v021 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 �
v030 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 �
v031 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 �
v032 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 �
v040 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 �
v041 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 �
v042 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 �

p p p p � � � � � � � � p p p p p p p p � � � �

Figure 5.2: The EBFC matrix corresponding to the BMC problem of Figure 5.1. Note

that the 1's in the left half of the matrix correspond to the positive edge weights of the

BMC and the 1's on the right correspond to the negative edge weights. [In the solution,

the rows/molecules marked with
p

are ipped, and, the columns marked with
p

are the

consensus cut columns.]

60

Step 2. BMC to EBFC reduction (see Figure 5.2).

Consider a BMC ((V1; V2); E), V1 = fv11; v12; : : : ; v1mg, V2 = fv21; v22; : : : ; v2ng, and,
number of edges with negative weights be e�. Let a solution be of size K and

partition of vertices, V1 [V2, induced by this solution be S1 and S2.

Reduction: Construct an instance of EBFC [Mij] with m rows and 2n columns

as follows. If wt(v1i v
2
j) = 1, then Mij = 1;Mij = 0. If wt(v1i v

2
j) = �1, then

Mij = 0;Mij = 1. If v1i v
2
j is not an edge in the BMC, then Mij =Mij = 0.

This concludes the proof of the inapproximability of the EBFC problem. QED

Corollary 2 Achieving an approximation ratio 1� �=3 for EBFC is NP-hard.

Theorem 2 BFC is NP-hard. Further, there exists a constant � > 0 such that

approximating BFC within a factor of 1� � is NP-hard. Also achieving an approx-

imation ratio 1� �=3 for BFC is NP-hard.

We also show the following results for the BFCmax problem.

Theorem 3 BFCmax is NP-hard. Further, there exists a constant � > 0 such that

approximating BFCmax within a factor of 1� � is NP-hard. Further, achieving an

approximation ratio (1� �=3)pmax

pmin
for BFCmax is NP-hard.

Proof. Under the de�nition of pj's as in equation (5.2) the BFCmax is the same

as the EBFC problem (the number of consensus cuts is always n=2, when the

molecules have n sites), hence BFCmax is NP-hard.

Next, we show that if we have a PTAS for BFCmax, we have a PTAS for

BFC, which would be a contradiction. Given a BFC let pmin = minj pj, and

pmax = maxj pj. Let ~X denote an approximate solution and X� denote the optimal

solution. Recall that BFCmax optimizes the number of consensus columns. Let N
�

denote the number of consensus cut columns when the solution is optimal, with C�

as the BFC cost, and let ~N denote the number of consensus columns in a solution

that is not necessarily optimal, with ~C as the corresponding BFC cost. Thus if

BFCmax has a PTAS let
~N
N�

� � for some 0 < � � 1. Note that N� is the number

of consensus cuts. Since ~C � ~Npmin and C
� � N�pmax, we have the following:

~C

C� �
~Npmin

N�pmax
� �

pmin

pmax
: (5.4)

61

QED

Corollary 3 There does not exist a polynomial time algorithm, unless P = NP ,

that guarantees the estimation of (1� �=3) of the total number of consensus cuts

when digestion rates at each site is the same under the BFCmax model.

5.3 Using mutual agreement of data (The CG, WCG Prob-

lems)

We show the hardness of the CG and WCG problems described in Section 4.2.1,

below.

Theorem 4 The CG problem is NP-hard. Further, there exists a constant � > 0

such that approximating CG within a factor of 1 + � is NP-hard.

Proof: We give the proof in two steps. In step 1 we show a reduction of an

instance of a maximum cut (MC) problem to an instance of the CG problem and

show that CMC = 2CCG � e where CX is a solution to the problem X and e is

the number of edges in the MC problem. In step 2 we show that the reduction is

gap-preserving.

Step 1. Given an instance of the MC problem with n vertices and e edges,

we construct an instance of CG by simply labeling every edge as Opposite. A

consistent graph is such that the vertices can be partitioned into two sets S1 and

S2 such that 8vi; vj 2 S1 (or S2) ; L(eij) = Same, and, 8vi 2 S1; vj 2 S2; L(eij) =

Opposite. There are only two kinds of consistent triangles: (1) all labels are Same

or (2) exactly one label is Same. It can be veri�ed that only these two kinds of

triangles (and no other) exist for the consistent graph whose vertices are given by

S1 [S2.
Given a solution of size e0 to the CG, which is the number of edges with label

Opposite (since there was no edge with label Same), we can show that the solution

to the MC problem is of size 2e0 � e. It can also be veri�ed that increasing the

solution to the CG problem by x > 0, increases the solution to the MC problem

by x.

62

Step 2. Let ~CCG denote an approximate solution and C�
CG denote the optimal

solution. Then ~CCG � (1 + �)C�
CG.

~CMC = 2 ~CCG � e (using step 1)

� 2(1� �)C�
CG � e (by defn of ~CMC)

� (1� �)(C�
MC + e)� e (by step 1)

= (1� �)C�
MC � e�

� (1� 3�)C�
MC (since C�

MC � e=2):

(5.5)

This shows that given a polynomial time approximation scheme (PTAS) for the

CG problem, we can construct a PTAS for the MC problem (using step 1 gives

the correspondence between the two solutions), which is a contradiction; hence the

CG problem does not have a PTAS. This concludes the proof. QED

Corollary 4 Achieving an approximation ratio 1 � �=3 for the CG problem is

NP-hard.

This directly follows the theorem and the fact that the approximation factor can

be no more than 1��, unless P=NP [23].

Corollary 5 The WCG and dM problems are MAX SNP hard. Further, achieving

an approximation ratio 1��=3 for the WCG and dM problems is NP-hard.

The same proof goes through for the WCG problem as well, by simply assigning

weights along with the labels to the edges. Since WCG is a special case of the

d-wise match problem (with d = 2), all the results for the WCG problem also hold

for the dM problem.

All the acronyms used in this chapter also have been listed in Appendix C.

63

Chapter 6

Theoretical Algorithms

In this chapter, we give theoretical algorithms for the idealized version of both the

approaches described in the previous chapter. (The practical algorithms for these

problems are discussed in Chapter 7.)

Roadmap. In Section 6.1 we discuss the Exclusive Binary Flip Cut (EBFC) prob-

lem, de�ned earlier: in Section 6.1.1 we describe the basic constructions that are

later used in Section 6.1.2 to give a guaranteed polynomial time 0:878 approxi-

mation algorithm and in Section 6.1.3 to give a polynomial time approximation

scheme (PTAS) for the EBFC problem. In Section 6.2 we give a guaranteed poly-

nomial time 0:817-approximation algorithm for the Consistency Graph (CG) and

the Weighted Consistency Graph (WCG) problems. The polynomial time approx-

imate algorithms are based on the Goemans and Williamson algorithm for the

Maximum Cut (MC) problem [20] and use semide�nite programming to achieve

these approximation bounds.

6.1 The EBFC Problem

We �rst give a reduction of an instance of the EBFC problem to an instance of

the MC problem. This reduction is best described in two steps: �rst reducing

an instance of the EBFC problem to an instance of the BMC problem and then

64

reducing this instance of the BMC problem to that of an MC problem. Using

this reduction we give a PTAS for a dense instance of the EBFC problem and a

polynomial time 0:878 approximation algorithm for a general instance of the EBFC

problem.

6.1.1 Basic constructions

EBFC to BMC reduction. Given an m � 2n binary matrix [aij] for the EBFC

problem, we �rst pre-process the matrix as follows: if aij = aij = 1, then we

make the assignment aij = aij = 0. This does not a�ect the algorithm since

one of j or j is a cut and in all the con�gurations there will be contribution of 1

towards the solution due to these two values. Notice that this can only improve

the approximation factor of the solution.

After the pre-processing, we generate a bipartite graph with m + n vertices

with the �rst partition having m vertices and the second n vertices. The weights

are assigned as follows: if aij = 1, then there is an edge between vertex vi of the

�rst partition and vertex vj, in the second partition with a weight of 1; if aij = 1,

then there is an edge between vertex vi of the �rst partition and vertex vj, in the

second partition with a weight of �1; if aij = aij = 0, then there no edge between

the vertices vi of partition 1 and vj of partition 2.

There exists a correspondence between a solution to the BMC problem and a

solution to the EBFC problem with the corresponding costs de�ned as ~CBMC and

~CEBFC respectively. If the solution to the BMC problem is optimal, its cost is

denoted by C�
BMC and the corresponding solution to the EBFC problem is also

optimal with the cost denoted as C�
EBFC . Then, the following hold:

C�
EBFC = C�

BMC + L; ~CEBFC � ~CBMC + L: (6.1)

L is the number of 1's in the right half of the input matrix (L =
Pm

i=1

P2n
j=n+1 aij).

Notice that all the rows of the matrix can be ipped to interchange the left and

the right half of the matrix.

65

BMC to MC reduction. Consider an instance of BMC (V;E+ [E�) where

the edges with weight 1 are in E+ and the ones with negative weight are in E�.

Further, without loss of generality, the number of vertices on the left partition of

the BMC problem is m and on the right partition is n.

Construct an instance of the MC problem with jV j +m0 vertices and jE+j +
m0 + jE�j edges as follows: if a vertex v has an edge of weight �1 incident on

it, then replace it by a pair of vertices u, w connected by an edge [u; w]; all thed

edges of weight +1 incident on v are now incident on u. All the edges of weight �1
incident on v are now incident on w with the weight changed to +1. See Figure 6.1

for an illustration.

Let the solution to the MC problem include l1 edges which correspond to the

original edges with weight �1, m1 edges that correspond to the new single edges

introduced and and p of the original edges (which had a weight of 1 in the BMC

problem). Then

~CMC = p+m1 + l2; (6.2)

and the cost of the BMC problem by the construction is,

~CBMC = p� l1: (6.3)

Let L = jE�j. Since l1 + l2 = L, we have from equations (6.2) and (6.3)

m1 + L � C�
BMC : (6.4)

m1 + L is the trivial solution obtained by having all the new vertices (with edges

having weight �1 incident on them) in one partition and the rest of the vertices

in the other partition.

Assuming we can obtain a solution for the MC problem with cost ~CMC � �C�
MC ,

66

Figure 6.1: The instance of the BMC problem shown on the left where an edge with

negative weight is shown as a dashed line. The optimal partition of the vertices is shown

in the dotted curve. The instance of the MC problem is shown on the right that is

constructed from this BMC. Every vertex on the \top" partition of the BMC instance,

that has at least one edge with weight �1 associated with it, has a corresponding new

vertex with an edge between the original and the new vertex. All the edges with weight

+1 are incident on the �rst and all the edges with weight �1 are incident on the second

vertex as shown. The corresponding optimal solution for the MC problem is shown by

the dotted curve.

for some 0 < � � 1, we obtain the following.

~CBMC = ~CMC � (m1 + L) (from eqn (6.4))

� �C�
MC � (m1 + L)

� �(C�
BMC + (m1 + L))� (m1 + L) (from eqn (6.4))

= �C�
BMC � (1� �)(m1 + L)

� �C�
BMC � (1� �)(C�

BMC) (from eqn (6.4))

� (2�� 1)C�
BMC :

(6.5)

6.1.2 A 0.878 approximation algorithm

In this section, using the constructions presented in the last section, we present an

algorithm that achieves an approximation factor of 0:878 for the EBFC problem.

67

Let [aij] be the matrix for the EBFC problem and L be the total number of 1's

in the right half of this matrix, then the following holds:

2L �X
i

X
j

aij � C�
EBFC; (6.6)

Recall that all the rows (molecules) can be ipped without altering the problem

so that the above holds. Further, let ~CBMC � ÆC�
BMC .

~CEBFC = ~CBMC + L (using equation (6.1))

� ÆC�
BMC + L

� Æ(C�
EBFC � L) + L (using equation (6.1))

= ÆC�
EBFC + (1� Æ)L

� (Æ+1)
2

C�
EBFC (using equation (6.6))

(6.7)

When Æ = 2� � 1, from derivation (6.5), then we obtain ~CEBFC � �C�
EBFC , if we

have ~CMC � �C�
MC . Using the algorithm presented in [20] for the MC problem, we

obtain a 0:878 approximation algorithm for the EBFC problem.

6.1.3 A PTAS for a dense instance of EBFC

In [38], the following result was shown: a dense version of the EBFC problem has

a polynomial time approximation scheme (PTAS). The proof used techniques from

randomized rounding and integer linear programming along the lines of one of the

results in [4]. An instance of the EBFC problem is dense if the number of 1's in

a column and its conjugate is at least some fraction f , 0 < f � 1, of the number

of molecules.

Using the basic reductions described in the earlier section, we can show that

a dense EBFC admits a PTAS: this vastly simpli�es the earlier proof in [38] in

the sense that we merely argue that the reduction from a dense EBFC results in a

dense instance of the MC problem and the result from [4] directly applies here.

It is straightforward to see that if the number of 1's in the dense EBFC problem

is at least mnf where m is the number of molecules (rows), n the number of sites

(columns) and f is the �xed fraction (away from zero), then the instance of the

68

MC problem has m+n+m1 vertices with at least mnf +m1 edges where m1 � m.

Thus the instance of the MC problem is dense and from [4] we have the result that

dense instances of MC problems admit a PTAS.

6.2 The CG and WCG Problems

Recall that Consistency Graph (CG) and Weighted Consistency Graph (WCG)

problems arise in the approach that uses mutual agreement of data: this takes

into account the false positive and false negative errors along with orientation

uncertainties.

6.2.1 A 1.183 approximation algorithm

Let the maximum cut problem on a graph with weights +1 be called the Positive

Max Cut (PMC) problem and the one with weights +1 or �1 be called Negative

Max Cut (NMC). We show that given an arbitrary instance of the CG problem, we

can construct an instance of the NMC problem, and then construct an instance of

the PMC problem. As all the weights in the PMC problem are positive, we can use

the Goemans and Williamsons' semi-de�nite programming based algorithm to get

a 0.878-approximation of the PMC problem. Next we use this solution to obtain

an approximate solution for the NMC problem, and using that solution we obtain

a solution for the CG problem.

We describe this in three steps. In Step 1, we describe the reduction of an

instance of the CG problem to an instance of an NMC problem and also describe

the correspondence between a solution to the NMC problem and that of the CG

problem. In Step 2, we describe the reduction of an instance of an NMC problem

to an instance of the PMC problem and describe the correspondence between a

solution to the PMC problem and that of the NMC problem. These two steps

give the algorithm and �nally in Step 3, we argue that the algorithm gives an

approximation factor of 0:817.

Step 1. Given an instance of the CG problem given by graph GCG, with m

vertices and n edges labeled as Same or Opposite, we construct an instance of

69

NMC on the graph GNMC , by assigning a weight of �1 to all those edges labeled

Same and assigning a weight of +1 to the Opposite labeled edges. Thus the number

of vertices of GNMC is m and the number of edges is n.

Next, we claim that an optimal solution to the NMC instance gives an optimal

solution to the CG problem, and an approximate solution to the CG problem can

be constructed from the approximate solution to the NMC instance.

Let L be the total number of edges labeled Same in the CG problem or labeled

�1 in the NMC problem. Given a solution of the form p1� l2 of the NMC instance,

where p1 is the number of edges with weight +1 and l1 is the number of edges with

weight �1 in the cut, the solution CCG to the CG problem is

CCG = p1 + l1; (6.8)

where l1 is the number of edges with weight �1 not in the cut. The p1 edges

corresponding to the +1 labels are the ones in the CG instance which are labeled

Opposite, and, the l2 edges corresponding to the �1 labels are the ones in the

CG instance which are labeled Same, and these edges do not switch labels in the

solution. Thus L = l1 + l2. Also, it can be veri�ed that an optimal solution in the

NMC instance gives an optimal solution in the CG problem.

Step 2. Given an instance of the NMC problem, we construct an instance of

the PMC problem (with weight on the edges as +1) by replacing every edge with

a negative weight by two edges and a vertex, each edge having a weight of 1. If L

is the number of edges with weight �1, then the PMC instance has m + n=2 + L

vertices.

Next, we claim that that an optimal solution to the PMC instance, gives an

optimal solution to the NMC problem, and, an approximate solution to the NMC

problem can be constructed from the approximate solution to the PMC instance.

Now, we give the correspondence between the solutions in each of the problem.

Notice that the edges introduced in the reduction come in pairs. Let the solution

to the PMC problem include l1 edges which are not paired, 2l2 paired edges and p

of the original edges (which had a weight of 1 in the NMC problem). Then

CPMC = p+ 2l1 + l1: (6.9)

70

The edges that come in pairs correspond to the l2 edges which are not in the cut

in the NMC instance and the edges corresponding to l1 which are not in pairs

correspond to the edges in the cut of the NMC instance. Thus the cost of the

NMC problem by this construction is CNMC = p1 � l1. It can be veri�ed that the

optimal solution in one corresponds to the optimal one in the other.

Step 3. Thus from equations (6.8) and (6.9), we have

CPMC = L + CCG: (6.10)

Now, we make the following observation:

2L � p1 + l1: (6.11)

This holds since 2L is the cost of the trivial solution to the constructed PMC

problem which corresponds to the zero solution in the NMC instance, (where all

the vertices belong to just one partition!), hence this must be smaller than the cost

of any other non-trivial solution (viz., p1+ l2). Also, if C
�
CG is the optimal solution

then,

p1 + l1 � C�
CG: (6.12)

Finally, we use the algorithm presented in [20] to obtain an algorithm for the

PMC problem which has an approximation factor of 0:878. Note that we could

not directly use it on the NMC instance due to the �1 weights. Let ~CX denote an

approximate solution and C�
X denote the optimal solution to problem X.

~CCG = ~CPMC � L (from eqn (6.10))

� 0:878C�
PMC � L (from [20])

� 0:878(C�
CG + L)� L (from eqn (6.10))

= 0:878C�
CG � 0:122L

� 0:878C�
CG � 0:122(C�

CG=2) (from eqns (6.11) and (6.12))

� 0:817C�
CG:

This concludes the argument.

0.817-approximation algorithm for the WCG problem. Assigning the appropriate

weights to the graph, i.e., positive weights to edges labeled Opposite and negative

71

weights to edges labeled Same, and, using the same steps as in the CG problem,

we get similar results for the WCG problem. Also note that in the NMC to PMC

reduction if an edge has weight �w it is replaced by two edges with weight w each

incident on a vertex as for the CG problem.

72

Chapter 7

Practical Algorithms

The theoretical algorithms of the last section use semide�nite programming and

are high polynomial time algorithms. In this section we present (low polynomial)

practical algorithms that have been tested on simulated as well as real data. For

the real data, we evaluate our results by comparing them with the maps provided

by the laboratory.

Modeling the false positive, false negative errors along with orientation uncer-

tainties, we tested both the approaches of using mutual agreement and using an

explicit map on simulated and real data. For the former, we start out with an

initial hypothesis for a map, which is de�ned by one or more of the data molecules

randomly chosen. This initial hypothesis is re�ned by comparing with di�erent

molecules. Our experience with this approach has been that (1) di�erent starting

hypotheses alter the accuracy of the �nal results and (2) the threshold that bounds

the distance between the same cut in di�erent molecules also alters the �nal result.

Further, our experience has been that the second approach of using an explicit map

works better (See Table 7.1 for a comparison of this approach with the others).

Hence we present the details of the second approach in the following sections.

Various approaches have been suggested to deal with the ordered restriction

map problem [3, 19, 29, 32, 38, 49]. In [3, 32] statistical methods to solve the

problem has been presented: in [3] a MAP (Maximum A Posteriori) method has

been presented along with heuristics for branch and bound techniques, and, in [32]

73

a hierarchical Bayes model has been used. (The MAP model has been analyzed in

Section 4.3.) In [19] a simulated annealing technique and in [29] various combina-

torial algorithms, along with a probabilistic analysis of the algorithms, have been

presented.

Roadmap. In Section 7.1 we develop heuristics to solve the EBFC problem (the

problem is shown to be MAX SNP hard in Section 5.2). We design the algorithm

with two sub-tasks: (1) obtaining an order of the columns and (2) given the order,

assigning orientations to the molecules. We experimented with three di�erent

heuristics for the �rst sub-task, the column order heuristic. However, the real data

also has positional variations of the cut sites in the molecules (also called sizing

error). Section 7.2 deals with handling this error and then extracting an EBFC

problem from this using appropriate heuristics. In Section 7.3, we introduce two

measures of evaluating the result (when the true map is not known) and compare

the di�erent column order heuristics on the real data using the two measures.

Our experience has been that the sorted column-order heuristic, which results in

a linear time (2mn) algorithm, works well and we present the results on real data

from the laboratory using this heuristic. Since the \true" maps for this data were

available we compare the computed maps with these maps and observe less than

3% error.

7.1 Solving the EBFC problem

In this section, we describe an extremely simple approach for the EBFC problem.

The EBFC problem is obtained from the problem after appropriate pruning as

discussed in Section 7.2. The approximation factor for this algorithm is 0:5. How-

ever as the experimental results show, this algorithm is remarkably accurate in

predicting the consensus cuts on both synthetic data and real data 1.

We deal with the sites j, 1 � j � n=2, in some sequential order, one at a time.

At every stage, given j, we have to decide whether j or �j can be the designated

1A preliminary version of this also appeared in [38].

74

cut. We use indicator variables Xi associated with each row (molecule) and Yj

associated with every column (cut), 1 � i � m; 1 � j � n=2. We adhere to the

following convention in this section:

Xi =

8<
: 1 row i is ipped,

0 otherwise.
Yj =

8<
: 1 site j is a consensus cut,

0 otherwise.

The algorithm is summarized as follows.

Step 1. Determine an ordering of the sites.

Step 2. For a given ordering, obtain the values of Xi and Yj.

Ordering the sites (Step 1). In this section we discuss some of the di�erent

ways of ordering the sites. For the EBFC problem, the potential or score Sj, of

every site is de�ned as follows:

Sj = jfjjMij = 1 OR Mi�j = 1gj; 1 � j � n=2:

Thus, if the only site in the data is j, then the total number of 1's in a consensus

cut site is exactly Sj; when other sites are present, this is bounded above by Sj.

We experimented extensively with three di�erent schemes that we describe

below.

1. Random Order: This uses a random order of the sites.

2. Sorted Order: This uses the sites in decreasing order of the Sj scores.

3. MaST Order: This uses a Maximum Spanning Tree on a graph constructed

from the data.

This scheme is a little more sophisticated, and, involves three major steps:

�rst, a pruning of the input matrix M , second, construction of a labeled

and weighted graph, G, and third, extraction of a maximum spanning tree

(MaST) of G. The labels on the edges of the MaST de�ne the resulting map

as shown in lemma 4. We give the details of each step below.

(a) Pruning: Given an EBFC problem with n cuts and m molecules, the

input can be pruned so that the following holds. First, every molecule or

75

row must have at least two 1's, otherwise that molecule can be removed

from consideration without a�ecting the problem. This implies that we

drop all those molecules which have exactly one cut, since this does not

a�ect the optimal con�guration. Second, if a 1 appears in a site and its

conjugate, we just drop the cut from that molecule, that is replace both

the 1's by 0, since no matter what ip is assigned to the molecule, it will

contribute 1 to the optimization function.

(b) Graph Construction: Given a pruned EBFC, we de�ne mutual information

of the ith molecule, regarding two cuts j; k as whether both the cuts

appear in the same half (sites from 1; 2; : : : ; n=2 or sites from n=2 +

1; n=2 + 2; : : : ; n) of the molecule or on di�erent halves of the molecule.

I ijk =

8<
: 1 1's are on same half of molecule i,

�1 1's are on di�erent halves of molecule i.
(7.1)

For a pruned EBFC problem with n cuts and m molecules, de�ne a

weighted-labeled graph G(V;E) as follows:
� Vertices: Every v 2 V corresponds to a cut, thus n = jV j.
� Edges with weights and labels: Let Uj be the set of molecules that

have a cut at j or �j and Ujk = Uj \Uk, and, whenever jUjkj > 0, let

Ujk = Gjk [Ljk such that Gjk =
n
ijI ijk = c

o
, Ljk =

n
ijI ijk = �c

o
,

and further, jGjkj � jLjkj. If jUjkj > 0, de�ne an edge between

vertices vj and vk with weight as Gjk. and label ljk = c. When the

label ljk = 1, it indicates that the cut k is on the same half of the

map as is j, and, when ljk = �1, it indicates that the cut k is on the

opposite half from the cut j.

Note that the pruning of the �rst step ensures that these sets are

well-de�ned. A molecule belongs to Ujk, if it has both the cuts j and

k. Further, we partition Ujk into sets such that in each partition,

every pair of cuts j and k has the same mutual information value.

Since there are only two such values, the number of partitions is 2.

The set with the higher cardinality is termed Gjk and the one with

76

lower cardinality is Ljk.

(c) MaST Computation: Construct the MaST using any standard algorithm.

Lemma 4 A spanning tree T of G de�nes a unique map.

Proof: Recall that Yj is an indicator variable for a site: if Yj = 1, then j is

a cut and is 0 otherwise. De�ne a map to be a set of assignments (0 or 1) to

Yj, j = 1; 2; : : : ; n. For the sake of convenience, let us de�ne

~Yj =

8<
: 1 when Yj = 1;

�1 when Yj = 0:

It is easy to see that if ljk is a label on the edge vjvk, then an assignment

such that ~Yj ~Yk = ljk, 8j; k, gives a map. Such an assignment to ~Yj, 8j, is
possible and we give a construction: We carry out a BFS traversal of the

tree, and, as each node, vj, is traversed, we give an appropriate assignment

to the indicator variable ~Yj. Without loss of generality, let the root of the

tree be v0, say. Let ~Y0 = 1. Consider edge vjvk of the tree where node vj has

been traversed �rst, and thus ~Yj already has an assignment. Then ~Yk = ljk ~Yj,

which gives a consistent assignment. QED

It is easy to see that this works in O(mn) space and takes O(nm+ n2 logn)

time.

Figure 7.1 shows a simple example of constructing a graph from a binary

matrix and obtaining the consensus map from the MaST of the graph.

Figures 7.3 to 7.5 show the results of using di�erent site orderings on a sample

set of data.

Solving EBFC, given an ordering of sites (Step 2). Our algorithm is greedy

in two ways which are mutually orthogonal. We try to attain as many 1's as

possible in candidate cut sites by greedily ipping the molecules appropriately to

the extent we can. However, as we accumulate cut sites, existing molecule orders

77

A B C C B A

1 1 0 0 1 1 0

2 1 0 0 0 1 0

3 1 0 0 0 1 0

4 1 1 1 0 0 0

5 1 1 1 0 0 0

6 0 1 1 0 0 0

7 0 1 1 0 0 0

A

B

C MaST [AB, BC]

2 (+1) 3 (-1)

5 (-1)

Figure 7.1: The EBFC binary matrix and the corresponding graph G. The sets of

molecules (denoted by the row number) are as follows: GAB = f1; 2; 3g, LAB = f4; 5g,
GAC = f4; 5g, LAC = f1g, GBC = f1; 4; 5; 6; 7g, LBC = fg. Thus wtAB = jGAB j = 3,

wtAC = jGAC j = 2, wtBC = jGBC j = 5. The labels are lAB = �1, lAC = +1 and

lBC = +1. The Maximum Spanning Tree is given by the edges AB and BC. Hence the

consensus map is [101j010] (or [010j101]).

Input EBFC matrix True Optimal

A B C D E F F E D C B A

1 1 0 0 0 0 0 0 0 1 1 1 0

2 1 0 0 0 0 0 1 1 0 0 1 0

3 1 0 1 0 0 0 0 0 0 0 0 0

4 1 0 0 1 0 0 0 0 0 0 0 0

5 1 0 0 0 1 0 0 0 0 0 0 0

6 1 0 0 0 0 1 0 0 0 0 0 0

1 1 1 1 1 1

A B C D E F F E D C B A

0 1 1 1 0 0 0 0 0 0 0 1 �

0 1 0 0 1 1 0 0 0 0 0 1 �

1 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

Figure 7.2: A small example of the input matrix with the true optimal con�guration

shown on the right. The results due to the di�erent orders are shown in Figures 7.3 to

7.5.

78

Random order:

Step 1 (site C) Steps 2-6 (sites D, E, F, B, A)

. . 0 . . .

A B C D E F F E D C B A

. . 0 1 . .

. . 0 0 . .

. . 0 1 . .

. . 0 0 . .

. . 0 0 . .

. . 0 0 . .

1 0 0 0 1 1

A B C D E F F E D C B A

1 0 0 0 0 0 0 0 1 1 1 0

1 0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 �

0 0 0 0 0 0 0 0 1 0 0 1 �

1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

Figure 7.3: Figure 7.2 shows the input matrix and the true optimal. Here random order

of sites is used which gives a cost of 12. (The ipped rows are marked by asterisk and

the 1's in bold denote the cuts that do not contribute to the cost.)

Sorted order:

Step 1 (site A) Steps 2-6 (sites B, C, D, E, F)

1

A B C D E F F E D C B A

1 0

1 0

1 0

1 0

1 0

1 0

1 0 1 1 1 1

A B C D E F F E D C B A

1 0 0 0 0 0 0 0 1 1 1 0

1 0 0 0 0 0 1 1 0 0 1 0

1 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

Figure 7.4: Figure 7.2 shows the input matrix and the true optimal. Here sorted order

of sites is used which gives a cost of 12. (The ipped rows are marked by asterisk and

the 1's in bold denote the cuts that do not contribute to the cost.)

79

MaST order:

A B

C

DE

F

2

1

1
11
1
1 1

1
1
1

1

1

11 1
11 1

MaST - (AB, AC, AD, AE, AF)

MaST labels - (-1,-1,-1,-1,-1)

Map [100000:111110]

1 0 0 0 0 0

A B C D E F F E D C B A

1 0 0 0 0 0 0 0 1 1 1 0

1 0 0 0 0 0 1 1 0 0 1 0

1 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

Figure 7.5: Figure 7.2 shows the input matrix and the true optimal. Here MaST order of

sites is used which gives a cost of 12. Notice that the di�erent orders (see also Figures 7.3

and 7.4 to give rise to very di�erent consensus maps, although for this example the cost

in the three cases are the same (cost = 12). The true optimal has been obtained by

inspection. (The ipped rows are marked by asterisk and the 1's in bold denote the cuts

that do not contribute to the cost.)

80

hinder procuring additional potential 1's. In that case, we reverse the ips of

the molecules selectively before proceeding further. This may be thought of as

limited backtracking on the choice of molecule ips. Similarly, we do a limited

backtracking on the choice of the consensus cuts seen so far. In this phase, we

ensure that the number of 1's in site j, where Yj = 1, is more than the number of

1's in �j and, when Yj = 0, the number of 1's in the site �j is more than that in j.

This is carried out in the following steps.

1. Backtracking molecule ips.

Given site j, compute the two costs, �j, the cost of assigning j as the con-

sensus cut, and ��j, the cost of assigning �j as the consensus cut. To compute

this in an eÆcient manner, we use local variables, di, for every molecule i to

store the current status. di keeps track of the di�erence between the number

of number of 1's in cut sites and the number of 1's in the non-cut sites, per

molecule. If di < 0, we count that as �di (since molecule i can be ipped

to get di � 0). This can be considered as limited backtracking on the ip

assignments to the molecules. Summing over all the molecules,
P

i di, gives

the total cost.

We compare these sums for the two cases: the consensus cut being j and then

�j. We choose the one that gives a higher cost. We also go ahead and ip the

molecules so that all the molecules are such that di > 0.

2. Backtracking consensus cut assignments (roll-back).

We also carry out a limited backtracking on the consensus cut assignments

to the columns as follows. For every site j, j = 1; 2; : : : ; n=2, de�ne Dj as

the di�erence between the number of 1's in the consensus cut site and the

number of 1's in its conjugate. Notice that, at this stage,
Pm

i=1 di =
Pn=2

j=1Dj.

If Dj < 0 for some j, then switch the assignments of Yj and Y�j. Next,

update di, 8i. Repeat this phase until Dj � 0, 8j. We note that this process

terminates in time polynomial in the input size since at every step, the cost

function increases by at least 1 and as there is an upper bound, O(mn), on

the cost, the process must terminate in polynomial time.

81

Input

1 0 0 0 0 1 1 1 1 0

0 1 1 1 1 0 0 0 0 1

1 0 0 0 0 1 1 1 1 0

1 0 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 0 1

0 0 0 0 0 1 1 1 0 1

1 0 1 1 1 0 0 0 0 0

Figure 7.6: The input matrix for the example shown in Figures 7.7 to 7.9.

We illustrate the algorithm with a simple example in Figures 7.7 to 7.9 that

uses 7 molecules with 10 sites.

Notice that of the two backtracking steps, the roll-back is the more expensive

one. It is easy to see that this takes O(m2n2) time when both the backtracking

steps are used and O(mn) time when the roll-back is not used. Our experimental

experience suggests that the limited backtracking without roll-back suÆces and

our strong experimental intuition is that it is not crucial.

We experimented extensively with this algorithm, using di�erent ways of or-

dering the sites, and, with and without roll-back, on simulated data. We obtained

extremely positive results on predicting the restriction sites without using the roll-

back in most cases. Only on very carefully hand constructed input data, does the

roll-back have any e�ect.

7.2 Handling real data (with sizing errors)

In the last sections, we assumed that the cuts in the di�erent molecules are per-

fectly aligned. However, in real data the actual positions of the cuts vary in each

molecule (called sizing error). The handling of the real data is described below.

In the �rst and second steps we discretize the data and compute an \approxi-

mate" position of the potential cuts which is used to orient the molecules in step

82

Step 1; j = 1

1 2 3 4 5 �5 �4 �3 �2 �1

1 � � � � di

1 � � � � � � � � 0 1

� 1 � � � � � � � � 0 1

1 � � � � � � � � 0 1

1 � � � � � � � � 0 1

� 1 � � � � � � � � 0 1

� 1 � � � � � � � � 0 1

1 � � � � � � � � 0 1

Dj 7 7

Step 2; j = 2

1 2 3 4 5 �5 �4 �3 �2 �1

1 0 � � � di

1 0 � � � � � � 1 0 2

� 1 0 � � � � � � 1 0 2

1 0 � � � � � � 1 0 2

1 0 � � � � � � 0 0 1

� 1 0 � � � � � � 0 0 1

� 1 0 � � � � � � 0 0 1

1 0 � � � � � � 0 0 1

Dj 7 3 10

Figure 7.7: Illustration of the algorithm for the EBFC problem: the input consists of

7 molecules with 10 sites each. The sites are considered in the order 1; 2; : : : ; 5. The �
denotes the sites that have not been examined till that point. A row (or a molecule) that

has been ipped, that is the corresponding indicator variable Xi is assigned 1, is marked

with an asterisk. Note that
P

i di =
P

j Dj at all the stages. Only step 5 necessitates

the roll-back phase (where the site j = 2 assignment was switched from 0 to 1). The 1's

in bold denote the cuts that do not contribute to the cost. See Figures 7.8 and 7.9 for

the remaining steps.

83

Step 3; j = 3

1 2 3 4 5 �5 �4 �3 �2 �1

1 0 1 � � di

1 0 0 � � � � 1 1 0 1

� 1 0 0 � � � � 1 1 0 1

1 0 0 � � � � 1 1 0 1

1 0 1 � � � � 0 0 0 2

� 1 0 1 � � � � 0 0 0 2
� 1 0 1 � � � � 0 0 0 2

1 0 1 � � � � 0 0 0 2

Dj 7 3 1 11

Step 4; j = 4

1 2 3 4 5 �5 �4 �3 �2 �1

1 0 1 1 � di

1 0 0 0 � � 1 1 1 0 0

� 1 0 0 0 � � 1 1 1 0 0

1 0 0 0 � � 1 1 1 0 0

1 0 1 1 � � 0 0 0 0 3

� 1 0 1 1 � � 0 0 0 0 3
� 1 0 1 1 � � 0 0 0 0 3

1 0 1 1 � � 0 0 0 0 3

Dj 7 3 1 1 12

Figure 7.8: Steps 3 and 4 of the example of Figure 7.6.

Step 5; j = 5

1 2 3 4 5 �5 �4 �3 �2 �1

1 0 1 1 1 di
� 0 1 1 1 1 0 0 0 0 1 1

0 1 1 1 1 0 0 0 0 1 1

� 0 1 1 1 1 0 0 0 0 1 1

1 0 1 1 1 0 0 0 0 0 4

� 1 0 1 1 1 0 0 0 0 0 4

� 1 0 1 1 1 0 0 0 0 0 4

1 0 1 1 1 0 0 0 0 0 4

Dj 1 �3 7 7 7 19

Roll-back (since D2 = �3)
1 2 3 4 5 �5 �4 �3 �2 �1

1 1 1 1 1 di
� 0 1 1 1 1 0 0 0 0 1 3

0 1 1 1 1 0 0 0 0 1 3

� 0 1 1 1 1 0 0 0 0 1 3

1 0 1 1 1 0 0 0 0 0 4

� 1 0 1 1 1 0 0 0 0 0 4

� 1 0 1 1 1 0 0 0 0 0 4

1 0 1 1 1 0 0 0 0 0 4

Dj 1 3 7 7 7 25

Figure 7.9: The last steps of the example of Figure 7.6.

84

Cuts Positions

1 3 0:1; 0:5; 0:9

2 2 0:3; 0:7

3 3 0:2; 0:6; 0:8

1 0 1 0 0 0 1 0 0 0 1 0

2 0 0 0 1 0 0 0 1 0 0 0

3 0 0 1 0 0 0 1 0 1 0 0

(a) The input. (b) Mij from (a) using equation (7.2), n = 11.

1 0:78 1:0 0:78 0:0 0:78 1:0 0:78 0:0 0:78 1:0 0:78

2 0:0 0:0 0:78 1:0 0:78 0:0 0:78 1:0 0:78 0:0 0:0

3 0:0 0:78 1:0 0:78 0:0 0:78 1:0 0:78 1:0 0:78 0:0

(c) Wij from Mij using equation (7.3), w = 1.

Figure 7.10: A simple example showing 3 molecules with 3, 2 and 3 cuts respectively (a)

with the corresponding binary matrix Mij (b) and the weighted matrix Wij (c).

3. In [37] the following observation has been made: there exists no discretization of

the moleucles, in the absence of orientation information about the molecules, that

will yield the correct result with high probability. However, in the presence of ori-

entation information about the molecules, other straightforward approaches could

be used. In the post-processing step (Step 4), we re�ne the positions of the cuts

using simple heuristics to obtain the consensus cut sites. It is quite possible that

for data sets that have more severe sizing errors, the heuristics of Step 4 may not

suÆce and a more elaborate scheme such as a dynamic programming mechanism

or a maximum likelihood approach could be used on the raw correctly oriented

molecules (the input vectors of Step 1) in Step 4, to obtain the correct result. A

similar approach could also be used to obtain higher accuracy in the position of

the consensus cut sites.

Input: m vectors where each vector represents a molecule. Each vector is

[Ki; l
i
1; l

i
2; : : : ; l

i
Ki
]

where Ki is the number of cuts detected in molecule i and each cut is at a location

85

lij from the left end of the molecule with j = 1; 2; : : : ; Ki. Further all the (implicit)

molecule lengths are normalized, that is it is assumed that all the molecules are of

1 unit length. This is the form in which the data is available from the laboratory.

Output: A map, a vector, [c; a1; a2; : : : ; ac], where c is the number of consensus

cuts in the map and a1; a2; : : : ; ac are the location of the cuts from the left end of

the map.

Algorithm: The algorithm proceeds in four phases which we elaborate below.

(1) Handling positional variations: This consists of the following two steps.

1. Converting input to binary data, Mij.

Using a pre-de�ned number of discretization units, n, each molecule is con-

verted to a vector of 0's and 1's. m such vectors form the m� n matrix Mij

as follows:

Mij =

8<
: 1 if d(n� 1)like+ 1 = j; for some k,

0 otherwise.
(7.2)

2. Converting binary data Mij, to rational data, Wij.

The input data, in the real situation, does not depict the location of restric-

tion sites accurately because of the error inherent in measuring the lengths

of fragments that remain after digestion by the restriction enzyme. Thus a

1 at some site in the molecule might in fact signal a restriction site in one of

its neighbors. This fuzziness is the result of coarse resolution and discretiza-

tion, other experimental errors, or errors in preprocessing the data prior to

constructing physical maps such as in the image processing phase.

We tackle this problem as follows: we �x a window width w as a threshold

parameter. If Mij = 0, we locate the closest k to j where Æ = jk � jj � w,

such that Mik = 1 (if it exists), and make the assignment

Wij = e
� Æ2

(w=2)2 : (7.3)

If such a k does not exist, Wij = Mij. The underlying assumption we make

is that the position of a cut is normally distributed around its true site with

86

a standard deviation of w=2. In other words, if there is a 1 at site j of a

molecule, with 0 in locations j � w to j + w, except j, we change the values

from to a non-zero value that decreases as the position moves away from j

(governed by the normal distribution). This results in entries that are not

necessarily binary; they have values between 0 and 1 at each position.

This leaves us with the problem of �nding the ip-cut as before except that

now the entries of Wij are rationals between 0 and 1.

Figure 7.10 shows a simple example.

(2) Computing potential sites: We �rst prune the sites and then �lter them

to give rise the exclusive version. Compute the scores for every site as Sj =P
imax(Wij;Wi�j), �Sj =

P
imin(Wij;Wi�j), 1 � j � n=2.

1. Pruning the sites: Notice that in the BFC, the cut sites never \interfered"

with one another, since the locations were exact. However, cut sites that are

closely located will interfere with one another when we compute Sj.

Given w � 0, the ordered sequence Sj�w; Sj�w+1; : : : ; Sj; : : : ; Sj+w�1; Sj+w, is

called the distribution of j. Let j < k � n=2, then the joint distribution of

two sites j and k is given by the ordered sequence,

Sj�w; Sj�w+1; : : : ; Sj; : : : ; Sk; : : : ; Sk+w�1; Sk+w:

Figure 7.11 shows the joint distribution of two cut sites j and k in an ideal

situation where the cuts j and k have the same number of missing cuts (false

negatives). The case of more than two cuts is similar and we do not discuss

it separately. In this step, our task is to locate the cut sites, given these

distributions. One needs heuristics to predict the cut sites and we describe

one such heuristic which is simple and has been very e�ective in practice. We

simply locate the local maxima in the joint distribution.

Local-peak Heuristic: Filter the columns as follows: Select Sj if if Sj�1 � Sj

and Sj � Sj+1 and discard the sites Sj�1 and Sj+1. In other words, we locate

87

S

j k

S

kj

S

j k

(a) (b) (c)
S

j k

S

j k

S

j k

(d) (e) (f)

Figure 7.11: This shows the (approximate) joint distribution of two consensus cut sites

at j and k, as the cuts move closer to each other from 5 units down to 0. (a)-(e): the

\true" cut sites can be any one of the following - j & k, or, j & �k, or, �j & k, or, �j & �k.

(f): the \true" cut sites are any one of j & k, or, �j & �k. The shape of these distributions

are the basis for the local-peak heuristic.

all the local peaks. Repeat this process until no more sites can be selected.

Discard the left-over sites.

2. Filtering the pruned sites: Next, we remove two types of sites (in conjugate

pairs) from consideration.

(a) No-cut Heuristic. We remove those sites j and �j that have fewer than n�p

of 10s each; here �p (say, 1=50) is a parameter we set from the knowledge

of the error parameters in the experimental set up. We look upon these

as sites where there is no underlying cut, but some molecules display the

cut owing to false positive errors.

(b) Symmetric-cut Heuristic. We remove all those sites j and �j where the

number of molecules with 1's at both these sites exceeds m�s, for a

parameter �s (say 1=10), again set from the knowledge of the error pa-

rameters in the experimental set up. We look upon these as sites where

88

(a) (b)

Figure 7.12: An example illustrating the various steps in handling the real data. (a) An

image corresponding to the (input) 361� 200 binary matrix with a black dot for a 0 and

a white dot for a 1 in the matrix (a dot corresponds to an element in the matrix). (b)

The result of aligning the molecules/rows showing 2 consensus cut sites after applying

steps (c) to (e) shown in Figure 7.13.

there are symmetric cuts at j and �j.

Now the remaining sites have the property that precisely one of j or its conjugate

�j will be a cut, and that reduces the problem to the exclusive version.

(3) Orienting the molecules: For the practical solution to the exclusive version,

we follow the algorithm of the last section with the following modi�cation: a

molecule i has a cut at location j if there is a 1 in the w-neighborhood of location

j in the binary matrix Mij.

(4) Post-processing: We carry out the following postprocessing on the results

obtained in the last step.

First, the molecules are aligned using the orientation computed by the algo-

rithm.

1. Re�ning the location of the consensus cut sites.

We recompute Sj =
P

i aij for each j in the neighborhood of the computed

cut site. and choose the the j with the maximum value of Sj.

89

Sites
0 806040200

Score

0

40

30

20

10

0

(c)

Local_peak_sites
0 806040200

Score

0

40

30

20

10

0
True_cut_sites

0 806040200

Score

0

40

30

20

10

0

(d) (e)

Figure 7.13: See Figure 7.12 for the input. (c) The plot of the scores of sites Sj versus

the sites j, j = 0 : : : 99. (d) The sites selected using the local-peak heuristic. (e) The

true sites detected using the No-cut heuristic. This is the input to the exclusive version.

In this simple example the exclusive version has to deal with just 4 (2 � 2) sites! The

possible sites are 29, 170, 57 and 141. (Note that site 170 is the conjugate of site 29, and

site 141 is that of 57.) The algorithm gives sites 57 and 170 as the consensus cut sites

as shown in (b).

90

2. Detecting multiple consensus cut sites.

For each cut site j, we count the number of molecules (rows) that show

multiple cuts in the small neighborhood of j. If the number of such molecules

> m�m, for some pre-de�ned threshold, �m, multiple cuts are declared in that

location.

The solution sites are the ones discussed in the last step along with the ones that

were declared to be symmetric in the symmetric-cut heuristic of step 2.

An alternate way is to simple use the orientation information, obtained in the

last step, and do a straightforward dynamic programming to obtain the locations

of each of the cut sites.

This concludes the description of the algorithm. We present the results on real

data.

7.3 Experimental results

All the real data we used for our experiments were obtained from the W. M. Keck

Laboratory for Biomolecular Imaging of the Department of Chemistry, New York

University 2. The input to our problem from the laboratory is a set of molecules,

each having unit length, with the positions of their restriction cuts given as lengths

from the left end. We discretize this to 200 units3. All the DNA molecules in our

experiment shown here are lambda vectors having 48; 000 base pairs. Thus, each

discretization unit here represents about 240 base pairs. The restriction enzymes

used were AvaI and EcoRI. In all the experiments carried out, including the one

with about 3000 molecules, the program takes less than thirty seconds of elapsed

2I am grateful to the team lead by Dr. David Schwartz at the W. M. Keck Laboratory for Biomolecular

Imaging of the Department of Chemistry, NYU, for providing the data. Thanks in particular to Joanne

Edington and Junping Jing whose data has been used in this chapter (Figures 7.14 to 7.19). I would also

like to thank Estarose Wolfson, Ernest Lee, Alex Shenker, Brett Porter, Ed Hu�, Thomas Anantharaman,

Davi Geiger and Bud Mishra for providing the data in the form used by the algorithm.
3A larger discretization does not give higher accuracy, as the precision of the imaging and the pre-

processing stages is limited. This number of 200 was chosen after discussion with Thomas Anantharaman

and other researchers from the laboratory.

91

time on a SPARCstation to compute the restriction map. Here we show a sample

of four experimental results on real data.

For most of the real data available for experimentation, best results were ob-

tained for these parameter values: n = 200, w = 2, �s = 0:1, �p = 0:5. For the

data set illustrated in Figure 7.17, �p = 0:4 gave the best results.

Comparison of the di�erent schemes. The results of the di�erent approaches

are compared using \similarity measure" on the resulting outputs. To keep the

measure independent of what the program computes, we do not use the computed

map for the measure, but instead use the oriented molecules, whose orientations

were computed by the algorithm.

We de�ne two such measures. The �rst measures the number of matching cuts

in pairs of molecules, called Sum-of-pairs, Sim1.

Sim1 =

Pm
i=1

Pn
j=1 cij�

m
2

� ;

where for a pair of molecules, i and j, cij denotes the number of matching 1's (that

appear within, say Æ > 0, of each other).

The second measure Sim2, also looks for cuts in a pair of molecules, but prefers

higher number of cut matches per pair of molecules: we call this Sum-square-of-

pairs, Sim2. We achieve this by simply squaring the number of common cuts per

molecule pair. Thus,

Sim2 =

Pm
i=1

Pn
j=1 c

2
ij�

m
2

� :

We tested the di�erent schemes on a wide variety of synthetic and real data.

Although in most cases the cut sites were picked accurately, some molecules were

assigned wrong or no orientation. Table 7.1 shows the scores of the similarity

measures on a set of real data available from the laboratory. However the errors in

assigning the correct orientation to each molecule improved from random to sorted

to MaST site orders which is reected in the similarity measure scores.

92

Data Using Mutual Using Explicit Map

(c cuts : m mols) Agreement Random Order Sorted Order MaST Order

Sim1 Sim2 Sim1 Sim2 Sim1 Sim2 Sim1 Sim2

Synthetic data:

Fig 7.14 (3: 415)
0:112 0:251 0:611 0:916 0:749 1:032 1:19 1:513

� DNA, AvaI:

Fig 7.15 (8: 800)
0:133 0:432 0:876 1:274 0:882 1:283 1:879 2:195

� DNA, AvaI:

Fig 7.15 (8: 120)
0:121 0:501 0:823 1:165 0:914 1:391 1:636 2:294

� DNA, EcoRI:

Fig7.17 (5: 333)
0:032 0:362 0:511 0:801 0:513 0:861 1:092 1:315

� DNA, EcoRI:

Fig 7.17 (5: 403)
0:111 0:239 0:501 0:785 0:692 0:798 1:008 1:116

� DNA, ScaRI:

Fig 7.18 (5: 281)
0:235 0:356 0:596 0:879 0:612 0:914 1:036 1:336

� DNA, BamHI:

Fig 7.19 (5: 196)
0:229 0:318 0:616 0:910 0:858 0:993 1:087 1:46

Table 7.1: Comparison of the various schemes: The real data sets shown in this table

correspond to the ones illustrated in Figures 7.14 to 7.19. Using the approach of mutual

agreement, the correct map was not obtained only for the case using AvaI with � DNA.

All the rest of the schemes gave the correct map but varied in the similarity measure as

shown, with the third scheme displaying best results. Sim1 refers to the sum-of-pairs

measure and Sim2 refers to the sum-square-of pairs measure. Æ = 2 was used to compute

Sim1 and Sim2. The small value of the measure indicates that the average number of

cuts that agree in a pair of molecules is small (for the �xed w). The unexpectedly small

di�erence between Sim1 and Sim2 indicates that multiple matches between molecules

(two molecules agreeing on multiple cut sites) is not very common in practice (for �xed

w).

93

Input Output

Known map vs computed map

Positions (1-200)

True Sites 59 85 120

Computed Sites 60 85 120

Cuts Standard Deviation
Expression

of cuts (%)

1 0.816 4.1

2 0.370 3.7

3 0.413 12.0

Figure 7.14: Synthetic data (derived from anonymous experimental data). Number of

molecules is 415. The MAX ABS percentage error is 0:5%.

94

Experiment 1 Experiment 2

Input Output Input Output

Known map vs computed map Known map vs computed map

Figure 7.15: Clone: � DNA, Enzyme: AvaI. Number of molecules in the �rst experiment

is 800 and 120 in the second experiment. See Figure 7.16 for a statistical evaluation of

the results.

95

Positions (1-200)

True Sites 38 45 64 71 84 114 120 180

Computed Sites (Experiment 1) 37 44 63 71 83 109 115 180

Computed Sites (Experiment 2) 36 43 62 70 85 110 114 180

Experiment 1 Experiment 2

Cuts Standard Deviation
Expression

of cuts (%)
Standard Deviation

Expression

of cuts (%)

1 0.140 15.8 0.110 23.2

2 0.164 11.6 0.133 19.3

3 0.177 14.4 0.145 18.1

4 0.215 8.5 0.165 10.1

5 0.225 7.4 0.183 12.3

6 0.240 7.6 0.179 13.5

7 0.198 10.6 0.171 19.1

8 0.128 15.5 0.106 18.2

Figure 7.16: The data is shown in Figure 7.15. The MAX ABS percentage error is 2:5%

in the �rst experiment and 3:0% in the second experiment. The �rst experiment uses

800 molecules and the second only 120, yet the algorithm extracts the correct maps as

shown.

96

Experiment 1 Experiment 2

Input Output Input Output

Known map vs computed map Known map vs computed map

Positions (1-200)

True Sites 87 107 130 160 183

Computed Sites (Experiment 1) 88 107 131 160 184

Computed Sites (Experiment 2) 89 108 130 160 184

Experiment 1 Experiment 2

Cuts Standard Deviation
Expression

of cuts (%)
Standard Deviation

Expression

of cuts (%)

1 0.606 2.1 0.436 2.7

2 0.490 3.0 0.309 4.5

3 0.219 9.0 0.243 8.4

4 0.335 4.2 0.243 7.4

5 0.286 6.3 0.193 11.9

Figure 7.17: Clone: � DNA, Enzyme: EcoRI. Number of molecules in the �rst experiment

is 333 and 403 in the second experiment. The MAX ABS percentage error is 0:5% in the

�rst experiment and 1:0% in the second experiment. However, the data in the second

experiment is noisier than the �rst, yet the algorithm extracts the correct map.

97

Input Output

Known map vs computed map

Positions (scale of 1-200)

True Sites 66 88 95 124 132

Computed Sites 65 86 94 125 132

Cuts Standard Deviation Expression of cuts (%)

1 0.329 6.4

2 0.328 6.0

3 0.242 11.7

4 0.215 14.2

5 0.353 5.3

Figure 7.18: Clone: � DNA, Enzyme : ScaI. Number of molecules = 281. The MAX

ABS percentage error is 1:0%.

98

Input Output

Known map vs computed map

Positions (scale of 1-200)

True Sites 23 92 115 142 172

Computed Sites 23 91 116 143 172

Cuts Standard Deviation Expression of cuts (%)

1 0.427 3.4

2 0.378 4.2

3 0.441 8.3

4 0.317 7.1

5 0.452 3.3

Figure 7.19: Clone: � DNA, Enzyme : BamHI. Number of molecules = 196. The MAX

ABS percentage error is 0:5%. The output looks much sparser than the input, since the

orientation of a large number of molecules (not displayed) could not be ascertained.

99

Experimental results using linear time (2mn) algorithm. Although we studied

three di�erent orderings of the sites for the heuristic algorithm, we found that the

simple scheme of using a sorted order of sites without roll-back was very e�ective

in practice. The real data appears to be very well behaved and if we are will-

ing to accept some wrong assignment of orientations (or unknown orientation of

the molecules), the correct maps, with small positional errors, are obtained very

quickly.

For the data shown in Figures 7.14 to 7.19, the sorted order, without roll-back,

of the potential cuts sites was used. We now take a closer look at one of the

data sets, shown as experiment 1 in Figures 7.15 and 7.16. At the pruning stage,

all the sites except 4 20=180, 37=163, 44=156, 63=137, 71=129, 83=117, 91=109

were detected as no consensus cut sites. Further, 83=117 was declared to be a

symmetric cut. The remaining potential sites were considered in the decreasing

order of potential, that is, 20=180, 71=129, 91=109, 37=163, 63=137, and, 44=156.

After the alignment of the molecules, the symmetric cut at 83=117 was re�ned to

83 and 115 at the post-processing stage.

For exposition, consider Figure 7.14.

1. The image on the left is the input data and the one on the right is the output of

our algorithm. Each row of the image is a molecule with a black dot indicating a

restriction site. The output image shows the molecules ipped as per the solution

computed by the algorithm, with the computed cuts marked on the top of the

image by tiny bars. In some cases, the output image is sparser than the input

image since we do not display the molecules, i, with di = 0.

2. At the bottom of the two images, we display a smaller image which has two rows

of bars: the top row shows the true position of cuts as provided by the laboratory

and the second gives the positions computed by our algorithm.

3. The table below (2) shows the position of the true and the computed cuts in

1� 200 scale.

4. The table below (3) displays statistics on the distribution of the cuts in the

input relative to the computed ones. The standard deviation of the displacement

4We represent a site j by j=�j.

100

of a restriction site of a molecule from the computed cut site, as computed by the

program, is shown, as is the expression of a cut site in the molecules (the number

of molecules that have a 1 in that site) as a percentage. QED

We compare the map determined by our algorithm with the true map as fol-

lows. We de�ne a one-to-one correspondence between the restriction sites in both,

maintaining a left-to-right order. The number of the restriction sites in both must

match. The MAX ABS error is the maximum of the absolute distance of a cut

site in the true map from its corresponding cut in the computed map. In our

experiments, the MAX ABS percentage error is 0 � 3%, and we never missed a

cut or found an extra cut. Also, there have been input instances (eg., one with a

sample of 2910 molecules) with 0% error!

Figure 7.15 shows two experiments where one uses a sample of 800 molecules

and the other uses only 120 molecules. Figure 7.17 shows two experiments where

the data in the second experiment is much noisier than the �rst. In all these cases

the algorithm performs robustly enough to extract the right maps.

Naksha5 is an implementation of this algorithm and a demonstration is available

on the author's homepage (http://www.cs.nyu.edu/parida). Interested readers

can also obtain the test results on simulated data from the homepage.

5The word naksha in Hindi means a map.

101

Chapter 8

Generalizations of the Problem

This chapter consists of two sections. In the �rst section we discuss the modeling of

other error sources such as missing fragments in the data, bad or spurious molecules

and sizing errors (though this error has been handled in the chapter on practical

algorithms). In the second section we deal with the K-populations problem.

8.1 Modeling Other Errors

In this section we study the computational complexity of the problems that model

the di�erent error sources. We show that all the problems, except the one incorpo-

rating the spurious molecules, are MAX SNP hard and give approximation bounds

for each.

Continuing the Ann and John game of Section 4.1, John can also make the

following changes (including the ones discussed earlier):

1. Spurious Molecules: John can throw out some, say k, molecules from this data

set and throw in k random strings of 0's and 1's in its place.

In practice, some \bad" molecules get into the sample population; these need

to be invalidated and not used in the map computation.

2. Missing Fragments: John can remove some fragments of the string (the sub-

string between two 1's).

102

This corresponds to fragments that get desorbed (washed away) during the

experiment, which poses problems for BAC DNA, although not for cosmids

and �DNA [3].

Now, the alignment of the rows/molecules refers to the following additional

assignments:
5) Labeling a molecule as spurious or not.

6) Assigning a left-ushed or right-ushed or any other positioning of

each molecule.

8.1.1 Modeling spurious molecules

The Binary Partition Cut (BPC) problem takes into account the presence of spuri-

ous or bad molecules (along with false positive and negative errors). We can de�ne

two kinds of cost functions for the problem: one that maximizes the number of

cuts in each molecule corresponding to a cut of the consensus physical map (BPC)

and the other that maximizes the number of cuts in the consensus map (BPCmax).

Recall that each consensus cut site must satisfy the digestion rate criterion. A vari-

ation of the latter where the information that the total number of bad molecules is

known exactly, is shown to be NP-complete in [3]. However, we show that the two

original problems have eÆcient polynomial time solutions.

Let the input binary m� n matrix be [Mij]. Associate indicator variables Xi,

i = 1; 2; : : : ; m, with every row which takes a value 1 if the molecule is good and

0 if it is spurious. Let Yj, j = 1; 2; : : : ; n, be an indicator variable associated with

every column that takes on a value of 1 if it is a consensus cut and 0 otherwise.

Let the digestion rate be pj for column j, j = 1; 2; : : : ; n. Formulating the problem

along the lines of formulating the BFC problem in equation (5.1) we obtain the

the following optimization problem:

max

8<
:

nX
j=1

Yj

mX
i=1

XiMij � pjm

!9=
; : (8.1)

Notice that the termmpj is used to ensure that the number of 1's along a consensus

cut site j (ignoring the spurious molecules) is at least mpj.

103

Consider the corresponding minimization problem

min

8<
:

mX
i=1

nX
j=1

�MijXiYj +
nX
j=1

mpjYj

9=
; (8.2)

which is a submodular function [39], hence BPC has a polynomial time solution.

Corollary 6 The BPCmax problem has a polynomial time solution.

Proof: If no is the number of consensus cuts in the optimal solution then there

exists no sub-optimal solution with n > no. This is because the new optimal

alignment can be obtained from this sub-optimal giving a larger no, which is a

contradiction. Hence a solution to the BPC problem gives a solution to the BPCmax

problem. QED

8.1.2 Modeling missing fragments

The Binary Shift Cut (BSC) problem takes into account missing fragments along

with false positive and negative errors 1. As in the BPC problem formulation, we

can de�ne two kinds of cost functions for the problem: one that maximizes the

number of cuts in each molecule corresponding to a cut of the consensus physical

map (BSC) and the other that maximizes the number of cuts in the consensus

map (BSCmax). Recall that each consensus cut site must satisfy the digestion rate

criterion. The BSCmax is shown to be NP-complete in [3]. We show that both

the approaches to the problem are MAX SNP hard and also give bounds on the

approximation factors achievable.

We show that BSC is MAX SNP-hard in the following theorem.

Theorem 5 The BSC problem is NP-hard. Further, there exists a constant � > 0

such that approximating this problem within a factor of 1� � is NP-hard.

Proof: We prove the result for a special case of the BSC problem where every

molecule is such that either the left or the right fragment (not both) is missing;

1The authors in [3] introduced the missing fragments error, and the same problem was called \Binary

Shift Cut" in [14] in keeping with the earlier naming convention.

104

the missing fragment is exactly one unit in all the molecules. In the aligned con-

�guration, a column j is in a cut only if the number of cuts is at least pjm, which

is de�ned in the proof of step 2.

The proof is along the lines of that of theorem 1. We give an outline of the

proof here with the full detail in Appendix B.

The proof has three steps. Let C�
X denote the cost of the optimal solution and

CX denote the cost corresponding to a particular solution for problem X.

Step 1 . We show a reduction of an instance of the maximum cut (MC) problem

with n vertices and e edges to an instance of the bipartite maximum cut

(BMC) problem (which is the maximum cut problem on a bipartite graph

with weights +1 or �1 on the edges) such that

(1:1) there exists a correspondence between the two solutions,

(1:2) 4C�
MC = C�

BMC � 4e� 3n, 4CMC � CBMC � 4e� 3n, and,

(1:3) the number of edges with positive weights in the BMC is 8e+2n.

Step 2 . We show the reduction of an instance of the BMC problem to an instance

of the BSC problem such that

(2:1) there exists a correspondence between the two solutions, and,

(2:2) 2CBSC � c = CBMC , where c is the number of 1's in the BSC

matrix.

Step 3 . For some � > 0, let C� denote the optimal solution and ~C denote an

approximate solution with ~CBSC � (1� �)C�
BSC .

~CMC � ~CBMC�4e�3n
4

(using Step 1.2)

= 2 ~CBSC�12e�5n
4

(using Steps 1.3 & 2.2)

� (1��)2C�

BSC�12e�5n
4

(by de�nition of ~CBSC)

=
(1��)(C�

BMC+8e+2n)�12e�5n
4

(using Step 2.2)

=
(1��)C�

BMC�4e�3n
4

� (8e+2n)�
4

� (1� �)C�
MC � 2:5e� (using Step 1.2 & e � n)

� (1� �)C�
MC � (2:5�)2C�

MC (since C�
MC � e=2)

= (1� 6�)C�
MC:

(8.3)

105

This shows that given a polynomial time approximation scheme (PTAS) for

BSC, we can construct a PTAS for MC (using steps 1 and 2 that give the

correspondence between the two solutions), which is a contradiction; hence

BSC does not have a PTAS.

We skip the details of steps 1 and 2 here and present it in Appendix B for the

interested reader. QED

Corollary 7 Achieving an approximation ratio 1� �=6 for BSC is NP-hard.

Theorem 6 The BSCmax problem is NP-hard. Further, there exists a constant

� > 0 such that approximating this problem within a factor of 1� � is NP-hard and

achieving an approximation ratio (1� �=6)pmax
pmin

for BSCmax is NP-hard.

The proof is identical to that of theorem 3.

Corollary 8 There does not exist a polynomial time algorithm, unless P = NP ,

that guarantees the estimation of (1� �=6) of the total number of consensus cuts

when digestion rates at each site is the same taking missing fragments into account.

8.1.3 Modeling sizing errors of the fragments

The Binary Sizing error Cut (BSeC) problem takes into account varying size of frag-

ments in the molecules (along with false positive and negative errors). Although

this error has been handled in the chapter dealing with the practical algorithms,

we discuss its MAX SNP-hardness here as the proof is similar to that of the BSC

problem. As in the BPC problem formulation, we can de�ne two kinds of cost func-

tions for the problem: one that maximizes the number of cuts in each molecule

corresponding to a cut of the consensus physical map (BSeC) and the other that

maximizes the number of cuts in the consensus map (BSeCmax). Recall that each

consensus cut site must satisfy the digestion rate criterion. The BSeCmax is shown

to be NP-complete in [3]. We show that both the approaches to the problem are

MAX SNP hard and also give bounds on the approximation factors achievable.

106

Theorem 7 The BSeC problem is NP-hard. Further, there exists a constant � > 0

such that approximating it within a factor of 1 � � is NP-hard and achieving an

approximation ratio 1� �=6 for BSeC is NP-hard.

Proof: Consider the special case of the BSeC problem where only the end frag-

ments of each molecule have di�ering sizes and the sizes vary by at most one

unit 2 along with any apparent size di�erences of fragments due to false negative

or false positive errors. The proof now proceeds along similar lines as in the proof

of theorem 5. QED

Theorem 8 BSeCmax problem is NP-hard. Further, there exists a constant � > 0

such that approximating this problem within a factor of 1 � � is NP-hard and

achieving an approximation ratio (1� �=6)pmax
pmin

for BSeCmax is NP-hard.

Again, the proof is along the lines of the proof of theorem 6.

Corollary 9 There does not exist a polynomial time algorithm, unless P = NP ,

that guarantees the estimation of (1� �=6) of the total number of consensus cuts

when digestion rates at each site is the same, taking sizing errors into account.

8.1.4 Summary

The computational complexity of the problems modeling the di�erent errors are

summarized in table 8.1. Some of these problems were open and the other known

results have been improved here (also in [41]).

8.2 The K-Populations Problem3

8.2.1 Introduction

Here, we explore some algorithmic and complexity questions related to the use

of optical mapping to study a population of homologous DNA fragments [45]. In

2Also, the acceptable deviation from the exact location of the cut is zero.
3Portions of this section also appear as \Partitioning K Clones: Hardness Results and Practical

Algorithms for the K-Populations Problem", coauthored with Bud Mishra, Proceedings of the ACM

Conference on Computational Molecular Biology (RECOMB), New York, March 1998.

107

Problem Complexity class

Approx

factor

(upper

bound)

Errors

Exclusive Binary Flip

Cuty (EBFC)
1��=3

Binary Flip Cut� (BFC) MAX SNP-hard 1��=3 Orien.

BFCmaxK
y (1��=3)pmaxpmin

uncert.
Consistency Graph� (CG),

Weighted Consistency

Graph� (WCG),

d-wise Match� (dM)

1��=3

Binary Partition Cut� (BPC) P � Bad

BPCmaxK
y mols

Binary Shift Cut� (BSC) MAX SNP-hard 1��=6 Missing

BSCmaxK
y (1��=6)pmaxpmin

frags

Binary Sizing-error Cut (BSeC) MAX SNP-hard 1��=6 Sizing

BSeCmaxK
y (1��=6)pmaxpmin

errors

Table 8.1: Computational Problems from Optical Mapping: All the problems model

false positive and false negative errors as well. Problem� denotes unknown complexity

until this work and Problemy denotes the best known result for the hardness of this

problem was that it was NP-complete. The Binary Partition Cut (BPC) problem has

been modi�ed (slightly) to admit a polynomial time solution. pmin = minj pj, and

pmax = maxj pj are de�ned by the given problem. (� denotes the upper bound on the

polynomial time approximation factor of the well-known max cut problem.)

108

practice, the most interesting case involves just two populations (K = 2) where one

examines populations related to diploid DNA. However, there are other situations,

e.g., dealing with PCR products, several strains of a microorganisms, etc., where

K could be arbitrarily large. Computationally, it is also interesting to study how

this generality (when K is unconstrained) a�ects the problem.

We focus on a somewhat idealized model. We assume that we are given m

molecules, each one derived from one of K di�erent clones. We wish to partition

the m molecules into K di�erent disjoint classes (K \populations"), each class

corresponding to a distinct clone. We then wish to compute and output the K dis-

tinct ordered restriction maps (one for each population) so that the dissimilarities

among the ordered restriction maps can be quickly distinguished. The output is

given in a novel data structure that can quickly identify the dissimilar regions in

the maps.

In an ideal setting, if the correct ordered restriction map for each molecule

can be made available, then the resulting computational problem is rather trivial.

In practice, however, the single molecule restriction map that can be computed

by the image processing algorithm will be governed by several error processes:

missing restriction cut sites due to partial digestion (false negatives), spurious

optical cut sites (false positive), sizing error, missing fragments, error in assigning

the orientation of the molecule, presence of other spurious molecules etc.

Even though we ignore all but the �rst two error processes, the resulting com-

putational problem still poses many challenges from a purely algorithmic point

of view. We characterize these structural diÆculties, propose an extension of an

earlier heuristic and explore its power empirically.

In our simpli�ed model, each molecule (m in total) is represented as a binary

vector of length n:

Ai = (ai1; ai2; : : : ; ain) 2 f0; 1gn;
and the set of m molecules is represented by an m� n 0-1 matrix. A 1 in location

aij is meant to indicate a cut site at the location j in the ith molecule and may be

a true restriction cut or a false optical cut. Thus, if aij = 1, then either it is a true

restriction site and the correct map for the corresponding clone has a restriction

109

site at j or it is a false optical cut and the correct map has no restriction site at

j. Conversely, if ai;j = 0, then either it is a missing restriction site and the correct

map has a restriction site at j or it is simply not a restriction site and the correct

map does not have a restriction site at j. Our goal is to devise an algorithm to �nd

a partition of the molecules into K populations so that each restriction site in the

proposed map for a population is supported by \enough" restriction sites at the

corresponding location in the same population. We shall de�ne a cost function that

formalizes this notion and examine the complexity of the resulting combinatorial

optimization problem.

Roadmap. In the next section, we reformulate the problem in a purely combi-

natorial setting and show that the resulting problem as well as computing an ar-

bitrarily good approximation is computationally infeasible (NP-hard). Note that

our results strengthen the negative results shown earlier [3] for the 2-population

problem, by �rst getting rid of the constraints on the size of the populations

(Problem 5 in [3]) and secondly by demonstrating the inapproximability of the

problem. (Also, see [41] and Chapters 5 and 8.1.4.) In Section 8.2.3, we give a

0:756-approximation algorithm for a 2-populations problem. In Section 8.2.4, we

propose a simple heuristic extending our earlier heuristic for a single population

problem [38] and demonstrate experimentally that the resulting simple polynomial

time algorithm �nds the maps correctly for reasonable values of the parameters

(partial digestion rate of 50%, negligibly small optical false cut rate, upto 4 pop-

ulations). This suggests that it may be possible to extend our heuristics to other

approaches (e.g., Bayesian schemes) that can handle other sources of error (most

notably, sizing errors) without a severe penalty in computational complexity, as

long as partial digestion rate is signi�cantly high compared to the false cut rate

and for a reasonable number of populations. Finally, we describe our empirical

results based on the synthesized data and explore its limitations. In a concluding

section, we interpret the signi�cance of our results.

110

8.2.2 Complexity

For the sake of complexity analysis, we may assume that the only errors to be

handled are false negative and false positive errors (due to partial digestion and

optical cuts, respectively4). Given a set of molecules from K di�erent populations,

the task is to identify the di�erent populations and the map of each of the pop-

ulation. The problem can be formally stated as follows. We are given an m � n

matrix [aij] denoting m molecules and n sites with pj, j = 1; 2; : : : ; n de�ned for

each site j, which is a lower bound on the fraction of the size of the population

where the site j is a consensus cut5. The task is to maximize the number of 1's in

the consensus cut columns and the number of 0's in the non-consensus cut columns

in each population.

Let Y11, Y12, : : :, Y1n, Y21, Y22, : : :, Y2n, : : :, YK1, YK2, : : :, YKn be the (nK)

indicator variables associated with each site (column) and population with the

following connotation:

Ykj =

8<
: 1; if j is a consensus cut site in population k;

0; if j is not a consensus cut site in population k.

Pop (Ai) = k where 1 � k � K, denotes that molecule i belongs to population k.

Let

Xik =

8<
: 1; if Pop (Ai) = k;

0; otherwise.

and mk =
Pm

i=1Xik. The K-populations problem then can be formulated as a

4Recall that we may also model sizing errors or uncertainty in orientation or errors due to missing

fragments or spurious molecules, etc. However, these errors only result in higher worst-case complexity

of the problem and complicate the constructions used in the proof.
5In general, pj depends on the digestion rate, which cannot be always expected to be known a priori,

and may have to be estimated from the data (for instance, by an MLE method). A simple heuristic

estimator can be formulated by assuming that all the pj 's are equal and is given by

p = (1� �)(~p=m)

P
#cuts inAi

length(Ai)
;

where ~p denotes the cutting eÆciency (e.g., � 1=4; 000 for a 6-cutter) and (1 � �) is a shrinkage factor

that compensates for the bias due to false optical cuts.

111

combinatorial optimization problem; maximize the following function:

C(pj; [aij]; Xik; Ykj) =

KX
k=1

8<
:

nX
j=1

mX
i=1

Ykj[Xikaij � pjmk]

9=
; : (8.4)

and the cost of the con�guration (given by optimizing the above function) is the

total number of 1's in the consensus cut columns of each population. Note that

the function given by equation (8.4) is simply

KX
k=1

nX
j=1

mX
i=1

XikYkj[aij � pj]:

The cost function used here is a straightforward generalization of the \consensus

with data" cost function used for the 1-population problem described in [43] and

Chapter 5. This is somewhat simpli�ed by the fact that we include only those

terms that model the false positive and false negative errors. This cost function

can also be heuristically justi�ed by considering its expected value over random

m�n 0-1 matrices, where the entries of the matrix are Bernoulli random variables

with negligibly small false positive probability and with a false negative probability

determined by pj's.

Theorem 9 The K-populations problem is NP-hard. Further, there exists a con-

stant � > 0 such that approximating the problem within a factor of 1�� is NP-hard.

Proof Sketch. We will prove the result for a special case of the K-populations

problem with the following characteristics:

1. K = 2. (A two-populations problem.)

2.
PK

k=1 Ykj = 1 for all j. (Every cut belongs to exactly one population.)

3. The molecules come in pairs such that no two elements of the pair belong to

the same population. (This also ensures that the two populations are of the

same size.)

112

4. pj =
P

i aij=2m for all j, where m is the total number of molecules.

To prove the inapproximability of this special case of the K-populations (KP)

problem 6, we use the recent technique of giving a gap-preserving reduction of a

Max SNP-hard problem, the Max-cut (MC) problem, to our problem [5].

The proof has three steps. In step 1 we show the reduction of an instance of

the MC problem to an instance of a bipartite Max-cut problem, with weights on

the edges as 1 or �1 (BMC). In step 2 we show the reduction of an instance of

the BMC problem to an instance of the KP problem and in the �nal step we show

that the reduction is gap-preserving.

Let C�
X denote the cost of the optimal solution and ~CX denote the cost of an

approximate solution of the problem X.

Step 1. (MC to BMC reduction.)

Consider an MC problem on a graph with vertices and edges (V;E); n = jV j; e =
jEj. Construct an instance of BMC with (~V ; ~E) as follows: For each vi 2 V , with

degree di, construct 2(di + 1) vertices, Vgadgeti = fv0i0; v0i1; : : : ; v0idi ; v00i0; v00i1; : : : ; v00idig.
Further, wt(v0ij; v

00
ij) = wt(v0i0; v

00
ij) = wt(v0ij; v

00
i0) = �1; j = 1; 2; : : : ; di. Thus, vi

gives rise to 3di edges with negative weight. Also if v1v2 2 E then wt(v010v
00
20) =

wt(v020v
00
10) = +1. It can be seen that this construction gives a bipartite graph with

~V = V 0 [V 00 where v0x 2 V 0; v00x 2 V 00.

Thus the BMC has 2n + 6e vertices, and, 2e edges with weights +1, and, 6e

edges with negative weights. Recall for any graph
P

i di = 2e.

Let a solution be of size K, and, the partition of the vertices induced by this

solution be S1 and S2 in the MC problem. We make the following observations.

1.1 In a solution of the BMC, the two sets ~S1; ~S2, are such that Vgadgeti � ~S1

or ~S2, 8i. If this does not hold, that is Vgadgeti 6� ~S1, then the solution can

be modi�ed that only improves the solution. In a solution to the BMC, if

v01v
00
2 is in the cut, so must v001v

0
2 (called the image of v01v

00
2). This follows from

observation 1.1, as Vgadget1 and Vgadget2 are in the sets ~S1 and ~S2 respectively

6The argument given here is similar to the Max SNP-hardness proof of the Exclusive Binary Flip-Cut

(EBFC) problem discussed in [41].

113

(without loss of generality). Hence, given a solution to the BMC, the solution

to the corresponding MC is constructed as follows: if v01v
00
2 (and its image) is

in the solution to the BMC, then v1v2 is in the solution to the MC.

1.2 We make the following claim:

C�
MC = C�

BMC=2

~CMC � ~CBMC=2 (8.5)

Step 2. (BMC to KP reduction.)

Consider a BMC ((V1; V2); E), V1 = fv11; v12; : : : ; v1mg, V2 = fv21; v22; : : : ; v2ng. De�ne
i = m + i. Construct an instance of KP [Mij] with 2m rows and n columns

as follows. If wt(v1i v
2
j) = 1, then Mij = 1;Mij = 0. If wt(v1i v

2
j) = �1, then

Mij = 0;Mij = 1. If v1i v
2
j is not an edge in the BMC, then Mij = Mij = 0.

See Figure 8.1 for an example. This construction ensures that molecules/rows

corresponding to i and i belong to di�erent populations (this also explains the

third characteristic of the special KP problem). Also notice that, assuming that the

assignment of the rows/molecules to the populations have been made, a consensus

cut column is the one with the larger number of 1's (this explains the fourth

characteristic of the special KP problem).

We make the following observations.

2.1 Given a a con�guration (assignments of populations one/two to rows and

cuts/no-cuts to columns) for the KP problem, it can be shown that we can

obtain a solution for the BMC problem. We can further show that given an

approximate solution for the KP problem, we can construct an approximate

solution for the BMC problem and any solution is � 6e. Also the solution

to the KP problem is such that the molecules/rows and sites/columns corre-

sponding to the vertices of a gadget of a vertex from the MC belong to the

same population. Thus the corresponding solution for the BMC (and then

the MC) can be obtained.

2.2 We make the following claim:

C�
BMC = C�

KP � 6e

114

~CBMC � ~CKP � 6e (8.6)

Step 3. (Gap-preserving reduction.)

Finally, we show that the reduction is gap-preserving.

For some � > 0, let ~CKP � (1� �)C�
KP .

~CMC � ~CBMC

2
(eqn (8.5))

� ~CKP�6e
2

(eqn (8.6))

� (1��)C�

KP�6e
2

� (1��)(C�

BMC+6e)�6e
2

(eqn (8.6))

� (1��)C�

BMC�6e�
2

� (1� �)
C�

BMC

2
� 3e�

� (1� �)C�
MC � (3�)2C�

MC (C�
MC � e=2)

� (1� 7�)C�
MC

This shows that given a PTAS for KP, we can construct a PTAS for MC, which is

a contradiction; hence KP does not have a PTAS. This concludes the proof of the

inapproximability of the KP problem. QED

Let 1�� denote the upper bound on the polynomial time approximation factor

of the well-known max cut problem.

Corollary 10 Achieving an approximation ratio 1 � �=7 for the K-populations

problem is NP-hard.

Theorem 10 There does not exist a polynomial time algorithm (assuming P 6=
NP) that guarantees the estimation of (1 � �=7)pkmax=p

k
min of the total number of

consensus cuts in each population (k) where pkmin and pkmax are the minimum and

maximum of the digestion rates in the population k of the given problem.

Proof Sketch: For convenience of notation, let us name the problem of maximiz-

ing the number of consensus cuts in each population as the KPmax problem (where

a consensus cut, j, in each population k is such that it has at least pkjmk cuts in the

position j and mk is the size of the population k). We will show that if we have a

PTAS for KPmax, we will have a PTAS for the k-populations problem, KP, which

115

v0A" v1A" v0B" v1B" v2B" v0C" v1C"

v0A' 0 0 1 0 0 0 0 2

v1A' 0 0 0 0 0 0 0 2

v0B' 1 0 0 0 0 1 0 1

v1B' 0 0 0 0 0 0 0 1

v2B' 0 0 0 0 0 0 0 1

v0C' 0 0 1 0 0 0 0 2

v1C' 0 0 0 0 0 0 0 2

v0A' 0 1 0 0 0 0 0 1

v1A' 1 1 0 0 0 0 0 1

v0B' 0 0 0 1 1 0 0 2

v1B' 0 0 1 1 0 0 0 2

v2B' 0 0 1 0 1 0 0 2

v0C' 0 0 0 0 0 0 1 1

v1C' 0 0 0 0 0 1 1 1

1 1 2 2 2 1 1 Pop

Figure 8.1: The input matrix corresponding to the bipartite graph (BMC problem)

shown in Figure 1. The population (1 or 2) the molecule belongs to is shown in the

rightmost column, and the bottom most row shows the consensus cut in population 1 or

2 in the optimal con�guration. Also notice that the solution to the KP problem is such

that the molecules/rows and sites/columns corresponding to the vertices of a gadget of a

vertex of the graph with the MC problem, belong to the same population. The partition

suggested by this solution for the MC problem (of Figure 1) is fBg and fA;Cg.

116

would be a contradiction. Given a KP, let pkmin = minj p
k
j , and pkmax = maxj p

k
j

for each population k. Let ~X denote an approximate solution and X� denote the

optimal solution. Then if KPmax has a PTAS let
~Nk
Nk

� � for some 0 < � � 1

where N�
k is the number of consensus cuts in population k. Let ~Ck � ~Nkpmin, then

C�
k � N�

kpmax. Hence we have

~Ck

C�
k

�
~Nkpmin

N�
kpmax

� �
pkmin

pkmax

;

for each population k. Summing over all the populations, we get a PTAS for the

KP problem, which is a contradiction. Thus using corollary 10 we get the required

result. QED

Corollary 11 There does not exist a polynomial time algorithm (assuming P 6=
NP) that guarantees the estimation of (1��=7) of the total number of consensus

cuts in each population when the digestion rate at each site is the same. QED

8.2.3 A 0.756-approximation algorithm for a

2-populations problem

We give a 0:756-approximation algorithm for a 2-populations problem 7 using the

semi-de�nite programming based algorithm for the Max-cut problem [20], on ap-

propriately pruned data.

Given the input, an m� n binary matrix, we assume we can trim the columns

of the input using thresholds �1 and �2. Every column that has a number of 1's

larger than m�1 is a cut in both the populations and is removed. Similarly, every

column that has a number of 1's smaller than m�2 is not a cut in either of the

populations, and is removed. After the trimming, we are left with a version of

the problem where every column is a consensus cut either in population 1 or in

population 2. We further assume that the digestion rate for every column is 50%.

We �rst show that, under these conditions, the 2-populations (2P) problem can

be reduced to a complete BMC problem and vice-versa.

7The reduction here is similar to the reduction in Section 6.2.1.

117

Figure 8.2: The graph for the BMC is shown on the left where an edge with negative

weight is shown as a dashed line. The optimal partition of the vertices is shown in

the dotted closed curves enclosing the vertices. The graph for the instance of the MC

problem shown on the right is constructed from the one on the left. Every edge with

weight �1 has been replaced with two edges and a vertex (shown as solid black rectangle

to distinguish it from the other vertices shown as hollow rectangles). The corresponding

optimal solution for the MC problem is shown by enclosing each vertex either in a solid

circle or a dotted circle; the solid circle enclosed vertices belong to one partition in the

solution and the dotted circle enclosed vertices belong to the other.

118

Given an instance of the 2-populations problem given by an m � n binary

matrix [aij], we construct a complete BMC for a bipartite graph isomorphic to

Km;n with vertices v11, v
1
2, : : :, v

1
m in the �rst partition and v21, v

2
2, : : :, v

2
n in the

second partition with the weights, wt(�; �), de�ned as follows:

wt(v1i ; v
2
j) =

8<
: 1; if aij = 1;

�1; if aij = 0:

Notice that given an instance of a complete BMC, we can similarly construct an

instance of the 2-populations problem. As a result the following identity must

hold:

aij � pj = wt(v1i ; v
2
j)=2;

since pj = 1=2.

The correspondence between the solutions is as follows. Without loss of gen-

erality, let rows (molecules) 1, 2, : : :, m1 belong to the �rst population and the

remaining rows m1 + 1, m1 + 2, : : :, m belong to the second. Thus Xi1 = 1 for

i 2 [1::m1] and Xi2 = 1 for i 2 [m1 + 1::m]. Again, without loss of generality,

let columns (sites) 1, 2, : : :, n1 be the consensus cut sites in the �rst population

and the remaining columns n1 + 1, n1 + 2, : : :, n in the second. Thus Y1j = 1 for

j 2 [1::n1] and Y2j = 1 for j 2 [n1+1::n]. Thus the cost of this partition is simply:

2X
k=1

nX
j=1

mX
i=1

XikYkj[aij � pj]

=
1

2
(
n1X
j=1

m1X
i=1

wt(v1i ; v
2
j) +

nX
j=n1+1

mX
i=m1+1

wt(v1i ; v
2
j)):

The corresponding partition of the BMC problem is then as follows: the vertices

of the �rst partition are fv11, v12, : : :, v1m1
, v2n1+1, v

2
n1+2, : : :, v

2
ng, and the vertices

in the second partition are fv1m1+1
, v1m1+2

, : : :, v1m, v
2
1, v

2
2, : : :, v

2
n1
g. Thus, it

immediately follows that 2P has a solution of size x i� BMC has a solution of size

2x. Notice that

CBMC = p1 � l1; (8.7)

where p1 is the number of edges with weight 1 and l1 is the number of edges with

weight �1 in the cut. Let l2 be the remaining number of edges with weight �1

119

and L be the total number of edges with weight �1. Thus

L = l1 + l2: (8.8)

Instead of counting only the 1's in the consensus cut columns, let the cost function

measure all the \correct decisions" in the con�guration. Notice that the optimal

value is obtained at the same con�guration for both the cost functions. Thus, let

the cost function of the 2P problem be the number of 1's in the consensus cut

columns and the number of �1's in the columns that are not consensus cuts in

each of the two populations (p1 + l2). Thus using equations (8.7) and (8.8), we

have

C2P = L+
CBMC

2
: (8.9)

Given a BMC, we construct an instance of the MC problem (with weight on the

edges as 1) by replacing every edge with a negative weight by two edges and a

vertex, each edge having a weight of 1. See Figure 8.2 for an illustration. If L

is the number of edges with weight �1, then the MC instance has m + n=2 + L

vertices.

Now, we give the correspondence between the solutions in each of the problem.

Notice that the edges introduced in the reduction come in pairs. Let the solution

to the MC problem include l1 edges which are not paired, 2l2 paired edges and p

of the original edges (which had a weight of 1 in the BMC problem). Then

CMC = p + l1 + 2l2; (8.10)

and the cost of the BMC problem by the construction is,

CBMC

2
= p� l1: (8.11)

Since l1 + l2 = L, we have from equations (8.10) and (8.11),

CBMC

2
= CMC � 2L:

From equation (8.9) we have

C2P = CMC � L (8.12)

120

Finally, we use the algorithm presented in [20] to obtain a an algorithm for the

MC problem with an approximation factor of 0:878. Let ~CX denote an approximate

solution and C�
X denote the optimal solution to problem X.

~C2P = ~CMC � L (from eqn (8.12))

� 0:878C�
MC � L (from [20])

� 0:878(C�
2P + L)� L (from eqn (8.12))

= 0:878C�
2P � 0:122L

� 0:756C�
2P (from eqn (8.9))

This concludes the argument.

8.2.4 An algorithm for the K-populations problem

Here we present a set of heuristics to detect the di�erent populations in a sample of

molecules. In our experiments, we have modeled the false positive, false negative,

orientation and sizing errors in the input. Let

p be the digestion rate (true positive),

q be the false positive rate,

m be the sample size, and

mmin be the smallest sample size for any population.

Thus

mminK � m:

The population detection is carried out in three major steps: First we detect

the physical map which is the union of the map of all the populations. Next,

we merge identical consensus cuts (characterized by their presence or absence in

a population, de�ned by the population map). At this step we also carry out a

certain amount of error correction which makes the next step more robust. In the

�nal step, we use the merged consensus cut columns of the last step to separate

the populations. We give the details of each step below.

(Step 1) Common physical map detection. Obtain the physical map, which is

the union of the physical maps of all the populations. This step eliminates the

orientation, sizing and false positive errors. Here we must assume that the false

121

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.3: Illustration of step 2 (merging and error correction): (a) The correctly aligned

molecules with the computed consensus cuts. In (b) to (i), each cut is shown by a small

horizontal bar. (b) This shows only the consensus cuts in the population aligned in (a).

(c) For the very �rst merging, all those cuts that appear in all the populations have

been �ltered. (d) to (i) show each step of the merge; the polyline on top denotes the

two columns with identical population map being merged. Notice the \darkening" of the

merged column due to the error correction. In (i) the two columns to be merged actually

have population maps that are complements of each other.

122

positive rate is low enough not to be confused as a true positive of a \small"

population; thus the following must hold:

mq � mminp) Kq � m

mmin

q � p: (8.13)

In our experiments, we use the EBFC-based algorithm (Exclusive Binary Flip Cut)

presented in [38].

(Step 2) Merging consensus cuts and error correction. Given a consensus cut j,

de�ne a population map for j as follows: let the number of populations be K, then

the population map is a K length vector of 0's and 1's, where a 1 at position i

denotes j is a consensus cut in population i and a 0 denotes j is not a consensus

cut in population i.

Let jpm1 ; jpm2 ; : : : ; jpml
be l cuts that have the same population map. We replace

all these l consensus cut columns by a single representative column. In addition,

we also carry out false negative error correction in the merged (representative)

column as described below.

(Step 2.1) Identifying the consensus cuts for merging. Recall that at this stage

of the algorithm we do not know what the populations are (nor how many of

them). We will identify the consensus cuts with identical population maps by

simultaneously looking at c consensus cuts for the presence of at least t pairwise

true positives. The reader may verify that in the worst case,

c � d1
p
e and t = mminp:

Thus for p � 0:5, it suÆces to consider pairwise cuts (i.e., c = 2). The merging

is carried out iteratively until no more columns can be merged. A weight wt is

associated with every merged column which is the number of consensus cut columns

that were merged.

(Step 2.2) Error (false negative) correction. We give the details for the case

where c = 2, the other cases are similar. Once we recognize that two consensus cuts

j1 and j2 have the same population map, it is easy to make the error correction: if

j1 and j2 do not agree in molecule i, we place a consensus cut for molecule i in the

merged column. Assuming that the population map of j1 and j2 is correct, this

123

consensus cut in molecule i is correct with probability p and wrong with probability

q (recall that q << p). See Figure 8.3 for an example.

Routine Separate-Populations

Set Tol = pmmin.

Initialize every molecule, i, to be in population p0.

For each column, j, in the descending order of wt do f
For each population, p, with size > Tol, do f

Compute N jp
0
, the number of molecules with 0 at j.

Compute N jp
1
, the number of molecules with 1 at j.

If (N jp
0

> Tol and N
jp
1

> Tol) f
Split the population by the 0's and 1's.

Renumber the new populations as p0 and p00.

g
g

g
A similarity tree.

Figure 8.4: The algorithm to separate the populations using the representative columns,

and an example of a tree based on the decisions taken at the \if" statement. The physical

map of each population is at the leaf node of this tree.

(Step 3) Separating the populations. Let the number of representative columns

be nr. The reader may verify that

logK � nr � n:

The pseudocode for the algorithm to detect the di�erent populations is presented

in Figure 8.4. This algorithm splits the molecules into di�erent populations and

also gives a tree, based on the iterative splitting of the sample, to give rise to a

similarity tree. The common structure of the maps of the di�erent populations is

captured in this tree.

124

8.2.5 Experimental results

We carried out several experiments using simulated data on upto six populations

data. We present the results of a two, a four and a six population sample in

Figures 8.5 through 8.8. We observed in our experiments that as the number of

populations increases, we need to increase the digestion rate to detect the di�erent

populations. In the �gure each molecule is represented by a row with a black

dot denoting a cut in the molecule. For ease of visualization of the output, in

the synthesized data, the molecules from each population are placed close to one

another (the algorithm neither knows nor uses this information). As can be seen,

the algorithm separates the populations with about 20% error (picking a wrong

molecule or missing out a molecule), but gathers suÆcient information to infer the

right ordered restriction map.

8.2.6 Summary

We have presented our initial complexity analysis and some heuristics for identi-

fying K (K � 2) distinct populations from a set of corrupted ordered restriction

map data. Our main results are the following: (1) The problem (even under a

forgiving idealized model) is computationally infeasible. (2) We give a guaranteed

0.756-approximation algorithm for a special class of the 2-populations problem.

(3) However, for the general K-populations problem, when certain assumptions

are made regarding the errors in the input data (e.g., false positive error probabil-

ity is negligible compared to false negative error probability), we have been able

to empirically obtain very promising results. It remains open whether using better

prior models of the data as well as variations on the heuristics presented here we

can devise algorithms with better performance for this problem while accounting

for many other error sources.

125

2� populations data: Population 1: P opulation 2:

Figure 8.5: An example of a 2-populations problem. The false negative rate is 50%;

the false positive rate is 5%; the orientation is incorrect 50% of the time; small sizing

error; the number of consensus cuts is around 15 for each population and the the maps

of each population are very similar. The second row shows the aligned molecules of

each population (as detected by the algorithm) and the computed physical maps. The

algorithm makes an error of about 17% in assigning population to each molecule, but

picks up the right map for each population as shown.

126

4� populations data Population 1 Population 2 Population 3 Population 4

Figure 8.6: An example of a 4-populations problem. The false negative rate is 50%;

the false positive rate is 5%; the orientation is incorrect 50% of the time; small sizing

error; the number of consensus cuts is around 10-15 for each population and the the

maps of each population are very similar. The algorithm makes an error of about 20%

in assigning population to each molecule, but picks up the right map for each population

as shown.

127

6� populations data Population 1 Population 2 Population 3

Figure 8.7: An example of a 6-populations problem. The false negative rate is 30%;

the false positive rate is 5%; the orientation is incorrect 50% of the time; small sizing

error; the number of consensus cuts is around 10-15 for each population and the the

maps of each population are very similar. The algorithm makes an error of about 20%

in assigning population to each molecule, but picks up the right map for each population

as shown. See Figure 8.8 for the remaining three populations.

128

Population 4 Population 5 Population 6

Figure 8.8: An example of a 6-populations problem. See Figure 8.7 for the remaining

three populations and the data.

129

Part II

Sequence Analysis

130

Chapter 9

Pattern Discovery

9.1 Introduction

Given an input sequence of data, a motif is a repeating pattern (possibly inter-

spersed with dont-care characters) that occurs in the sequence. The number of

motifs could potentially be exponential in the size (number of characters) of the

input (see Examples 1 and 2 in the following section). Typically, the higher

the self similarity in the sequence, greater is the number of motifs in the data.

Motif discovery on such data, such as repeating DNA or protein sequences, is a

source of concern since these exhibit a very high degree of self-similarity (repeating

patterns). Usually, this problem of an exploding number of motifs is tackled by

pre-processing the input, using heuristics, to remove the repeating or self-similar

portions of the input. Another way of trimming down the number of motifs is to

use a \statistical signi�cance" measure. However, due to the absence of a good

understanding of the domain, there is no consensus over the right model to use.

Thus there is a trend towards model-less motif discovery in di�erent �elds. To

keep the problem manageable, it is useful to identify a small number of motifs that

capture important information about the family of motifs.

In this chapter, we show that, for any sequence, there exists only a polynomial

number of special motifs and every other motif can be simply generated from

them. We name these special motifs irredundant motifs. The result is meaningful

131

also from an algorithmic viewpoint, since the ideas from the proof can be used

to design polynomial time algorithms to detect these irredundant motifs. This

bound on the number of useful motifs gives validation to motif-based approaches,

since the total number of irredundant motifs does not explode. This result is of

signi�cance to most applications that use pattern discovery as the basic engine

such as data mining, clustering and matching. This family of irredundant motifs

is also very characteristic of the family of all the motifs: in applications such as

multiple sequence alignment, we have shown that the irredundant motifs suÆce to

obtain the alignment [44]. However, in applications that use the motifs to extract

signature motifs of sets of sequences, all the motifs, including the redundant ones,

may be of relevance.

Roadmap. In Section 9.2 we de�ne motifs and some basic related concepts (such

as maximality) and in Section 9.3 we introduce the notion of irredundancy and

show that the number of such motifs is only quadratic in the input length.

9.2 Basic Concepts

Let s be a sequence on an alphabet �, `.' 62 �. A character from �, say �, is called

a solid character and `.' is called a \dont care" character. For brevity of notation,

if x is a sequence, then jxj denotes the length of the sequence and if x is a set of

elements then jxj denotes the cardinality of the set. Thus the size of the sequence
s is denoted by jsj and the jth (0 � j � jsj � 1) character of the sequence is given

by s[j].

De�nition 1 (�1 <;=;� �2) If �1 is a \dont care" character and �2 2 �, then

�1 < �2. If both �1 and �2 are identical characters in �, then �1 = �2.

If either �1 < �2 or �1 = �2 holds, then �1 � �2.

De�nition 2 (p occurs at l, cover) A string, p, on � [`:0, occurs at position l

in s if p[j] � s[l + j] holds for 0 � j � jpj � 1. p is said to cover the interval

[l; l + jpj � 1] on s.

132

De�nition 3 (k-motif m, location list Lm) Given a string s on alphabet � and

an integer k, 2 � k < jsj, a string m on � [`:` is a k-motif with location list

Lm = (l1; l2; : : : ; lp), if all of the following hold:

1. m[0]; m[jmj � 1] 2 �.

(The �rst and last characters of the motif are solid characters; if \dont care"

characters are allowed at the ends, the motifs can be made arbitrarily long

in size without conveying any extra information.)

2. p � k.

3. there does not exist a location l, l 6= li, 1 � i � p such that m occurs at l on

s (the location list is of maximal size).

(This ensures that any two distinct location lists must correspond to distinct

motifs.)

4. for every \dont care" character at position j in m, there exist at least two

distinct occurrences li1 and li2, 1 � i1; i2 � p, such that s[li1 + j] 6= s[li2 + j].

(No \dont care" character can be replaced by a solid character, otherwise

an arbitrary number of \dont care" characters could be introduced without

conveying any extra information.)

If m is a string on �, m is called a simple motif. If m is a string of � [f`.'g, m is

called a rigid motif. In the rest of the discussion a k-motif is referred to as a motif.

Consider s = ABCDABCD. Using the de�nition of motifs, the di�erent motifs

are as follows:

1. m1 = AB with Lm1 = f0; 4g,

2. m2 = BC with Lm2 = f1; 5g,

3. m3 = CD with Lm3 = f2; 6g,

4. m4 = ABC with Lm4 = f0; 4g,

5. m5 = BCD with Lm5 = f1; 5g and

133

6. m6 = ABCD with Lm6 = f0; 4g.

Notice that Lm1 = Lm4 = Lm6 and Lm2 = Lm5 . Using the notation L + i =

fx + ijx 2 Lg, Lm5 = Lm6 + 1 and Lm3 = Lm6 + 2 hold. We call the motif m6

maximal as jm6j > jm1j; jm4j and jm5j > jm2j. Motifs m1, m2, m3, m4 and m5 are

non-maximal motifs.

We give the formal de�nition of maximality below.

De�nition 4 (Maximal Motif) Let p1, p2, : : :, pk be all the motifs in the sequence

s. A motif pi is maximal if and only if there is no pj (j 6= i) such that pi is a

substring of pj, or, if pi is a substring of pj, then there exists at least one occurrence

of pi in s that is not covered by pj in s.

However, the notion of maximality alone does not suÆce to bound the number

of motifs. We now motivate the need for de�ning irredundant maximal motifs

by giving two simple examples of strings that have an unusually large number of

maximal motifs without conveying extra information about the input.

Example 1 Let the input string s have the following form:

ac1c2c3baXc2c3bY ac1Xc3bY Y ac1c2Xb

Then the maximal motifs (which are 2

p
n in number) are as follows.

motif location list

[ac1c2c3b aXc2c3bY ac1Xc3bY Y ac1c2Xb]

a:::b + + + +

a::c3b + + +

a:c2:b + + +

ac1::b + + +

a:c2c3b + +

ac1:c3b + +

ac1:c3b + +

Example 2 Let s = aaaaaaaaaaa and k = 2. By the de�nition, the motifs with

the location lists shown as positions on the input string are as follows.

134

size motif location list

[a a a a a a a a a a a]

2 aa + + + + + + + + + +

3 aaa + + + + + + + + +

4 aaaa + + + + + + + +

5 aaaaa + + + + + + +

6 aaaaaa + + + + + +

7 aaaaaaa + + + + +

8 aaaaaaaa + + + +

9 aaaaaaaaa + + +

10 aaaaaaaaaa + +

In other words, a sequence of n identical characters has n� 2 maximal motifs.

Consider a minor variation of the original string s0 = aaaaaXaaaaa. Note that

the number of motifs increase drastically. The motifs, in increasing order of size,

along with the locations list are as follows. We also give the non-maximal motifs

(for instance all the motifs of size 6) for the sake of completeness.

Motif size = 2
[a a a a a X a a a a a]

aa + + + + + + + +

Motif size = 3

[a a a a a X a a a a a]

aaa + + + + + +

a.a + + + + + + +

Motif size = 4

[a a a a a X a a a a a]

aaaa + + + +

a.aa + + + + +

aa.a + + + + +

a..a + + + + + +

135

Motif size = 5

[a a a a a X a a a a a]

aaaaa + +

a.aaa + + +

aa.aa + + +

aaa.a + + +

a..aa + + + +

a.a.a + + + +

aa..a + + + +

a...a + + + + +

Motif size = 6

[a a a a a X a a a a a]

a..aaa + +

aa..aa + +

aaa..a + +

a.aa.a + +

a.a.aa + +

aa.a.a + +

aa...a + + +

a...aa + + +

a.a..a + + +

a..a.a + + +

a....a + + + +

136

Motif size = 7

[a a a a a X a a a a a]

a..aaaa + +

a.a.aaa + +

a.aa.aa + +

a.aaa.a + +

aa..aaa + +

aa.a.aa + +

aa.aa.a + +

aaaa.aa + +

aaa.a.a + +

aaaa..a + +

a...aaa + + +

a.a..aa + + +

a.aa..a + + +

a.a.a.a + + +

a..a.aa + + +

a..aa.a + + +

a....aa + + + +

aa....a + + + +

a.....a + + + + +

137

Motif size = 8

[a a a a a X a a a a a]

aa..aaaa + +

aa.aa.aa + +

aaa.a.aa + +

aaaa..aa + +

aaa..aaa + +

aa.a.aaa + +

aa.a..aa + + +

aa..a.aa + + +

aaa...aa + + +

aa...aaa + + +

aa....aa + + + +

Motif size = 9

[a a a a a X a a a a a]

aaa.a.aaa + +

aaaa..aaa + +

aaa..aaaa + +

aaa...aaa + + +

Motif size = 10
[a a a a a X a a a a a]

aaaa..aaaa + +

9.3 Notion of Redundancy

We saw in the last section an example where a small change in the input string

(replacing just one character by another) increases the number of maximal mo-

tifs from linear to exponential. This suggests that using a notion stronger than

maximality will be useful. We introduce such a notion below.

De�nition 5 (m1 � m2) Given two motifs m1 and m2 with jm1j � jm2j, m1 � m2

holds if m1[j] � m2[j], 0 � j < jm1j.
For example, let m1 = AB::E, m2 = AK::E and m3 = ABC:E:G. Then m1 � m3,

and m2 6� m3.

138

De�nition 6 (Redundant motif) A maximal motif m, with location list Lm, is

redundant if there exist maximal motifs mi, 1 � i � p, such that Lm = Lm1 [
Lm2 : : : [Lmp , (i.e., every occurrence of m on s is already covered by one of the

motifs m1; m2; : : : ; mp).

If jmj = jmij, 8i, motif m is called �xed-size redundant 1.

A motif that is not redundant is called an irredundant motif.

9.3.1 Generating operations

The redundant motifs need to be generated from the irredundant ones, if required.

We de�ne the following generating operations. Let m, m1 and m2 be motifs.

1. Unary yank operator, Y Æ(m), 0 < Æ < jmj.
This is a valid operation when Æ is an integer and m[Æ] is a solid character,

since all the operations are closed under motifs. Y Æ(m) is the substring given

by m[0 : : : Æ].

For example, if m = AB::CDE, then Y 2(m) is not a valid operation since

m[2] is a dot-character. Also, Y 4(m) = AB::C.

2. The following binary operation is valid only if

� jm1j = jm2j and
� For each i, 0 � i � jm1j � 1, m1[i] � m2[i] or m2[i] � m1[i].

Binary plus operator, m1
L
m2.

m = m1
L
m2, where m is such that every solid-character in m is a solid-

character in both m1 and m2, otherwise it is a dot-character. For example if

m1 = A::D::G and m2 = AB:::FG. Then, m = m1
L
m2 = A:::::G.

The operations satisfy the following properties.

1. If m = m1
L
m2, then m � m1 and m � m2.

2. The operation is symmetric, i.e., m1
L
m2 = m2

L
m1.

1This notion of redundancy has also been used by the authors in [16].

139

3. The operation is associative, i.e., m1
L
(m2

L
m3) = (m1

L
m2)

L
m3.

4. The Y Æ operator distributes over
L
, i.e., Y Æ(m1

L
m2) = Y Æ(m1)

L
Y Æ(m2).

These properties are straightforward to verify.

9.3.2 Bounding the number of irredundant motifs

De�nition 7 (Basis) Given a sequence s on an alphabet �, let M be the set of all

maximal motifs on s. A set of motifs B is called the basis of M i� the following

hold:

1. for each m 2 K, m is irredundant with respect to K � fmg, and,

2. every motif m 2 M, and no more, can be generated from K.

In general, jMj =
(2n). The natural attempt now is to obtain as small a basis

as possible. In the following theorem we show that using the notion of �xed-size

irredundancy there can be no more than n2 irredundant motifs where n is the size

of the input.

Theorem 11 Let s be a string with n = jsj and let Bf be a basis using the �xed-

size redundancy and let B be a basis using the general redundancy of De�nition 6.

Then jBf j; jBj < n2.

Proof Sketch. From the de�nition of irredundancy, it follows that if j motifs are

incident on the same location on the input string, then there must exist j distinct

locations with at least one of the j motifs incident on each position. This holds

both for �xed-size redundancy and the general notion of redundancy. Hence, no

location can have more than n motifs incident on it. Thus, it follows that the

number of these motifs can be no more than n2. Hence jBf j; jBj < n2. QED

Back to Examples 1 and 2. Consider Example 1 discussed in the last section.

The motifs shown in bold in the example are mutually irredundant. Each of the re-

dundant motif can be constructed from the motifs in the these using the generating

operations. For example, a::c3b = a:c2c3b
L
ac1:c3b and La::c3b = La:c2c3b [Lac1:c3b.

140

Consider Example 2. For a �xed size of the motif f , 2 � f � 10, in this example,

the motifs shown in italics are redundant with respect to the other motifs of the

same size f . The reader may check the location lists of these motifs to verify the

redundancy of the motifs. The basis with respect to �xed-size redundancy consists

of all the motifs shown in bold which is O(n2) in number. However, a basis using

the general notion of redundancy for the input string is shown below. To compare

it with the basis for the original string s, we reproduce the basis for s as well.

s0 = aaaaaXaaaaa

size motif [a a a a a X a a a a a]

2 aa + + + + + + + +

3 aaa + + + + + +

4 aaaa + + + +

5 aaaaa + +

7 a.aaa.a + +

8 aa.aa.aa + +

9 aaa.a.aaa + +

10 aaaa..aaaa + +

s = aaaaaaaaaaa

size motif [a a a a a a a a a a a]

2 aa + + + + + + + + + +

3 aaa + + + + + + + + +

4 aaaa + + + + + + + +

5 aaaaa + + + + + + +

6 aaaaaa + + + + + +

7 aaaaaaa + + + + +

8 aaaaaaaa + + + +

9 aaaaaaaaa + + +

10 aaaaaaaaaa + +

Notice the similarity in the two bases (for s and s0). Irredundant motif of size 6 is

missing in the basis for s0. The striking similarity suggests that the general notion

141

of redundancy is perhaps a more natural notion.

Further, every redundant maximal motif of s0 can be obtained from its basis

using the generating operations. We give some examples for illustration.

1. a::aa = aaaaa
L
Y 4(a:aaa:a)

L
Y 4(aa:aa:aa) and

La::aa = Laaaaa [La:aaa:a [Laa:aa:aa.

2. aaa:::aa = Y 7(aaaa::aaaa)
L
Y 7(aaa:a:aaa) and

Laaa:::aa = Laaaa::aaaa [Laaa:a:aaa.

QED

9.3.3 Detecting irredundant motifs

The next natural question is whether the irredundant motifs can be detected in

polynomial time. This is true, since in an iterative scheme, which produces motifs

in an order of increasing size f , the following two (polynomial time) tests will

eliminate the redundant motifs:

1. If every occurrence of a motif till this iteration step has been appended with

another motif or a character.

2. If a motif of size f is �xed-size redundant.

142

Chapter 10

Multiple Sequence Alignment 1

Given a set of N sequences, the Multiple Sequence Alignment problem is to align

these N sequences, possibly with gaps, that brings out the best commonality of the

N sequences. Various alignment cost functions [2, 10, 9, 22, 25, 24, 59, 60], have

been used in literature. The general approach to solving the pairwise (N = 2)

sequence alignment problem has been a dynamic programming technique using

di�erent mechanisms of scores which is a function of the edit distance, along with

gap penalties, to evaluate the similarity of the sequences. In [61, 57] the case of

N > 2 has been handled by �rst doing a pairwise alignment for some or all possible

pairs in some order and then building a N -wise alignment from these.

MUSCA2 uses a two-stage approach to the alignment problem by identifying

two relatively simpler sub-problems which deal separately with the two issues,

one of identifying the \local similarities" and the other of aligning the similarities

appropriately [44]. We �rst discover motifs in the N sequences, and then use these

motifs to obtain a \good" alignment. Informally, a motif is a repeated pattern

that appears more than once in a sequence. In the alignment context a motif is a

pattern that appears in two or more input sequences (See the previous chapter for

a formal de�nition). A major point of criticism regarding using motifs is that they

1This chapter also appears as \MUSCA: An Algorithm for Constrained Alignment of Multiple Data

Sequences ", coauthored with Aris Floratos and Isidore Rigoutsos, submitted for publication [44].
2Musca is a constellation in the polar region of the Southern Hemisphere near Apus and Carina. Also,

MUSCA is an anagram of the salient characters in Constrained Multiple Sequence Alignment.

143

are usually very large in number (exponential in input size); however, we show that

the number of motifs relevant to the alignment problem, termed irredundant motifs,

is polynomial in the input size. Moreover, in practice, this number is much smaller

(sub-linear). Thus, using motifs for the alignment helps in at least two ways: (1)

it aids in a direct N -wise alignment, as opposed to composing the alignments from

lower order (say pairwise) alignments and (2) the solution is independent of the

order of the input sequences. We believe that, in practice, these have important

consequences.

The second sub-problem of the alignment problem is that of obtaining a good

alignment. Notice that any arbitrary set of motifs need not necessarily give rise

to an alignment, under the premise that the alignment that uses a motif does not

introduce gaps in the motif. Having obtained all possible motifs in the �rst stage,

this stage involves pruning this set to obtain a (sub)set that gives an alignment.

We solve this problem by mapping the motifs of the �rst stage to a suitable directed

graph. Next we show that obtaining an alignment of the motifs is equivalent to

solving a set-covering problem. Here it is worth comparing this with other graph-

theoretic approaches in literature (although this is only one of the stages of our

approach): �rstly our model is much simpler to compute since a signi�cant hard

part of the problem is tackled in the �rst stage of motif discovery; secondly the

size of our graph is much smaller (the number of vertices for m sequences of size n

each is O(mn), in most cases, whereas it is O(n) in our approach) [61, 57, 30, 50].

It is well known that the multiple sequence alignment problem, in addition to

being a hard-to-solve problem, is also very hard to model to the satisfaction of

evolutionary biologists, geneticists and other users. Does our approach have any

theoretical contributions to the multiple sequence alignment problem in general?

An interesting fallout of our approach is the identi�cation of a user-controlled pa-

rameter, the notion of an alignment number K (2 � K � N): this additional

requirement constrains the alignment to have at least k sequences agree on a char-

acter, whenever possible, in the alignment. This is particularly of interest when a

large number of sequences are being aligned. The utility of the alignment number

is corroborated by the users who view this as a natural constraint while dealing

144

with a large number of sequences.

We also identify two cost functions that could be used to evaluate the \good-

ness" of an alignment while dealing with multiple sequences and give a complete

complexity anlysis for these two problems.

Roadmap. We describe our approach of aligning sequences in Section 10.1. We

discuss the issues involved in using motifs for alignment and present a simple graph

theoretic formulation in Section 10.1.1. We identify the underlying optimization

problem, implicit in our approach, in Section 10.1.2 and give a complexity analysis

for the same. Having shown the hardness of the optimization problem, we present

an approximate solution to this problem by mapping it to a set covering problem

in Section 10.1.3. In Section 10.2 we show results of our algorithm on protein

sequences.

10.1 Sequence Alignment

In the discussion in the last chapter we have dealt with the �rst stage of our ap-

proach, i.e., discovering motifs from input sequences. Similar de�nitions extend

to discovering common motifs from multiple sequences. TEIRESIAS is an eÆ-

cient implementation of the motif discovery problem [51] and we use this in our

experiments.

We obtain the irredundant motifs and the position of the motif in each sequence

it appears in. The o�set list, associated with each motif pi, is a list of two-tuples

(si; li), where si is a pointer to the sequence and li is the o�set in the sequence.

We assume that every o�set list has exactly one occurrence of each sequence. At

the end of the motif discovery step we have motifs, p1; p2; : : : ; pN ; N is the number

of the motifs (not necessarily distinct), each with an o�set list consisting of at

least k � 2 (distinct) sequences and the position in the sequence where the motif

appears.

Can all the motifs be used in an alignment? If the answer is yes, we form an

alignment that respects all the motifs. If the answer is no, we remove the \o�end-

145

(2) motif B

(1) motif A

(4) domain-crossing mismatch

(i) (ii)
(3) overlap mismatches

Figure 10.1: A schematic representation of two motifs A and B shown on the left and

the di�erent ways they can be incompatible (pairwise) is shown on the right. The four

sequences are shown by dashed lines and the motifs are shown as �lled rectangles.

ing" motifs in a manner that optimizes a cost function and gives an alignment. To

investigate this further, we now explore the conditions under which two motifs can

be used simultaneously in an alignment.

De�nition 8 (Motif Overlap) Two irredundant motifs pi and pj overlap if there

exists a sequence s containing both these motifs and the following holds. Let ni and

nj be the sizes of the motifs pi and pj and let li and lj be the locations (o�sets)

in a sequence s respectively, then the motifs overlap if the intervals [li; li + ni] and

[lj; lj + nj] have a non-empty intersection.

De�nition 9 (Pairwise Compatible Motifs) Two motifs, p1 and p2, are pairwise

compatible if there exists an alignment of the sequences that does not introduce gaps

in the motifs p1 and p2.

Lemma 5 Two irredundant motifs pi and pj are pairwise compatible if and only

if none of the following holds:

1. If pi and pj do not overlap in all the sequences, then pi is to the left of pj,

without loss of generality (otherwise a domain crossing mismatch is said to

have occurred).

146

2. If pi and pj overlap in any sequence, then pi is at some �xed distance d to the

left of pj, without loss of generality (otherwise an overlap mismatch is said to

have occurred).

See Figure 10.1 for a schematic diagram. We also give examples of overlap

mismatch and domain crossing mismatches below. Notice that in each of the

cases, there is no alignment that can align both the motifs simultaneously.

1.
(1) A x C D E

(2) A C D E E

(i) A:::E in seq 1 and 2,

(ii) CDE in seq 1 and 2.

(overlap mismatch)

2.
(1) A B C X Y

(2) X Y A B C

(i) ABC in seq 1 and 2,

(ii) XY in seq 1 and 2.

(domain crossing)

We de�ne the alignment using a set of motifs as follows.

De�nition 10 (sequence alignment, compatible set) Given a set S of motifs,

vi1; vi2 ; : : : ; vin;

a motif-alignment of the sequences, s1; s2; : : : ; sm, is the alignment such that in all

the sequences, with no gaps in the motifs, the motifs vi1 ; vi2; : : : ; vin , are aligned (in

all the sequences they appear). If such an alignment exists, the set s1; s2; : : : ; sm,

is called a compatible set.

De�nition 11 (linear ordering of motifs) Given a set of compatible motifs, a con-

sistent ordering of the motifs such that, in every sequence, the set of motifs that

are present in the sequence appear in the left to right order and this ordering is

called the linear ordering.

Example 3 Consider the following sequences and the corresponding irredundant

motifs. The solid-characters of the motifs have been emboldened for easy visual-

ization.

147

(1) (2)

A

B
C

C

C
B

A

(3)

A

B
C

C

(4) (5)

(6)

A

C

B

C

A

B

C

C

A

B

C

Figure 10.2: The motifs are shown as �lled rectangles spanning across the sequences

which is shown as dashed lines. (1) and (2) show con�gurations of motifs A, B and C

that can never give an alignment that respects all the three motifs. (3) shows the graph

(corresponding to (1) and (2)) where each node corresponds to a motif and a directed

edge captures the left-to-right information: notice that the directed cycle in the graph

captures the infeasiblity of the three motifs. (4) shows another con�guration where it is

impossible to obtain an alignment that respects all the three motifs whereas (5) shows

a con�guration that is very similar to (4), yet has an alignment as shown. (6) shows the

graph (corresponding to (4) and (5)) that captures the relationship: notice that closed

path of the graph is not suÆcent to indicate an infeasibility as demonstrated by the two

con�gurations in (4) and (5).

148

(1) H I A J G L B

(2) A M C N B Q D

(3) C O P E D R F

(4) H I S J G E T U F

(5) H I V J G

(i) A:::B in seq 1 & 2,

(ii) C:::D in seq 2 & 3,

(iii) E::F in seq 3 & 4,

(iv) HI:JG in seq 1, 4 & 5.

The consistent linear ordering of the motifs is iv, i, ii, iii and the alignment of the

sequences respecting all the motifs is as follows.

� � � � � � � � �
(1) H I A J G L B � � � �
(2) � � A M C N B Q D � �
(3) � � � � C O P E D R F

(4) H I S J G � � E T U F

(5) H I V J G � � � � � �
The asterisk marked columns show the aligned characters (with at least 2 occur-

rences).

Is it suÆcient to just check for pairwise incompatibility of motifs while seeking

an alignment? We explore this in the next two examples.

Example 4 Consider the following sequences and the corresponding irredundant

motifs. The solid-characters of the motifs have been emboldened for easy visual-

ization.

(1) H I A J G L B

(2) A M C N B Q D

(3) C O P E D R F

(4) H I E J G F

(5) H I K J G

(i) A:::B in seq 1 & 2,

(ii) C:::D in seq 2 & 3,

(iii) E::F in seq 3 & 4,

(iv) HI:JG in seq 1, 4 & 5.

There does not exist an alignment respecting these motifs due to the overlap mis-

match. In other words, any alignment that aligns these motifs in the respective

sequences must introduce gaps in at least one of the motif. Notice that it is not

possible to put the motifs in any consistent left-to-right order, i.e., there is no

linear ordering of the motifs.

149

In the following example we show that having just a linear order is not suÆcient

and we must also remove the mismatch due to domain crossing.

Example 5 Consider the following sequences and the corresponding irredundant

motifs.

(1) A G H D X Y

(2) A I C D J F

(3) X Y C D K F

(i) A..D in sequences 1 and 2,

(ii) CD.F in sequences 2 and 3,

(iii) XY in sequences 1 and 3.

The consistent linear ordering of the motifs is i, iii, ii. but there does not exist an

alignment respecting these motifs due to the domain crossing mismatch.

De�nition 12 (domain crossing error) Given a set of motifs, m1; m2; : : : ; mn, a

domain crossing error is said to occur if there exists a linear ordering of the motifs

mi1 ; mi2 ; : : : ; min, yet there exists no alignment that respects all the n motifs.

Lemma 6 A set of irredundant motifs p1; p2; : : : ; pn is feasible if and only if none

of the following holds:

1. There exist distinct motifs pi and pj such that pi and pj are pairwise incom-

patible.

2. There exists a non-empty subset of the motifs without a linear ordering.

3. There exists a non-empty subset of the motifs that demonstrate domain cross-

ing error.

10.1.1 The Graph-theoretic Formulation

Next we wish to capture these conditions in a graph as follows. Construct a

directed graph G = (V;E) where every motif pi corresponds to a vertex vi, thus

N = jV j. The directed edges are introduced as follows:

1. There is no edge between two vertices where the two corresponding motifs

do not occur simultaneously in any sequence.

150

(1.1)

(2)

C

C
B

A

(2.1)

B
A

(2.2)

(2.3)

(1.2)

(1.3)

A

B

A
C

C

B
C

C

C
B

C

C
A

C

(1)

A

B
C

C

Figure 10.3: (1) and (2) show con�gurations of motifs that can never give an alignment

that respects all the three motifs. (1.1) to (1.3) show the alignments by ignoring exactly

one motif, viz., motif C, B and A respectively. (2.1) to (2.3) show similar alignments for

the con�guration shown in (2).

151

A

B
C

C

(1)

B
C

(3)

C

(4)

(2)

A C

C

A

B

Figure 10.4: (1) shows a con�guration of motifs that can never give an alignment that

respects all the three motifs. (2) to (4) show the alignments by ignoring exactly one

motif, viz., motif C, A and B respectively.

2. If pi is to the left of pj in every sequence that the two motifs are present,

then a directed edge is placed from vi to vj. This is to indicate that in the

alignment the motif pi appears to the left of pj. The edges are labeled as

follows:

(a) Label forbidden, if the motifs corresponding to v1 and v2 are not pairwise

compatible.

(b) Label overlap, if the motifs corresponding to v1 and v2 overlap.

(c) Label nonoverlap, if the motifs corresponding to v1 and v2 are pairwise

compatible but do not overlap.

The linear ordering of motifs is captured by checking for cycles in the graph. How-

ever the domain crossing mismatch requires a more careful handling as described

below.

152

Handling domain crossing mismatches. We associate a distance Dv1v2 with

every edge that is not labeled forbidden. This is used to compute the feasibility

of a collection of motifs corresponding to a solution; this does not contribute to

the cost of the alignment. (We discuss the weight corresponding to the cost in the

next section.) Let pi and pj be the two motifs corresponding to the vertices. Then

if d is the minimum of the distance between the occurrences of the two motifs in

every sequence that both of them appear in, Dvivj = d.

To detect the domain crossing mismatches of motifs (that are pairwise com-

patible), we de�ne the notion of a consistent graph w.r.t. a vertex.

De�nition 13 Let G = (V;E) be a labeled, weighted, directed, graph with weights

on the edge uv given by D(u; v) and a label 2 fforbidden; overlap; nonoverlapg.
A path, P, is valid if it has no edges labeled forbidden. Further, a valid path, P, is
called an overlap-path if all the edges in the path are labeled overlap. The weight

of the valid path P, DP, is the sum of the weights of its constituent edges.

Let p 2 V . The graph is consistent w.r.t p if 8 q 2 V , for all pairs of vertex-

disjoint valid paths from p to q, P1 and P2,

1. DP1 = DP2, if P1 and P2 are both overlap-paths, or,

2. DP1 � DP2, if P1 is an overlap-path and P2 is not.

Example 6 Consider the example 5. We construct the corresponding graph as

shown below.

vi vii
� 4

� 2= 2
(non-overlap)

(non-overlap)

(overlap)

viii

The vertices corresponding to the motifs are vi, vii and viii. Let P1 be the overlap-

path vi ! viii and let P2 be the nonoverlap-path vi ! vii ! viii. Further, DP1 = 2

and DP2 = 6. Thus the graph is not consistent w.r.t the vertex vi since DP1 6� DP2 .

153

We now present the straightforward observation that relates the set of compat-

ible motifs to a feasible subgraph.

Lemma 7 The following two statements are equivalent:

� Given a subset of motifs p1; p2; : : : ; pn from the set of all motifs from m se-

quences of input, the subset is compatible, if the following holds:

1. the motifs are not pairwise incompatible,

2. there exists a linear ordering of p1; p2; : : : ; pn, and,

3. there is no domain crossing mismatch in p1; p2; : : : ; pn.

� Given a subset of vertices v1; v2; : : : ; vn, constructed as de�ned in this section.

The induced subgraph on v1; v2; : : : ; vn is feasible, if the following holds:

1. there is no edge labeled forbidden in the induced subgraph,

2. the induced subgraph is acyclic, and,

3. the induced subgraph is consistent w.r.t. every vertex vi, 1 � i � n.

10.1.2 Measuring the quality of an alignment

We have outlined our approach to solving the multiple sequence alignment problem

in the preceding sections. Now we identify the underlying optimization function

and give two cost functions that arise naturally in our approach. Our motivation

for these cost functions comes naturally from our use of common motifs in the

sequences to align them.

Problem 1 (k-MSA Problem) Given m sequences on an alphabet set, �, and a

natural number k, �nd an alignmentA of these sequences so that CA is is maximized

where CA is the number of characters that match (exactly) in at least k sequences,

where k is the alignment number.

Problem 2 (k-MSAmax Problem) Given m sequences on �, and a natural number

k, �nd an alignment A of these sequences so that CA is maximized where CA is the

number of columns that have at least k identical characters.

154

Let 1 � � denotes the upper bound on the polynomial time approximation

factor of the MC problem.

Lemma 8 k-MSA is NP-hard. Further, there exists a constant � > 0 such that

approximating it within a factor of 1� � is NP-hard. Also, achieving an approxi-

mation ratio 1� �=6 for this problem is NP-hard.

Proof Sketch. Consider the special case where the gaps appear only at the left

end or the right end of every sequence in the alignment. Further, let the gap size

be at most 1 which is either at the left end or at the right end. For this case, we

can give a gap-preserving reduction of an instance of the maxcut problem to an

instance of the k-MSA problem. The proof follows along the lines of the proof of

the hardness result for the binary shift cut problem in [41] and Chapter 8. QED

Lemma 9 k-MSAmax is NP-hard. Further, there exists a constant � > 0 such that

approximating it within a factor of 1�� is NP-hard. Also, if K denotes the number

of columns that have at least k characters perfectly aligned, then there does not exist

a polynomial time algorithm (assuming P 6= NP) that guarantees the estimation of

(1��=6)K.

Proof Sketch. We show that if we have a polynomial time approximation scheme

(PTAS) for k-MSAmax, we have a PTAS for k-MSA, which is a contradiction. Let

~X denote an approximate solution and X� denote the optimal solution. Then if

k-MSAmax has a PTAS let
~N
N�
� � for some 0 < � � 1. Note that N� is the number

of columns that have at least k identical characters. Let ~C � ~Nk, then C� � N�k.

Hence we have
~C

C� �
~Nk

N�k
� �:

This concludes the argument. QED

The reader may notice the connection between the motifs and the k-MSA and

the k-MSAmax optimization problems. It is quite clear that if motif p is used in

an alignment, the cost that p contributes to the optimal con�guration is � ks for

the k-MSA problem and s for the k-MSAmax problem, where s is the number of

solid-characters in the motif p. Now, we state the following lemma in support of

our use of only irredundant motifs in the alignment process.

155

Lemma 10 If p is a redundant motif, then using the motif p does not improve the

cost of the k-MSA and the k-MSAmax optimization problems.

Proof Sketch. Let p be rendered redundant by motifs p1; p2; : : : ; pn, n � 1.

By de�nition, motif p has less number of solid-characters than each of pi, 1 �
i � n. Thus if an alignment can use motif p, it can certainly use all the motifs

p1; p2; : : : ; pn, giving a larger number of solid-characters; thus a higher cost for the

k-MSA and the k-MSAmax optimization problems. QED

10.1.3 Algorithm to compute the \best" alignment

Given a set of incompatible motifs, the set can be grouped into sets (not neces-

sarily disjoint) such that each set violates exactly one of the three conditions of

Lemma (6). These sets are called basic incompatible sets. Next, it can be easily

shown that we can remove exactly one motif from a basic incompatible set to make

it compatible. See Figures (10.3) and (10.4) for examples.

The algorithm proceeds in the following three steps.

1. Detect the basic infeasible (sub)sets.

2. Eliminate motifs to obtain a feasible set that maximizes the cost.

3. Render the alignment.

Step 1. In this step we form subset of vertices that lead to incompatibility of

the motifs. Using lemma (7), we compute the following sets:

1. Construct the sets F1, F2, : : :, Fnf where each set consists of two vertices

which are the end points of an edge labeled Forbidden. This is done by simply

scanning all the edges and collecting the end points of the edges labeled

Forbidden.

2. Construct the sets C1, C2, : : :, Cnc where each set consists of vertices that

form a directed cycle in the graph. All the cycles are captured by carrying

out a depth �rst search (DFS) of the graph.

156

3. Construct the sets P1, P2, : : :, Pnp where each set consists of vertices that form

a closed path in the graph. These are captured by carrying out a breadth

�rst search (BFS) rooted at each vertex.

It is easy to see that the basic incompatible sets are

F1; F2 : : : ; Fnf ; C1; C2 : : : ; Cnc; P1; P2 : : : ; Pnp:

Step 2. Set-covering problem. An instance (X;Y) of the set-covering problem

consists of a �nite set X and a family Y of subsets of X, such that every element

of X belongs to at least one subset in Y: X = [S2YS. We say that a subset S 2 Y
covers its elements. The problem is to �nd a minimum-size subset A � Y whose

members cover all of X: X = [S2AS. Any A satisfying this condition covers X.

See [13] for details on this problem.

We construct an instance of a set cover problem (the dual of our problem) as

follows. Let

fv1; v2; : : : ; vng = F1 [F2 : : : [Fnf [C1 [C2 : : : [Cnc [P1 [P2 : : : [Pnp
The elements of the the set (X of the set cover problem) are

F1; F2 : : : ; Fnf ; C1; C2 : : : ; Cnc; P1; P2 : : : ; Pnp:

The subset Si corresponds to each vi, 1 � i � n (where Y = fS1; S2 : : : ; Sng), and
is de�ned as

Si = fFljvi 2 Fl; 1 � l � nfg [fCljvi 2 Cl; 1 � l � ncg [fPljvi 2 Pl; 1 � l � npg:

Thus Si denotes all the basic incompatible set that has a common element vi,

and removing the motif corresponding to vi suÆces to make all the corresponding

basic sets compatible. Now, it is easy to see that a solution to the set-covering

problem gives the minimum number of motifs that need to be removed so that the

remaining set of motifs is compatible.

Associating weights to Si which reect the weight of each motif (depending

on the cost function), gives a weighted set cover problem. The set-covering prob-

lem is known to be MAX SNP hard and the greedy algorithm is the best known

157

approximation algorithm for the problem, assuming P 6= NP [4]. To reect the

underlying cost function a weight is associated with every motif in the following

manner. Let c be the number of solid characters in the corresponding motif, pi,

and let the number of sequences containing pi be l, then for the k-MSA problem

the associated weight is cl and for k-MSAmax it is c. We ignore the change in cost

due to the common cost of a set of motifs 3.

Step 3. We de�ne a block to be an induced subgraph of the feasible graph where

all the edges are labeled overlap. For each block, we compute an ordering of the

motifs pij1, p
i
j2
, : : :, piji for each sequence i. Such a linear ordering of the motifs

exists, since the set of motifs is compatible. From the original sequence si, we

obtain the �llers (if any) between two consecutive motifs as f i0, f
i
j1
, f ij2, : : :, f

i
ji
. f i0

is the leftmost portion, possibly empty. We obtain an alignment of the sequences

by appropriately aligning each (pijl+f
i
jl
) and f i0, l = 1; 2; : : : ; ji, �lling the gaps

with `-'. The symbol `+' denotes a string concatenation operation. The alignment

is such that each motif of a sequence is perfectly aligned with the corresponding

motif in all the other sequences.

10.2 Experimental Results

In this section we show samples of some of results of our implementation. Our

experience has shown that, the clique computation helps in trimming down the size

of the problem drastically since the pairwise incompatibility succeeds in winnowing

out spurious alignments quickly.

The characters appearing in the sequences represent the amino acid residue

using the standard notation. For exposition, consider Figure Result-1.

1. The uppercase letter shows the aligned characters.

2. The lowercase letters are portions of the input sequence that the algorithm has

not taken into account (by picking up a certain set of compatible motifs { see Step

3 of the algorithm).

3For a more accurate computation of the cost an appropriate common cost due to a set of overlapping

motifs must be used.

158

3. The dots (`.') represent disagreeing characters along the vertical column or

\don't cares".

4. The dashes (`-') represent the gaps enforced by the algorithm. We omit the

input sequences due to space constraints.

5. Some portions of the input has been removed to avoid clutter in the presentation

{ this is denoted by `=='.

The amount of time taken in these cases is of the order of few minutes.

We show the results on three sets of data: the �rst set is on a highly similar data

(histones) set and the second set is on a fairly dissimilar (cytosine-speci�c DNA

methylases listed in PROSITE database Release 13 entry accession #PS00094)

data set. The �rst data set has 20 sequences of about 200 residues each; the

second has 46 sequences with lengths going upto 500 residues. For the second

example we have truncated some of the sequences in the alignment and show the

output in Figure 2 (that runs across pages due to the size).

(1) ARTKQTARKSTGGKAPRKQL.TKAA.K.AP..GGVKKPH..RPGTVAL

(2) ARTKQTA.KSTGGKAPRKQL..KAA.K.AP..GGVKKPH...PGTVAL

(3) ARTKQTARKSTGGKAPRKQL.TKAA.K.AP..GGVKKPH..RPGTVAL

(4) ARTKQTARKSTGGKAPRKQL.TKAA.K.AP..GGVKKPH..RPGTVAL

(5) ARTKQTARKSTGGKAPRKQL.TKAA.K.AP..GGVKKPH..RPGTVAL

(6) ARTKQTA.KSTG.KAPRKQL.TKAA.K.AP..GGVKKPH..RPGTVAL

(7) == R.S..G.A.R.Q..TK.A.......GGVK.........V--

(8) ARTKQTARKSTGGKAPRKQL.TKAA.K.AP..GGVKKPH..RPGTVAL

(9) ARTKQTARKSTGGKAPRKQL.TKAA.K.AP..GGVKKPH..RPGTVAL

(10) ARTKQTARKSTGGKAPRKQL.TKAA.K.AP..GGVKKPH..RPGTVAL

(11) ARTKQTARKSTGGKAPRKQL.TKAA.K.AP..GGVKKPH..RPGTVAL

(12) ARTKQTARKSTGGKAPRKQL.TKAA.K.AP..GGVKKPH..RPGTVAL

(13) ARTKQTA.KSTGGKAPRKQL..KAA.K.AP..GGVKKPH...PGTVAL

(14) == R.S...........TK.A.......GGVK------------

(15) == R.S...........TK.A.......GGVK------------

(16) sg-R.K.......GG.A.Rhrkvlrdni......GGVK------------

(17) sg-R.K.......GG.A.Rhrkvlrdni......GGVK------------

159

(18) sg-R.K.......GG.A.Rhrkilrdni......GGVK------------

(19) sg-R.K.......GG.A.Rhrkvlrdni......GGVK------------

(20) sg-R.K.......GG.A.Rhrkilrdni......GGVK.........V--

(1) REIRRYQKSTELLIR..PFQRLVREIAQDFKT.LRFQ.SAV.ALQEA.EAYL

(2) REIRR.QKSTELLIR..PFQRLVREIAQDFKT.LRFQ.SA..ALQE..EAYL

(3) REIRRYQKSTELLIR..PFQRLVREIAQDFKT.LRFQ.SAV.ALQEA.EAYL

(4) REIRRYQKSTELLIR..PFQRLVREIAQDFKT.LRFQ.SAV.ALQEA.EAYL

(5) REIRRYQKSTELLIR..PFQRLVREIAQDFKT.LRFQ..A..ALQEA.EAYL

(6) .EI.RYQKSTELLI...PFQRLVREIAQDFKT.LRFQ.SAV.ALQEA.EAYL

(7) ----R...STELLI...PFQRLV.EIAQDFKT.LRFQ..A..ALQEA.EA..

(8) REIRRYQKSTELLIR..PFQRLVREIAQDFKT.LRFQ.SAV.ALQEA.EAYL

(9) REIRRYQKSTELLIR..PFQRLVREIAQDFKT.LRFQ.SAV.ALQEA.EAYL

(10) .EI..YQKSTELLIR..PFQRLVREIAQDFKT.LRFQ.SAV.ALQEA.EAYL

(11) REIRRYQKSTELLIR..PFQRLVREIAQDFKT.LRFQ.SAV.ALQEA.EAYL

(12) REIRRYQKSTELLIR..PFQRLVREIAQDFKT.LRFQ.SAV.ALQEA.EAYL

(13) REIRR.QKSTELLIR..PFQRLVREIAQDFKT.LRFQ.SA..ALQE..EAYL

(14) R..RR-------L.R.....R....I..D....L......V-----------

(15) R..RR-------L.R.....R....I..D....L......V-----------

(16) R..RR-------L.R.....R....I.......Lkvflen------------

(17) R..RR-------L.R.....R....I.......Lkvflen------------

(18) R..RRggvkrisa--------LV.Eetravlklflen---------------

(19) R..RR-------L.R.....R....I.......Lkiflen------------

(20) R..RR-------L.R.....R....I.......Lks..S.........E---

(1) V.LFEDTNLCAIHAKRVTIMPKDIQL.RRIRGERA

(2) V.LFEDTNL.AIH.KRVTI..KD..L.RR.RGER

(3) V.LFEDTNLCAIHAKRVTIMPKDIQL.RRIRGERA

(4) V.LFEDTNLCAIHAKRVTIMPKDIQL.RRIRGERA

160

(5) V.LFEDTNLCAIHAKRVTIMPKDIQL.RRIRGERA

(6) V.LFEDTNLCAIHAKRV.IMPKDIQL.RRIRGERA

(7) V.LFEDTNLCAIHAK.VT..PKDIQL...I.GERA

(8) V.LFEDTNLCAIHAKRVTIMPKDIQL.RRIRGERA

(9) V.LFEDTNLCAIHAKRVTIMPKDIQL.RRIRGERA

(10) V.LFEDTNLCAIHAKRVTIMPKDIQL.RRIRGERA

(11) V.LFEDTNLCAIHAKRVTIMPKDIQL.RRIRGERA

(12) V.LFEDTNLCAIHAKRVTIMPKDIQL.RRIRGERA

(13) V.LFEDTNL.AIH.KRVTI..KD..L.RR.RGER

(14) V.....T.......K.VT.......L.R..Rtlygfgg

(15) V.....T.......K.VT.......L.R..Rtlygfgg

(16) V.....T.......K.VT.......L.R..Rtlygfgg

(17) V.....T.......K.VT.......L.R..Rtlygfgg

(18) V.....T.......K.VT.......L.R..Rtiygfgg

(19) V.....T.......K.VT.......L.R..Rtlygfgg

(20) V.....T.......K.VT.......L.R..Rtlygfgg

Figure Result-1: (Histones) 40 protein sequences, with an average size of 150

residues, have been aligned with an alignment number k = 10. The number of

maximal motifs for this is N = 648 and the size of the resulting feasible set of

motifs is 22.

(1) llpkppahhphyafrfIDLFAGIGG...GFE..G == E....A...Y..N ==

(2) mskanakysfv-DLFAGIGG....L...G == E.D..A...Y..N ==

(3) mekklI.LF.G.GG...GF..AG == ------------- ==

(4) mkfrkge--LF.G.GG..LG...Ak == ekfgei------- ==

(5) sndeiqyksdkfnvls--LF.G.GG..LGFE.AG == -----A...Y..N ==

(6) mkvls--LF.G.GG..LGLE--- == ------------- ==

(7) mqqfrfIDLFAGIGG..LGLE..G == E.D..A...Y..N ==

(8) mlqias--LFAG.GG..LGFE..G == E.D..A...Y..N ==

(9) mkikfv-DLFAGIGG...GFE.A == E.D..A...Y..N ==

(10) msklrvms--LF.GIG.....L...G == E.D..A...Ycai ==

161

(11) tnnnfekqnrgikltfIDLFAGIGG..LGFE--- == E.D..A...Y..N ==

(12) msklrvms--LF.GIG.....L...G == E.D..A...Ycai ==

(13) iiekvdfrtdkinvls--LF.G.GG..LGFE.AG == -----A...Y..N ==

(14) msklrvms--LF.GIG.....L...G == E.D..A...Ycai ==

(15) mgklrvms--LF.GIG.....L...G == ------------- ==

(16) msfrtle--LF.GI......Lrgis == ------------- ==

(17) mlkfIDLFAGIGG..LGFE.A- == E.D..A...Y..N ==

(18) mkqfrfIDLFAGIGG..LGLE..G == E.D..A...Y..N ==

(19) mniIDLFAG.GG...GF..AG == E.D..A...Y..N ==

(20) mktIDLFAG.GG..LGF..AG == -----A...Y..N ==

(21) mvgavIDLF.G.GG...GL...G == ------------- ==

(22) ivkpveppkeirlatl-D.FAG.GG...GL..AG == anelaaklteeqk ==

(23) psepeieiklpklrtl-D.F.G.GG...GF..AG == kgdvem------- ==

(24) pkepeaaiklpklrtl-D.F.G.GG...GF..AG == kgdvem------- ==

(25) mkcv-DLF.G.GG..LGFE.AG == E....A...Y..N ==

(26) mqqfrfIDLFAGIGG..LGLE..G == E.D..A...Y..N ==

(27) mlpeapahhpdyafrfIDLFAGIGG...GFE..G == E....A...Y..N ==

(28) mklls--LF.G.GG..LGFE.AG == ------------- ==

(29) mkknimglslfssa-----GIGeyflsrvgid == ------------- ==

(30) mktIDLFAG.GG..LGF..AG == -----A...Y..N ==

(31) mkinamslfssa-----GIGeldlhkgnln == ------------- ==

(32) mieikdkqltglrfIDLFAG.GG..L.LE..G == E.D..A...Y..N ==

(33) lfepesnpnlrekftfIDLFAGIGG........G == E.D..A...Y..N ==

(34) mnlI.LF.G.GG..LGF..AG == ------------- ==

(35) mnmdiasf---F.G.GG..LGF..AG == ------------- ==

(36) thieerkdayssdfkfIDLF.GIGG.....E..G == E.D..A...Y..N ==

(37) mkiI.LF.G.GG..LGFE.AG == ------------- ==

(38) lrlnrpdwnviegdvr--LF.G.G.....L...G == ------------- ==

(39) mfkiIDLFAGIGG..LGFE.A- == E.D..A...Y..N ==

(40) pdtppypnnengryrmIDLFAGIGG..LGF---- == E.D..A...Y..N ==

(41) mnkikvve--LFAG.GG..LGLE--- == ------------- ==

162

(42) dvsnvrknkdynvfet---FAG.GG..LGLE.AG == ------------- ==

(43) peiapfenrktakykmIDLFAGIGG..LGF---- == E.D..A...Y..N ==

(44) mlrvfea---FAG.G.....Likan == ktfenradklggq ==

(45) tedilklagvssgnei------------------ == ------------- ==

(46) mskvenktkklrvfea---FAGIG.....L---- == ------------- ==

(1) P..D.L..GFPCQ.FS.AG......D.RG.LF....RI.....

(2) ---D.L.GGFPCQ.FS..G...G....RG.LF....RI.....

(3) ---D...GG.PCQ.FS.AGKR.G..D.RG.L.....R......

(4) ---D....GFPC...S..G...G.....G.L------I.....

(5) P......GGFPC..FS.AG.R----D....L.....R......

(6) ---D...GGFPCQ.FS.AGKR.GF-------------------

(7) P..D...GG.PCQ..S.AGK...F.D.RG.L.....R......

(8) P..D.L..GFPC..FS.AG.R.GF.D--G.LF....R......

(9) P..D.L..GFPCQ.FS.AGK..GF.D.RG.LF....R......

(10) P..D.L..GFPC..FS.AG.R.G--D.RG.LF...........

(11) P..D.L..GFPCQ.FS..GKR.GF...R--------RI.....

(12) P..D.L..GFPC..FS.AG.R.G--D.RG.LF...........

(13) P......GGFPC..FS.AG.R....D....L.....R......

(14) P..D.L.GG.PCQ.FS.AG.R.GF.D.RG.LF...........

(15) P..D.L.GG.PCQ.FS.AG.R.GF.D.RG.LF...........

(16) ---D....GFPC..FS.AG.R.GF------L.....R......

(17) P..D.L..GFPCQ.FS.AGK..GF.D.RG.LF....RI.....

(18) P..D...GG.PCQ..S.AGK...F.D.RG.L.....R......

(19) ---D...GG.PCQ.FS..G.R----D....LF....R......

(20) -------GG.PCQ.FS.AGKR----------------I.....

(21) ----------PCQ..Sqytkksrtgtkwq-L.....R......

(22) ---D...GG.PCQ..S---------------------------

(23) -----L.GG.PCQ.FS---------------------------

(24) -----L.GG.PCQ.FS---------------------------

163

(25) ---D...GG.PCQ.FS.AGKR----------------I.....

(26) P..D...GG.PCQ..S.AGK...F.D.RG.L.....R......

(27) P..D.L..GFPCQ.FS.AG........RG.LF....RI.....

(28) P..D...GG.PCQ..S.AG...G..D.RG.LF....RI.....

(29) ----------PCQ..S.AGKnrdvsnmandnrnylimyviami

(30) -------GG.PCQ.FS.AGKR----------------I.....

(31) ----------PCQ..S..GKnkhqdh-----------------

(32) P..D.L..GFPCQ.FS..GK..GF.D.RG.LF....RI.....

(33) ---D.L..GFPCQ.FS.AGKR.GF.D.RG.LF.....I.....

(34) P..D...GG.PCQ..S..G...G..D.RG.LF....RI.....

(35) P......GG.PCQ..S.AG...G..D.RG..F-----------

(36) P..D.L..GFPCQ.FS..GKR.GF-------------------

(37) ---D...GG.PCQ..S.AG...G..D.RG.LF....RI.....

(38) ---D.L.GG.PC..FS.AGK..G..D....LF....R......

(39) P..D.L..GFPCQ.FS.AG...GF.D.RG.LF....RI.....

(40) P....L.GGFPC..FS.AG...GF.D.RG.LF....RI.....

(41) ---D...GGFPCQ..S.A----------G.LF....R......

(42) ---D.L.GG.PCQ.FS.AGKR.GF.D.RG.LF.....I.....

(43) P..D.L.GGFPCQ.FS.AGK..GF.D.RG.LF....RI.....

(44) dfftys---FPCQ..S.AG...G.....Gtrssllwecck...

(45) ---D...GG.PCQ.FS.AGKR.G..D.RG..F-----------

(46) -----L...FPCQ..S..G...G.....Gtrsgllweierald

(1) P..F.LENVK.L.....G == GY.......Ngpddpkiidgkhfl.VG

(2) P....LENV..L------ == --------L.A...G.PQ.RERV.I

(3) P..F..ENVKG......G == -Y......LNA.D.GVPQ.RERV.IVG

(4) P..F..ENV.GL.....G == -------------YGVPQ.R.R..IVG

(5) P..F..ENVKG......G == GY......LNA.DYGVPQ.RERV.IVG

(6) P..F..ENVKGL------ == --------LNA..YGV.Q.RERV...G

(7) P..F..ENVKGL------ == GY......LN....GV.Q.R.RV.IVG

164

(8) P....LENVK.L.....G == GY......LNA.D.G-PQ.RER..IVG

(9) P..F.LENV.GL.....G == GY......LN....GVPQ.R.R..I.G

(10) P ==

(11) P..F.LENVKGL.....G == -Y........A...G.PQ.RER..IVG

(12) P....LENVKGL.....G == GY......LN.....VPQ.RERV.I.G

(13) P..F..ENVKG......G == GY......LNA.DYGVPQ.RERV.I.G

(14) P..F..ENVKGL.....G == GY......LN.....VPQ.RER..I.G

(15) P..F..ENVKGL.....G == GY......LN.....VPQ.RER..I.G

(16) P....LEN ==

(17) P..F.LENV.GL.....G == --------LN.....VPQ.R.RV.IVG

(18) P..F..ENVKGL------ == GY......LN...YGV.Q.R.RV.I.G

(19) P..F..ENV.G------- == GY......LNA.DYGVPQ.R.RV...G

(20) P.....ENV--------- == GY......L.A...GVPQ.R.R....G

(21) P.....ENV........G == -------------YG.PQ.R.R

(22) P....LENV........G == GY......L.A..YGV.Q.R.R..I

(23) P....LENV--------- == GY......L.A..YGV.Q.R.R..I

(24) P....LENV--------- == GY......L.A..YGV.Q.R.R..I

(25) P.....ENV--------- == GY......L.A...GVPQ.R.R....G

(26) P..F..ENVKGL------ == GY......LN....GV.Q.R.RV.IVG

(27) P..F.LENVK.L.....G == ----------------PQ.RER...VG

(28) P..F..ENVKG------- == GY......LNA.DYGV.Q.RERV..VG

(29) kklk..ENV..L------ == -Y......L.A.DYG.PQ.R.R..I

(30) P.....ENV-Y......LNA.DYG.PQ.RER

(31) ---F...N...Lifevfe == nvprfiemyfpyngqlllleeilkikyask

(32) P.....ENVK.......G ==

(33) P..F.LENVKGL.....G == ---------NA...GVPQ.RER..IVG

(34) P..F..ENVKG------- == GY......LNA.DYGV.Q.R.RV...G

(35) P..F..ENV.G------- == GY......LNA.DYGVPQ.R.RV.IVG

(36) -----LENV.GL.....G == GY......L.A...G.PQ.R.R...Vaflnqnihfe

(37) P..F..ENV.G------- == GY.......NA.DYGV.Q.R.RV...G

(38) P....LENV.GL------ == GY......L.A.DYG..Q.R.RV..Valkneytnff

165

(39) P..F.LENVK.L.....G == GY......L.A.D.G.PQ.RER...VG

(40) P..F.LENVK.L.....G == -Y........A.D.GVPQ.RER..IVG

(41) P....LENV..L------ == GY.......NA.DYG..Q.R.RV.I.G

(42) P..F..ENV.GL.....G == GY......LN.....V.Q.RER..I.G

(43) P..F.LENVK.L.....G == -Y........A.D.G.PQ.RER..IVG

(44) P.....ENVK.L------ == GY......LNA.D.G.PQ.RERV

(45) P.....ENV.GL------ == GY.......N....GVPQ.RERV.I

(46) stekndlNV..L------ == GY......LNA.D.G..Q.R.RV

Figure Result-2: Cytosine-speci�c DNA methylases. 46 protein sequences, some of

which were upto 500 residues long, have been aligned with an alignment number

k = 18. The number of maximal motifs for this is N = 810 and the size of the

resulting feasible set of motifs is 132.

(1) altekqeal...s.e..k.n.p..s.......i.e.ap..k..fsflkdsn

(2) mstlegrgFTe.QEALV..S....K.N.......F...I.E.AP.A..lFsfLkdsn

(3) sssevnkvFTe.QEALV.......K.N.......F...I.E.AP.Ak.lFs.Lkdsp

(4) msssevdkvFTe.QEALV..S....K.N.......F...I.E.AP.Ak.lFs.Lkdsp

(5) gvlt..q.alv.ss.e.f..n.p.....f....le.ap.ak.lfsflkgsse

(6) msFT.KQEALV.sS.E.FK.N.p..s..Fy...lEkAPaAk.lFsfLknsa

(7) msFT.KQEALV.sS.E.FK.N....s..Fy..IlEkAPaAk.lFsfLkdsa

(8) gFT.KQEALV.sS.Ef----k.n.p..s..fy...lekapaak.lfsflk

(9) gaFTeKQEALV.sS.E.FK.N.p..s..Fy..IlEkAPaAk.lFsfLangv

(10) gFTeKQEALV.sS...FK.N....s..Fy..Il.kAP.Ak..FsfLkdsa

(11) galte.q.alv.ss.e.f..n.p.....f....le.apaak.lfsflkgtse

(12) mgFTeKQEALV.sS.E.FK.N.p..s..fy..ilekapaak..fsflkdta

(13) gFTeKQEALV..S.E.FK.N.p..s..Fy..IlEkAPaAk..FsfLkdsd

(14) gaFTeKQEALV.sS.E.FK.N.p..s..Fy..IlEkAPaAk.lFsfLsngv

(15) mgFT.KQEALV.sS.E.FK.N.p..s..fy..ilekapaak..fsflkdsa

(16) gFTeKQEALV..S.E.FK.N.p..s..Fy..IlEkAPaAk..FsfLkdfd

(17) gaFT.KQEALV.sS.E.FK.N.p..s..Fy..IlEkAP.Ak.lFsfLangv

(18) mgFT..QEALV.sS.E.FK.N.p..s..Fy..IlEkAPaAk..FsfLkdsa

166

(19) gaFTeKQEALV.sS.E.FK.N.p..s..Fy..IlEkAPaAk.lFsfLangv

(20) vaFTeKQ.ALV.sS.E.FK.N.p..s..Fy..IlEkAPaAk.lFsfLangv

(21) mggFTeKQEALV.sS.E.FK.N.p..s..Fy..IlEkAPaAk.lF.fLangv

(1) eipen----NPkL..HA...F.....sA..Lr..G..vwdn==LG.iH......DP

(2) vpler----NPkL..HA..vF.....sA.qLr..G.vtvr==kLG..H...GV.D-

(3) vpleq----NPkL..HA..vF.....sA.qLr..Gkatv==sdlg.ih...gv...

(4) ipleq----NPkL..HA..vF.....sA.qLr..G==.snlkrLG.iH...GV---

(5) vpqn-----NP.L..HA.kvF......A.qL...G.vasda==LG..H..KGV.D.

(6) evqds-----p.l..haekvf..vrdsa.qlr..g.vv...atLG.iH..KGV.DP

(7) gvqds-----p.l..haekvf..vrdsa.qlr..g.vv...aaLG.iH..KGV.DP

(8) dtagveds--pkl..hae.vf..vrdsa.qlr..g.vv...atLG.iH..KGV..P

(9) dpt------NPkL..HAek.F..vrdsA.qL...G.vv...a-L..iH..K.V.DP

(10) gvvds-----pkl..haekvf..vrdsa.qlr..g.vvldgkd+g.ih..kgv.dp

(11) vpqn-----NP.L..HA.kvF..v...A.qL...G.vvtda==LG..H..KGV.D.

(12) gvqd----s-pkl..haekvf..vrdsa.qlr..g.vv...atLG.iH..KGV.DP

(13) gvpqn----NP.L..HAekvF..vrdsA.qLr..G.vv...asLG..H..KGV.DP

(14) dps------NPkL..HAek.F..vrdsA.qL...G.vv...a-LG.iH..K...DP

(15) gvqd----s-pkl..haekvf..vrdsa.qlr..g.vv...atLG.iH..KGV.DP

(16) evpqn----NP.L..HAekvF..vrdsA.qLr..G.vv...asLG..H..KGV.DP

(17) dpt------NPkL..HAek.F..vrdsA.qL...G.vv...a-LG.iH..K...DP

(18) gvqds-----p.l..haekvf..vrdsa.qlr..g.vv...atLG.iH..KGV.DP

(19) dpt------NPkL..HAe..F..vrdsA.qLr..G.vv...a-LG.iH..KGV...

(20) dpt------NPkL..HAek.F..vrdsA.qL...G.vv...a-LG..H..K.V.DP

(21) dpt------NPkL..HAek.F..v.dsA.qLr..G.vv...a-LG..H..KGV.DP

(1) hF.V.K.ALL.TIKEA....WS.E...AW..AY..L...IK..mke

(2) hF.V.K.ALL.TIKEA....WS.E...AW..AYD.L..aIK..mkpss

(3) hf.v...all.tikea....ws.e...aw.vayd.l..aik..mkpsst

167

(4) hFetrf-all.tikea....ws.e...aw..ayd.l..aik..mkpsst

(5) hF.VVKEA.LKTIKE..G..WS.EL..AW..AYD.LA..IKK.mkdaa

(6) hF.VVKEALLKTIKEA.G..WS.EL..AW.vAYD.LA.aIKK.ms

(7) hF.VVKEALLKTIKEA.G..WS.EL..AW.vAYD.LA..IKK.ms

(8) hF.VVKEALL.TIK.A.G..WS.EL..AW.vAYD.LA.aIKK.mkta

(9) .F.VVKEALLKTIKEA.G..WS.EL..AW.vAYD.LA.aIKKa

(10) hf.vvkeallktikea.g..ws.el..aw.vayd.la.aikaa

(11) hF.VVKEA.LKTIKE..G..WS.EL..AW..AYD.LA..IKK.mndaa

(12) hF.VVKEALLKTIKE..G..WS.EL..AW.vAYD.LA.aIKK.mg

(13) hF.VVKEALLKT.KEA.G..WS.E...AW.vAYD.L..aIKK.ms

(14) .F.VVKEALLKTIKEA.G..WS.EL..AW.vAYD.LA.aIKKaf

(15) hF.VVKEALLKTIKE..G..WS.EL..AW.vAYD.LA.aIKK.mv

(16) hF.VVKEALLKT.KEA.G..WS.E...AW.vAYD.L..aIKK.ms

(17) .F.VVKEALLKTIKEA.G..WS.EL..AW.vAYD.LA.aIKKaf

(18) hF.VVKEALLKTIKEA.G..WS.EL...W.vAYD.LA.aIKK.ms

(19) .F.VVKEALLKT.K.A.G..W...L..A...AYD.LA.aIKKaya

(20) .F.VVKEALLKTIK.A.G..WS.EL..AW.vAYD.LA.aIKKa

(21) .F.VVKEALLKT.KEA.G..WS.EL..AW.vAY..LA.a.KKaf

Figure Result-3: 21 protein sequences with an average size of 350 residues, have

been aligned with an alignment number k = 14. The number of non-redundant

motifs for this is N = 873 and the size of the resulting compatible set of motifs is

42.

10.3 Summary

We have proposed a two-stage approach to the alignment problem by handling

two relatively simpler sub-problems which deal separately with the two issues,

one of identifying the \local similarities" and the other of aligning the similarities

appropriately. In the �rst stage we identify all possibleK-wise motifs, i.e., all motifs

that appear simultaneously in at least K of the N input sequences (2 � K � N).

In the second stage, we give plausible alignments of a carefully chosen subset of

168

these motifs (that optimize certain cost functions). Using this approach for the

alignment helps in at least two ways: (1) it aids in a direct N -wise alignment, as

opposed to composing the alignments from lower order (say pairwise) alignments

and (2) the resulting alignment is independent of the order of the input sequences.

K is an input parameter and is called the alignment number. In practice, our

approach works particularly well for alignment of a large set of (long) sequences.

We have presented the result of running our alignment algorithm on biological data

and the results look very promising.

169

Appendix A

The Exclusive BFC (EBFC)

Problem

We give the details of steps 1 and 2 of Theorem 1 here.

Step 1: We make the following observations regarding the relation between a

solution to the BMC problem and a solution to the MC problem.

[1.1] In a solution of the BMC, the two sets ~S1; ~S2, are such that Vgadgeti � ~S1 or

~S2, 8i.
If this does not hold, that is Vgadgeti 6� ~S1 then the solution can be modi�ed as

follows that only improves the solution. By the construction, jVgadgeti j = 2(di+1).

Thus jVgadgeti \ ~S1j or jVgadgeti \ ~S2j � di + 1. Without loss of generality, let,

jVgadgeti \ ~S2j � di + 1. If vki 2 S1; k 6= 0, then by including vki in S2 the cost

increases by 2. If vi0 2 S1, then it has exactly di negative edges incident on it with

the other ends being in S2 while at most di positive edges incident on it with the

other ends in S2. Hence by including vi0 in S2 the \cut" does not su�er a loss.

[1.2] All the edges that contribute to a solution to the BMC have positive weights,

since, by observation 1.1, all the negative weight edges must be either in S1 or in

S2.

[1.3] In a solution to the BMC, if v01v
00
2 is in the cut, so must v

00
1v

0
2 (called the image

of v01v
00
2). This follows from observation 1.1, as Vgadget1 and Vgadget2 are in the sets

~S1 and ~S2 respectively (without loss of generality).

170

[1.4] Given a solution to the BMC, the solution to the corresponding MC is con-

structed as follows: if v01v
00
2 (and its image) is in the solution to the BMC, then

v1v2 is in the solution to the MC.

Claim (C1.1): MC has solution of size K i� BMC has solution of size 2K.

Proof: Let the MC have a solution of size K. Assume the BMC has a solution of

2(K+x), for some x > 0. Let the x edges be v0i10v
00
j10; v

0
i20v

00
j20; : : : ; v

0
ix0v

00
jx0 and their

images (see observations 1.2 and 1.3). Then the solution to MC can be the edges

corresponding to K, augmented by vi1vj1 ;i2 vj2 ; : : : ; vixvjx, thus giving a solution of

size K + x to the MC problem, which is a contradiction.

Let the BMC have a solution of size 2K. Assume the MC has a solution

of size K + x, for some x > 0. Let the x edges be vi1vj1; vi2vj2; : : : ; vixvjx in

the solution of the MC. Now, the solution of the BMC, can be augmented by

v0i10v
00
j10; v

0
i20v

00
j20; : : : ; v

0
ix0v

00
jx0 and their images (see observation 1.3), giving a solution

of size 2(K + x) for the BMC, which is a contradiction. QED

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

no cut

cut

A1

C1

B�

2

A+
2 A�

2C+
2 C�

2

D+
2 D�

2B+
2

cut no cut cut no cutV2(n)V1(m)

B1

m

S1

S2

no ip

ip

D1

n n

no ip

ip

Figure A.1: A schematic representation of the BMC to EBFC reduction: The left shows

the BMC problem and the right shows the EBFC problem. See the text on the reduction

for other details.

171

v001� v002� v003� v004�
v010 A+A+A+A+ C+C+ C+C+C+ C+C+C+

v011 A+A+A+A+ C+C+ C+C+C+ C+C+C+

v012 A+A+A+A+ C+C+ C+C+C+ C+C+C+

v013 A+A+A+A+ C+C+ C+C+C+ C+C+C+

v020 B+B+B+B+ D+D+ D+D+D+ D+D+D+

v021 B+B+B+B+ D+D+ D+D+D+ D+D+D+

v030 B+B+B+B+ D+D+ D+D+D+ D+D+D+

v031 B+B+B+B+ D+D+ D+D+D+ D+D+D+

v032 B+B+B+B+ D+D+ D+D+D+ D+D+D+

v040 B+B+B+B+ D+D+ D+D+D+ D+D+D+

v041 B+B+B+B+ D+D+ D+D+D+ D+D+D+

v042 B+B+B+B+ D+D+ D+D+D+ D+D+D+

v004� v003� v002� v001�
v010 C�C�C� C�C�C� C�C� A�A�A�A�

v011 C�C�C� C�C�C� C�C� A�A�A�A�

v012 C�C�C� C�C�C� C�C� A�A�A�A�

v013 C�C�C� C�C�C� C�C� A�A�A�A�

v020 D�D�D� D�D�D� D�D� B�B�B�B�

v021 D�D�D� D�D�D� D�D� B�B�B�B�

v030 D�D�D� D�D�D� D�D� B�B�B�B�

v031 D�D�D� D�D�D� D�D� B�B�B�B�

v032 D�D�D� D�D�D� D�D� B�B�B�B�

v040 D�D�D� D�D�D� D�D� B�B�B�B�

v041 D�D�D� D�D�D� D�D� B�B�B�B�

v042 D�D�D� D�D�D� D�D� B�B�B�B�

Figure A.2: The grouping of the elements of the EBFC matrix due to a solution (not

necessarily optimal) shown in Figure 5.2.

172

A edges B edges C edges D edges

(empty A+ & (empty B� & (empty C� & (solid edges in D+ &

dashed edges in A�) solid edges in B+) solid edges in C+) dashed edges in D�)

Figure A.3: The corresponding edges due to the grouping shown in Figure A.2.

Observations: We make the following observations that relate a solution to the

EBFC problem with that of the BMC problem: we describe a way to construct a

solution to the BMC problem given a solution to the EBFC problem and secondly

we also give a relation between the costs of the two solutions (equation (A.6)).

[2.1] In a given alignment of the EBFC, the elements of Mij can be grouped into

the following sets, as shown in Figure A.1:

A+
2 = f(i; j)ji has been ipped, j is a cut, j � ng; A�

2 = f(i; j)j(i; j) 2 A+
2 g;

B+
2 = f(i; j)ji has not been ipped, j is a cut, j � ng; B�

2 = f(i; j)j(i; j) 2 B+
2 g;

C+
2 = f(i; j)ji has been ipped, j is not a cut, j � ng; C�

2 = f(i; j)j(i; j) 2 C+
2 g;

D+
2 = f(i; j)ji has not been ipped, j is not a cut, j � ng; D�

2 = f(i; j)j(i; j) 2 D+
2 g:

Let
P
A+
2 =

P
(i;j)2A+

2
Mij. Similarly de�ne

P
A�
2 ,
P
B+

2 ,
P
B�

2 ,
P
C+
2 ,

P
C�
2 ,P

D+
2 ,
P
D�

2 . Figure A.2 shows an illustrative example.

Recall that the cost in the EBFC is the number of 1's in the cut columns with

the rows ipped appropriately. Thus the cost is
P
A�
2 +

P
B+

2 +
P
C+
2 +

P
D�

2

(corresponding to the shaded rectangular region shown in Figure A.1).

[2.2] X
A�
2 +

X
B�

2 +
X

C�
2 +

X
D�

2 =
mX
i=1

2nX
j=n+1

Mij = e�: (A.1)

[2.3] Given an alignment for the EBFC with cost CEBFC as

CEBFC =
X

A�
2 +

X
B+

2 +
X

C+
2 +

X
D�

2 ; (A.2)

173

(see observation 2.1), a solution for the BMC is constructed as follows. De�ne the

sets as below:

A+
1 = fv1i v2j jMij 6= 0; (i; j) 2 A+

2 g; A�
1 = fv1i v2j jMij 6= 0; (i; j) 2 A�

2 g;
B+

1 = fv1i v2j jMij 6= 0; (i; j) 2 B+
2 g; B�

1 = fv1i v2j jMij 6= 0; (i; j) 2 B�
2 g;

C+
1 = fv1i v2j jMij 6= 0; (i; j) 2 C+

2 g; C�
1 = fv1i v2j jMij 6= 0; (i; j) 2 C�

2 g;
D+

1 = fv1i v2j jMij 6= 0; (i; j) 2 D+
2 g; D�

1 = fv1i v2j jMij 6= 0; (i; j) 2 D�
2 g:

Let A1 = A+
1 [A�

1 , B1 = B+
1 [B�

1 , C1 = C+
1 [C�

1 , D1 = D+
1 [D�

1 . Then S1 and

S2, the partition of the vertices, are de�ned as follows:

S1 = fv1i jv1i v2j 2 B1g [fv2j jv1i v2j 2 C1g [fv1i ; v2j jv1i v2j 2 D1g; (A.3)

S2 = fv2j jv1i v2j 2 B1g [fv1i jv1i v2j 2 C1g [fv1i ; v2j jv1i v2j 2 A1g: (A.4)

Notice that jA+
1 j =

P
A+
2 , jA�

1 j =
P
A�
2 and so on. Also notice that B+

1 is the set

of edges with positive weights and B�
1 is the set of edges with negative weights.

Similarly for the other sets. Thus the corresponding cost, CBMC for the BMC is,

CBMC = jB+
1 j � jB�

1 j+ jC+
1 j � jC�

1 j: (A.5)

[2.4] It can be seen from the above that given a partition of the vertices in the BMC,

an alignment (assignments of ips/no-ips to rows and cuts/no-cuts to columns)

can be obtained for the EBFC, and, vice-versa.

[2.5] If CEBFC denotes the cost for an alignment in the EBFC problem, and, if

CBMC denotes the cost for the corresponding alignment in the BMC problem, the

following holds (using equations (A.1), (A.2), (A.5)):

CEBFC � e� = CBMC : (A.6)

Recall that e� is the number of edges with negative weights in the BMC problem.

Claim (C2.1): BMC has an optimal solution of size K i� EBFC has an optimal

solution of size K + e�.

Proof: It can be veri�ed from the above construction that, improving the solution

for the EBFC by x > 0, results in improving the BMC by x and vice-versa. Hence

using equation (A.6) we have the required result. QED

174

S2

S1

v1

v2

v3v4

S1

S2

Figure A.4: The solution to the BMC problem obtained from Figure A.2 using equa-

tions (A.3), (A.4) and the corresponding solution in the MC problem, introduced in

Figure 5.1. S1 and S2 are the partition of the vertices in the graphs.

We make the following observations about the solution to an EBFC, that has

been constructed from a BMC that was in turn constructed from an MC problem.

[3.1] The EBFC matrix is of size L � 2L where L = v + 2e. Recall that v is the

number of vertices and e the number of edges for the MC problem.

[3.2] See Figure (A.5) which shows the rows and columns associated with a vertex vi

of the MC problem in the EBFC matrix. Let Xvi0 denote the variable associated

with the row that corresponds to the vertex v0i0, and, Yvi0 denote the variable

associated with the column that corresponds to the vertex v00i0 of the BMC. Similarly

Xvi0 ; Xvi1 ; Xvi2 ; : : : ; Xvidi
; Yvi1; Yvi2 ; : : : ; Yvidi .

The reader can verify (see Figure (A.5)) that one can always obtain a solution

for which the following holds: Xvi0 = Xvi1 = Xvi2 = : : : = Xvidi
= Yvi1 = Yvi2 =

: : : = Yvidi . This is important since it implies that in the BMC, ~Vgadgeti � ~S1 or

~S2. Thus the corresponding solution of size 2K in the BMC corresponds directly

to a solution of size K of the MC. Thus for any solution of the EBFC, all the

1's corresponding to the negative edges are counted in the solution. If not, the

175

v0

i0 v0

i1 v0

i2 v0

i3 v00
i3 v00

i2 v00
i1 v00

i0

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...

v0

i0 : : : 010 : : : 010 : : : 0 0 0 0 : : : 010 : : : : : : 0 : : : 1 1 1 0 : : : 0 : : : 0 : : :

v0

i1 : : : 000 : : : 000 : : : 0 0 0 0 : : : 000 : : : : : : 0 : : : 1 0 1 0 : : : 0 : : : 0 : : :

v0

i2 : : : 000 : : : 000 : : : 0 0 0 0 : : : 000 : : : : : : 0 : : : 1 1 0 0 : : : 0 : : : 0 : : :

v0

i3 : : : 000 : : : 000 : : : 0 0 0 0 : : : 000 : : : : : : 0 : : : 1 0 0 0 : : : 0 : : : 0 : : :

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...

Figure A.5: For clarity of exposition, let di = 3 in the MC problem. Abusing notation,

let the conjugates of the columns corresponding to v00i0; v
00
i1; v

00
i2; v

00
i3 be vi0

00; vi100; vi200; vi300

respectively. The above table shows the rows and the columns corresponding to vi of

the MC. Note that the number of 1's in the column v0i0 is 3 and the number of 1's in

the row v0i0 is 3 + 3, where, half of the 1's are due to positive weight edges (left half of

matrix) and the other half due to the negative weight edges (right half of matrix). The

1's shown in bold correspond to the negative weight edges on the vertices of the gadget

corresponding to vi of the MC problem. Notice that v0i1; v
0
i2; v

0
i3 have the same ip as v0i0

without any conict with other vertices. Also, since the column due to v00i0 has no 1's at

all, v00i0 is a cut if v0i0 is ipped and is not a cut if v0i0 is not ipped.

176

solution can be altered, in linear time, without reducing the cost so that this

condition holds. Thus

CEBFC � 2e; (A.7)

where e is the number of edges of the MC.

177

Appendix B

The Binary Shift Cut (BSC)

Problem

We give the details of steps 1 and 2 of Theorem 5 here.

Step 1. MC to BMC reduction (see Figure B.1).

Consider an MC problem with vertices and edges (V;E); n = jV j; e = jEj. Let a
solution be of size K inducing a partition of the vertices.

Reduction: Construct an instance of BMC with (~V ; ~E) as follows For each

vi 2 V , with degree di, construct 3di+6 vertices, vi�0 , vi�0 , v
i
0, v

i+
0 , vl�0 , vl+0 , vi

0

0 , u
i
0,

uil, l = 1; 2; : : : ; di. Thus the total number of vertices are 6e + 6n.

The edges have +1 or �1 weights which are constructed as shown in the table

(Again see Figure B.1).

Edges with weights +1 Edges with weights �1
edges count total edges count total

(l = 1; 2; : : : ; di) per vertex count (l = 1; 2; : : : ; di) per vertex count

ui0v
l
0, u

l
0v

i
0 di 2e ui0v

l�
0 , u

l
0v

i�
0 di 2e

ui0v
i+
l di 2e ui0v

i�
l di 2e

vi+0 uil di 2e vi�0 uil di 2e

uilv
i+
l di 2e uilv

i�
l di 2e

ui0v
i+
0 2 2n ui0v

i�
0 2 2n

178

Thus the number of edges with weight +1 is the same as the number with weight

�1 which is 8e+2n. Further, it can be seen that this construction gives a bipartite

graph with ~V = V 0 [V 00 where vyx 2 V 0; uyx 2 V 00.

vi0

uj0

vj�0 vi�0vi�0 vi+0 vi+1vi�1 vi�2 vi+2vj0 vi
0

0

ui0 ui1 ui2 uk0

vk�0 v
k
0

Figure B.1: The MC to BMC reduction: Let the degree of the vertex numbered i in the

MC be 2; its neighbors are the vertices numbered j and k. Here we show the \gadget"

that is constructed for the vertex numbered i (in the dotted rectangle). The hollow

circles correspond to the two copies of the vertex i of the MC problem, u0i and v0i . The

solid lines denote edges with weight +1 and the dotted lines denote edges with weight

�1.

Observations: We make the following observations. Let

V in
i = fvi�0 ; vi0; v

i�
1 ; vi�2 ; : : : ; vi�di ; u

i
0; u

i
1; u

i
2; : : : ; u

i
di
g;

V out
i = fvi+0 ; vi+1 ; vi+2 ; : : : ; vi+di g;

V any
i = fvi�0 ; vi0; ui0g:

[1.1] It can be veri�ed that in a solution of the BMC, the two sets S1; S2, are such

that if V in
i � S1, then V

out
i � S2 (or vice-versa). Further, if this does not hold, the

solution can be modi�ed, without decreasing the cost, so that the above condition

holds.

[1.2] Thus, we get a partition, that contains both vi0 and u
i
0; we use this to construct

179

the solution for the MC. The partition corresponding to the MC is the one that

of the BMC, where we replace the set V in
i by vi (and, removing V

out
i and fvi�0 g).

Thus if uj0v
i
0 is a cut, then so is vj0u

i
0. Thus if K is the solution to the MC, then

the solution to the BMC is at least 2K.

[1.3] The cost due to the vertices V in
i [V out

i � fvi0; ui0g in a gadget is 3di + 2, for

every vertex, as can be veri�ed from the construction. Notice that we are able to

make such a claim since these vertices have only \local" connectivity.

Thus the total cost due to the gadgets in all the vertices is Cgadget = 6e+ 2n.

[1.4] Once we have a solution, and condition of observation 1.1 is satis�ed, we

can modify it to move the vertex vi�0 around as follows. Using observation 1.2,

the neighbors of every vertex vi (of the MC) can be partitioned into two sets. Let

V in
i 2 S1. Let Ci denote the neighbors of vi in the MC that are in S2, and ci = jCij.

Then di�ci � ci, where di is the degree of the vertex vi in the MC problem. If not,

V in
i can be moved to S2, that can only increase the cost. Thus the cost due to the

vertex vi�0 is 1 � (di � ci) (recall that there is a positive edge between ui0 and vi�0 ,

hence the 1). If K is the solution to the maxcut, note that 2K =
P

i ci. Thus the

total contribution due to vl�0 ; l = 1; 2; : : : ; n, is
P

l (1� (dl � cl)) = n� 2e+ 2K.

Note that the cost for any solutionK � e=2, and the cost excluding the gadgets,

Cgadget, is as follows:

Cgadget = n� 2e+ 2K + 2K

= n� 2e+ 4K

� 0

(B.1)

[1.4] Thus, noting that K = CMC , we have,

CBMC = Cgadget + Cgadget

= (6e+ 2n)� (n� 2e+ 4K)

) K = CMC

= CBMC�4e�3n
4

(B.2)

using observations 1.2, 1.3 and 1.4.

Claim (C1.1): MC has solution K i� BMC has solution 4K + 4e+ 3n.

180

Proof: It can be veri�ed from the above construction that, improving the solution

for the BMC by x > 0, results in improving the MC by x and vice-versa. QED

Step 2. BMC to BSC reduction.

Let the incidence matrix of the BMC be [~Mij]. De�ne the matrix [Mij] for the

BSC problem satisfying the invariance ~Mij =Mij �Mi(j�1); j > 1.

Observations: We make the following observations.

[2.1] In a given alignment of the BSC, the elements ofMij can be grouped into the

following sets:

A+
2 = f(i; j)ji is right aligned, j is a cutg; A�

2 = f(i; j � 1)j(i; j) 2 A+
2 ; j > 1g;

B+
2 = f(i; j)ji is left aligned, j is a cutg; B�

2 = f(i; j � 1)j(i; j) 2 B+
2 ; j > 1g;

C+
2 = f(i; j)ji is right aligned, j is not a cutg; C�

2 = f(i; j � 1)j(i; j) 2 C+
2 ; j > 1g;

D+
2 = f(i; j)ji is left aligned, j is not a cutg; D�

2 = f(i; j � 1)j(i; j) 2 D+
2 ; j > 1g;

Note that A+
2 = C�

2 , A
�
2 = C+

2 , B
+
2 = D�

2 , B
�
2 = D+

2 . Let
P
A+
2 =

P
(i;j)2A+

2
Mij.

Similarly de�ne
P
A�
2 ,
P
B+

2 ,
P
B�

2 ,
P
C+
2 ,
P
C�
2 ,
P
D+

2 ,
P
D�

2 .

We de�ne the pj's as follows:

pvi+
l
= pvi�

l
= 2=m; pvi�0

= 1=m; pvi+0
= di=m; pvi�0 = pvi0 = (di + 1)=2m: (B.3)

where l = 1; 2; : : : ; di, 8i. This de�nition of pj's ensures that for any two consecu-

tive columns j and j + 1, if by the alignment, the number of 1's in column j + 1

is larger than in column j, then Yj+1 = 1, that is column j + 1 is a consensus cut.

This is similar to the EBFC problem where if column j = n � j + 1 has larger

number of 1's in the alignment than j then Yj = 1 and vice-versa.

[2.3] Given an alignment for the BSC problem, with cost CBSC as

CBSC = B+
2 + C�

2 ; (B.4)

a solution for the BMC is constructed as follows. De�ne the sets as below:

A�
1 = fv1i v2j jMij 6= 0; (i; j) 2 A+

2 g; A+
1 = fv1i v2j j(i; (j + 1)) 2 A�

1 g;
B�

1 = fv1i v2j jMij 6= 0; (i; j) 2 B+
2 g; B+

1 = fv1i v2j j(i; (j + 1)) 2 B�
1 g;

181

: : : vj�0 vj�0 vj0 vj+0 : : : vi�0 vi�0 vi0 vi+0 v1�0 v1+0 v2�0 v2+0 vi
0

0 : : : vk�0 vk�0 vk0 vk+0 : : :

(BMC)
...

uj0 : : : �1 +1 �1 +1 : : : 0 �1 +1 0 0 0 0 0 0 : : : 0 0 0 0 : : :
...

ui0 : : : 0 �1 +1 0 : : : �1 +1 �1 +1 �1 +1 �1 +1 0 : : : 0 �1 +1 0 : : :

ui1 : : : 0 0 0 0 : : : 0 0 �1 +1 �1 +1 0 0 0 : : : 0 0 0 0 : : :

ui2 : : : 0 0 0 0 : : : 0 0 �1 +1 0 0 �1 +1 0 : : : 0 0 0 0 : : :
...

uk0 : : : 0 0 0 0 : : : 0 �1 +1 0 0 0 0 0 0 : : : �1 +1 �1 +1 : : :
...

(BSC)
...

uj0 : : : 1 0 1 0 : : : 0 1 0 0 0 0 0 0 0 : : : 0 0 0 0 : : :
...

ui0 : : : 0 1 0 0 : : : 1 0 1 0 1 0 1 0 0 : : : 0 1 0 0 : : :

ui1 : : : 0 0 0 0 : : : 0 0 1 0 1 0 0 0 0 : : : 0 0 0 0 : : :

ui2 : : : 0 0 0 0 : : : 0 0 1 0 0 0 1 0 0 : : : 0 0 0 0 : : :
...

uk0 : : : 0 0 0 0 : : : 0 1 0 0 0 0 0 0 0 : : : 1 0 1 0 : : :
...

Figure B.2: Portions of incidence matrix of the BMC and the corresponding BSC matrix,

for the graph shown in Figure B.1.

182

A

B

C

D

E

A 1010: : :0100: : :0100: : :0100: : :0000

B 0100: : :1010: : :0000: : :0100: : :0100

C 0100: : :0000: : :1010: : :0000: : :0000

D 0100: : :0100: : :0000: : :1010: : :0000

E 0000: : :0100: : :0000: : :0000: : :1010

A� -101: : :0010: : :0010: : :0010: : :00000

B� -010: : :0101: : :0000: : :0010: : :00100

C 0100: : :0000: : :1010: : :0000: : :0000-

D 0100: : :0100: : :0000: : :1010: : :0000-

E 0000: : :0100: : :0000: : :0000: : :1010-

Figure B.3: An example of MC to BSC reduction. Note that only the columns corre-

sponding to vertices vi�0 , vi�0 , v
i
0, v

i+
0 and rows corresponding to u0i , for each of the vertex

A, B, C, D, E in the MC, is shown for the sake of clarity. (The complete example is

described at the end of this section). The rows that are right aligned are marked by

asterisk. Notice how the 1's in the columns align when the �rst 2 rows are right aligned.

183

C�
1 = fv1i v2j jMij 6= 0; (i; j) 2 C+

2 g; C+
1 = fv1i v2j j(i; (j + 1)) 2 C�

1 g;
D�

1 = fv1i v2j jMij 6= 0; (i; j) 2 D+
2 g; D+

1 = fv1i v2j j(i; (j + 1)) 2 D�
1 g;

Let A1 = A+
1 [A�

1 , B1 = B+
1 [B�

1 , C1 = C+
1 [C�

1 , D1 = D+
1 [D�

1 . Then S1 and

S2, the partition of the vertices, are de�ned as follows:

S1 = fv1i jv1i v2j 2 B1g [fv2j jv1i v2j 2 C1g [fv1i ; v2j jv1i v2j 2 D1g;
S2 = fv2j jv1i v2j 2 B1g [fv1i jv1i v2j 2 C1g [fv1i ; v2j jv1i v2j 2 A1g:

Notice that jA+
1 j =

P
A�
2 , jA�

1 j =
P
A+
2 and so on. Also notice that B�

1 is the set

of edges with positive weights and B+
1 is the set of edges with negative weights.

Similarly for the other sets. Thus the corresponding cost, CBMC for the BMC is,

CBMC = jB�
1 j � jB+

1 j+ jC�
1 j � jC+

1 j = jC+
1 j � jC+

1 j: (B.5)

since jB+
1 j = jB�

1 j by the construction.

[2.4] It can be seen from the above that given a partition of the vertices in the

BMC, an alignment (assignments of left/right-aligns to rows and cuts/no-cuts to

columns) can be obtained for the BSC, and, vice-versa.

[2.5] Let CBSC denote the cost for an alignment in the BSC problem, and, let CBMC

denote the cost for the corresponding alignment in the BMC problem. Further let

L = jf(i; j)ji is left alignedgj and R = jf(i; j)ji is right alignedgj. Then,

2CBSC � (L+R) = (2B+
2 � L) + (2C�

2 � R) using eqn(B.4)

= B+
2 �B�

2 + C�
2 � C+

2

= C�
2 � C+

2

(B.6)

Thus,

2CBSC � c = CBMC : (B.7)

where c (= L+R = 8e+ 2n) is the number of 1's in the BSC matrix.

Claim (C2.1): BSC has an optimal solution of size K i� BMC has an optimal

solution of size 2K � c.

184

Proof: It can be veri�ed from the above construction that, improving the solution

for the BSC by x > 0, results in improving the BMC by x and vice-versa.

Also, it can be veri�ed (see Figure B.3 and the Appendix for examples) that,

given an arbitrary solution to BSC, it can be modi�ed, without decreasing the

cost, so that the following holds (let Yx denote the indicator variable (cut or no-

cut) associated with vertex x of the BMC):

Yvi�0 = Yvi+0
= Yvi+

l
, Yvi00

= 0; Yvi0 = Yvi�0
= Yvi�

l
, and, Yvi�0 6= Yvi0 :

where l = 1; 2; : : : ; di, 8i.
This concludes Step 2 of the proof. QED

185

Example of an instance of a BSC problem

E C A B D

B1. The BMC graph for the problem in Figure B.3. The 5 dotted boxes are the

\gadgets" corresponding to the 5 vertices of the graph. The solid edges denote weight

+1 and the dashed edges denote weight �1.

186

E
x
a
m
p
le
(c
on
ti
n
u
ed
)

A

B

C

D

E

1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

p

0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

p

0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

p

0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

p

0
1
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0

p

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

p

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

p

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

p

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
�

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
�

0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
�

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
�

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
�

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
�

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
�

�p
�p
�p
�p
�p
��

p
�p
�p
�p
�p
�p
�p
�p
��

p
�p
�p
�p
��

p
�p
�p
��
S

0

2
4
4
6
4
4
4
4
4
4
4
2
4
4
6
4
4
4
4
4
4
4
2
2
2
2
4
4
4
2
3
3
4
4
4
4
4
4
2
2
2
2
4
4
4
3
0
p
j

B
2.
T
h
e
B
S
C
m
at
ri
x
is
co
n
st
ru
ct
ed
fr
om
th
e
gr
ap
h
sh
ow
n
in
B
1.
T
h
e
ro
w
s/
m
ol
ec
u
le
s
th
at
ar
e
m
ar
ke
d
b
y

p

d
en
ot
e
th
e
on
es
th
at
ar
e
sh
if
te
d
to
th
e
ri
gh
t
b
y
on
e
u
n
it
.
T
h
e
co
n
se
n
su
s
m
ap
S
'
is
sh
ow
n
at
th
e
b
ot
to
m
w
it
h

p

d
en
ot
in
g
a
co
n
se
n
su
s
cu
t
si
te
an
d
�
it
s
ab
se
n
ce
.
T
h
e
p j
fo
r
ea
ch
co
lu
m
n
is
sh
ow
n
in
th
e
b
ot
to
m
li
n
e:
x
d
en
ot
es

p
ro
b
ab
il
it
y
x
=3
0
(n
ot
e
th
at
th
e
n
u
m
b
er
of
ro
w
s
is
15
).

187

Appendix C

Acronyms used in the thesis

The following is a list of acronyms used in the thesis along with a pointer to the

most relevant section describing the term.

188

BFC Binary Flip Cut Section 5.2

BFCmax Variant of BFC Section5.2

BMC Bipartite Maximum Cut Section 6.1

BPC Binary Partition Cut Section 8.1.1

BPCmax Variant of BPC Section 8.1.1

BSC Binary Shift Cut Section 8.1.2

BSCmax Variant of BSC Section 8.1.2

BSeC Binary Sizing-error Cut Section 8.1.3

BSeCmax Variant of BSeC Section 8.1.3

CG Consistency Graph Section 5.3

dM d-wise Match Section 5.3

EBFC Exclusive Binary Flip Cut Section 5.2

FPTAS Fully Polynomial Time Approximation Scheme Section 5.1

GMC Generalized Maximum Cut Section 6.2

MC Maximum Cut Section 6.1

MSA Multiple Sequence Alignment Section 10

Kpop K-Populations Section 8.2.6

PTAS Polynomial Time Approximation Scheme Section 5.1

WCG Weighted Consistency Graph Section 5.3

189

Bibliography

[1] F. Alizadeh, R.M. Karp, D.K. Weisser, and G. Zweig. Physical mapping

of chromosomes using unique probes. Journal of Computational Biology,

2(2):153{158, 1995.

[2] S. Altschul. Gap costs for multiple sequence alignment. J. Theor. Biol.,

138:297{309, 1989.

[3] T.S. Anantharaman, B. Mishra, and D.C. Schwartz. Genomics via optical

mapping II: Ordered restriction maps. Journal of Computational Biology,

4(2):91{118, 1997.

[4] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation

schemes for dense instances of NP-Hard problems. In Proc. STOC, 1996.

[5] S. Arora and C. Lund. Hardness of approximations. In D.S. Hochbaum,

editor, Approximation algorithms for NP-Hardness Problems. PWS Publishing

Company, MA, 1997.

[6] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�-

cation and hardness of approximation problems. In Proc. of the 33th IEEE

symposium on the Foundations of Computer Science, 1992.

[7] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization

of np. In Proc. of the 33th IEEE symposium on the Foundations of Computer

Science, 1992.

190

[8] W. Cai, J. Jing, B. Irvine, L. Ohler, E. Rose, H. Shizua, U. J. Kim, M. Simon,

T. Anantharaman, B. Mishra, and D. C. Schwartz. High-resolution restric-

tion maps of bacterial arti�cial chromosomes constructed by optical mapping.

Proc. Natl. Acad. Sci. USA, 95:3390{3395, 1998.

[9] H. Carrillo and D. Lipman. The multiple sequence alignment problem in

biology. SIAM Journal of Applied Mathematics, pages 1073{1082, 1988.

[10] K. M. Chao, R. Hardison, and W. Miller. Recent developments in linear-space

alignment methods: A survey. J. Computational Biology, 3:271{291, 1994.

[11] S. Cook. The complexity of theorem-proving procedures. Proc. of the 3rd

Annual ACM Symposium on the Theory of Computing, pages 151{158, 1971.

[12] N. G. Cooper, editor. The Human Genome Project { Deciphering the

Blueprint of Heredity. University Science Books, Mill Valley, California, 1994.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

The MIT Press, Cambridge, Massachusetts, 1990.

[14] V. Dan�c��k, S. Hannehalli, and S. Muthukrishnan. Hardness of ip-cut prob-

lems for optical mapping. J. Computational Biology, 4(2), 1997.

[15] D. Fasulo, T. Jiang, R. Karp, R. Settergren, and E. Thayer. An algorithmic

approach to multiple complete digest mapping. In Proceedings of the First

Annual Conference on Computational Molecular Biology (RECOMB97), pages

118{127. ACM Press, 1997.

[16] Y. Gao, M. Yang, X. Wang, K. Mathee, and G. Narasimhan. Detection of

HTH motifs via data mining. 1997.

[17] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, 1979.

[18] D. Geiger and L. Parida. A model and solution to the DNA ipping string

problem. Technical Report TR1996-720, Courant Inst. of Math. Sciences, New

York University, May 1996.

191

[19] D. Geiger and L. Parida. Mass estimation of DNA molecules & extraction of

ordered restriction maps in optical mapping imagery. Algorithmica, 1998. (in

press).

[20] M. X. Goemans and D. P. Williamson. .878-approximation algorithms for

MAX CUT and MAX 2SAT. In Proceedings of the Twenty-Sixth Annual

ACM Symposium on Theory of Computing, pages 422{431, Montreal, Quebec,

Canada, 23-25 May 1994.

[21] P.W. Goldberg, M.C. Golumbic, H. Kaplan, and R. Shamir. Four strikes

against physical mapping of DNA. Journal of Computational Biology,

2(1):139{152, 1995.

[22] S. K. Gupta, J. Kececioglu, and A. A. Scha�er. Improving the practical space

and time eÆciency of the shortest-paths approach to sum-of-pairs multiple

sequence alignment. Journal of Computational Biology, 2(3):459{472, 1995.

[23] J. H�astad. Some optimal inapproximability results. In Proceedings of the

Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 1{

10, El Paso, Texas, 4-6 May 1997.

[24] D. Higgins and P. Sharpe. CLUSTAL: a package for performing multiple

sequence alignment on a microcomputer. Gene, 73:237{244, 1988.

[25] M. Hirosawa, Y. Totoki, M. Hoshida, and M. Ishikawa. Comprehensive study

on iterative algorithms of multiple sequence alignment. volume 11(1), pages

13{18, 1995.

[26] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal

of Computer and System Sciences, 9:256{278, 1974.

[27] R. Karp. Reducibality among combinatorial problems. Complexity of Com-

puter Computations, pages 85{103, 1972.

[28] R. Karp. Mapping the genome: Some combinatorial problems arising in molec-

ular biology. In Proc. STOC, 1993.

192

[29] R. M. Karp and R. Shamir. Algorithms for optical mapping. In Proceedings of

the Annual Conference on Computational Molecular Biology (RECOMB98),

pages 117{124. ACM Press, 1998.

[30] J. Kececioglu. The maximum weight trace problem in multiple sequence align-

ment. In Proc. of the Fourth Symp. on Comp. Pattern Matching, volume 684

of Lecture Notes in Computer Science, pages 106{119, Berlin, 1993. Springer-

Verlag.

[31] M. Krawczak. Algorithms for restriction-site mapping of DNA molecules.

Proc. Nat. Acad. Sci., 85:7298{7301, 1988.

[32] J. K. Lee, V. Dan�c��k, and M. S. Waterman. Estimation for restriction sites

observed by optical mapping using reversible-jumpMarkov chain Monte Carlo.

In Proceedings of the Annual Conference on Computational Molecular Biology

(RECOMB98), pages 147{152. ACM Press, 1998.

[33] L. Levin. Universal search problems (in russian). Problemy Peredachi Infor-

matsii, 9(3):265{266, 1973.

[34] M. Levitt and C. Chottia. Structural patterns in globular proteins. Nature,

261:552{558, 1976.

[35] J. R. Griggs M. Waterman. Interval graphs and maps of DNA. Bull. of Math.

Biol., 48:189{195, 1986.

[36] X. Meng, K. Benson, K. Chada, E. J. Hu�, and D. C. Schwartz. Optical map-

ping of lambda bacteriophage clones using restriction endonuclease. Nature

Genetics, 9:432{438, 1995.

[37] B. Mishra. Some results based on a simple model for optical mapping. 1998.

(unpublished manuscript).

[38] S. Muthukrishnan and L. Parida. Towards constructing physical maps by op-

tical mapping: An e�ective simple combinatorial approach. In Proceedings

193

of the First Annual Conference on Computational Molecular Biology (RE-

COMB97), pages 209{215. ACM Press, 1997.

[39] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Series

in Discrete Math and Optimization. Wiley Interscience, 1988.

[40] C. Papadimitriou and M. Yannakakis. Optimization, approximation and com-

plexity classes. Journal of Computer and System Sciences, 43:425{440, 1991.

[41] L. Parida. Algorithmic complexity of physical mapping problems arising in

single molecule methods. 1997.

[42] L. Parida. Computational molecular biology: Problems and tools. Journal of

the Indian Institute of Science, 77:283{326, 1997.

[43] L. Parida. A uniform framework for ordered restriction map problems. Journal

of Computational Biology, 1998. (in press).

[44] L. Parida, A. Floratos, and I. Rigoutsos. Musca: An algorithm for constrained

alignment of multiple data sequences. 1998. (submitted for publication).

[45] L. Parida and B. Mishra. Partitioning k clones: Hardness results and practical

algorithms for the k-populations problem. In Proceedings of the Second Annual

Conference on Computational Molecular Biology (RECOMB98), pages 192{

201. ACM Press, 1998.

[46] P. Pevzner. DNA physical mapping. Computer Analysis of Genetic Texts,

pages 154{158, 1990.

[47] P. Pevzner and A. Mironov. An eÆcient method for physical mapping of DNA

molecules. Molec. Bio., 21:788{796, 1987.

[48] P. Pevzner and M. Waterman. Open combinatorial problems in computational

molecular biology. In Proceedings of the Third Israel Symposium on Theory

of Computing and Systems, 1995.

194

[49] J. Reed. Optical Mapping. PhD thesis, Dept of Chemistry, New York Univer-

sity, June 1997.

[50] K. Reinert, H. P. Lenhof, P. Mutzel, K. Melhorn, and J. D. Kececioglu. A

branch-and-cut algorithm for multiple sequence alignment. In Proceedings

of the First Annual Conference on Computational Molecular Biology (RE-

COMB97), pages 241{249. ACM Press, 1997.

[51] I. Rigoutsos and A. Floratos. Motif discovery in biological sequences with-

out alignment or enumeration. In Proceedings of the Annual Conference on

Computational Molecular Biology (RECOMB98), pages 221{227. ACM Press,

1998.

[52] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of

the ACM, 23:555{565, 1976.

[53] A. Samad, W. W. Cai, X. Hu, B. Irvin, J. Jing, J. Reed, X. Meng, J. Huang,

E. Hu�, B. Porter, A. Shenker, T. Anantharaman, B. Mishra, V. Clarke,

E. Dimalanta, J. Edington, C. Hiort, R. Rabbah, J. Skiadas, and D. Schwartz.

Mapping the genome one molecule at a time { optical mapping. Nature,

378:516{517, 1997.

[54] D.C. Schwartz, X. Li, L. I. Hernandez, S. P. Ramnarain, E. J. Hu�, and Y. K.

Wang. Ordered restriction maps of saccharomyces cerevisiae chromosomes

constructed by optical mapping. Science, 262:110{114, 1993.

[55] D. Smith. Evolution of a vision. Human Genome News, 7(3-4):2, 1995.

[56] J. C. Venter, M. D. Adams, G. G. Sutton, A. R. Kerlavage, H. O. Smith,

and M. Hunkapillar. Shotgun sequencing of the human genome. Science,

280:1540{1542, 1998.

[57] M. Vihinen. An algorithm for simultaneous comparison of several sequences.

volume 4, pages 89{92, 1998.

195

[58] Y.K. Wang, E.J. Hu�, and D.C. Schwartz. Optical mapping of the site-

directed cleavages on single DNA molecules by the RecA-assisted restriction

endonuclease technique. Proc. Natl. Acad. Sci. USA, 92:237{242, 1984.

[59] M.S. Waterman. Parametric and ensemble alignment algorithms. Bulletin of

Mathematical Biology, 56(4):743{767, 1994.

[60] M.S. Waterman. An Introduction to Computational Biology: Maps, Sequences

and Genomes. Chapman Hall, 1995.

[61] W. Miller Z. Zhang, B. He. Local multiple alignment vis subgraph enumera-

tion. Discrete Applied Mathematics, 71:337{365, 1996.

196

Algorithmic Techniques in Computational Genomics

by

Laxmi Parida

Advisor: Bud Mishra

This thesis explores the application of algorithmic techniques in understanding and

solving computational problems arising in Genomics. In the �rst part of the the-

sis we focus on the problem of reconstructing physical maps from data, related to

\reading" the genome of an organism, and in the second part we focus on problems

related to \interpreting" (in a very limited sense) the genome. The main contri-

butions of the thesis are modeling, understanding the computational complexity

of, and designing algorithms for some key problems in both these domains.

In the �rst part of the thesis, we focus on the problem of computing physical

maps from data that arise in single molecule methods. We describe two combi-

natorial models of the problem termed Exclusive Binary Flip Cut (EBFC) and

Weighted Consistency Graph (WCG) problems. We show that both the problems

are MAX SNP hard and give bounds on the approximation factors achievable.

We give polynomial time 0.878-approximation algorithm for the EBFC problem

and 0.817-approximation algorithm for the WCG problem. We also give a low

polynomial time practical algorithm that works well on simulated and real data.

Naksha is an implementation of this algorithm and a demonstration is available at

http://www.cs.nyu.edu/parida/naksha.html. We also have similar results on

complexity for generalizations of the problem which model various other sources

of errors. We have generalized our complexity and algorithmic results to the

case where there is more than one population in the data (which we call the

K-populations problem).

In the second part of the thesis, we focus on \interpreting" the genome. We

consider the problem of discovering patterns/motifs in strings on a �nite alphabet:

we show that by appropriately de�ning irredundant motifs, the number of irredun-

dant motifs is only quadratic in the input size. We use these irredundant motifs in

designing algorithms to align multiple genome or protein sequences. Alignment of

sequences aids in comparing similarities, in structure and function of the proteins.

