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Robert Hooke (1635-1703) was an
experimental scientist,
mathematician, architect, and
astronomer. Secretary of the Royal

Society from 1677 to 1682, ...

“England’s Da Vinci” because of his wide
range of interests.

His work Micrographia of 1665
contained his microscopical
investigations, which included the first
identification of biological cells.
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“The Brain & the Fancy”

 “The truth is, the science of

Nature has already been too
ong made only a work of the
orain and the fancy. It is now
nigh time that it should return
to the plainness and soundness
of observations on material and
obvious things.”

— Robert Hooke. (1635 - 1703),
Micrographia 1665




Truth
Glimpsed or Demonstrated



In his drafts of Book Il, Newton had
referred to Hooke as the most
illustrious Hooke— “Cl[arissimus]
Hookius.”

Hooke became involved in a dispute
with Isaac Newton over the
priority of the discovery of the
inverse square law of gravitation.




 “IHuygen’s Preface] is concerning
those properties of gravity which |
myself first discovered and showed to
this Society and years since, which of
late Mr. Newton has done me the

favour to print and publish as his own
inventions.”

— Hooke to Halley



* “Now is this not very fine? Mathematicians
that find out, settle & do all the business must
content themselves with being nothing but
dry calculators & drudges & another that does
nothing but pretend & grasp at all things must
carry away all the inventions...

* “l beleive you would think him a man of a
strange unsociable temper.”

— Newton to Halley



* “If | have seen further than other
men, it is because | have stood on the
shoulders of giants and you my dear
Hooke, have not."

— Newton to Hooke




* The great distance between
— a glimpsed truth and

— a demonstrated truth

* Christopher Wren/Alexis Claude
Clairaut




“Axioms of Platitudes”
-E.B. Wilson

1. Science need not be mathematical.

2. Simply because a subject is mathematical it
need not therefore be scientific.

| 3. Empirical curve fitting may be without other
than classificatory significance.

4. Growth of an individual should not be
confused with the growth of an aggregate (or
average) of individuals.

5. Different aspects of the individual, or of the
average, may have different types of growth
curves.




“The Brain & the Fancy”

“Work on the mathematics of growth as
opposed to the statistical description and
comparison of growth, seems to me to
have developed along two equally
unprofitable lines... It is futile to conjure
up in the imagination a system of
differential equations for the purpose of
accounting for facts which are not only
very complex, but largely unknown,...
What we require at the present time is
more measurement and less theory.”

— Eric Ponder, Director, CSHL (LIBA), 1936-1941.




More Measurement & Less
Theory



Genome: All the
hereditary
information of an
organism, encoded in
its DNA

Very long sequence
of nucleotides or
bases:

2=1{A,T,C G}




The Central Dogma (due to Francis Crick in 1958)

v “The central dogma states that once
oo s ‘information' has passed into protein
it cannot get out again. The transfer
of information from nucleic acid to
nucleic acid, or from nucleic acid to
protein, may be possible, but transfer
from protein to protein, or from
protein to nucleic acid is impossible.
Information means here the precise
determination of sequence, either of
bases in the nucleic acid or of amino
acid residues in the protein.”

DNA RNA m Protein




* A specific region of DNA that determines
the synthesis of proteins (through the

transcription and translation) is called a
gene

* Transcription of a gene to a messenger
RNA, mRNA, is keyed by a transcriptional
activator/factor, which attaches to a

promoter (a specific sequence adjacent to
the gene).
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Measurements

e Cellular State:
— Genome
— Epigenome
— Transcritome
— Proteome
— Metabolome

* Single-Cell & Single Molecules

— Focus on RNA (dynamic & highly variable; yet
guantifiable)
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p(M | D,1) = p(length) x p(alignment) x p(true label) x p(false label)
p(length) ~ normal

p(alighnment) ~ normal

p(true label) ~ binomial

p(false label) ~ Poisson
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Unknown Molecules (M)

p(D | M.I) = p(D| I) p(M | D,I)
p(D 1)

Bayes’ Theorem

FNOI0ON

Odds Ratio Oy = p(D;| D p(M ;| DI
p(D, | ) p(M | D,.1)

transcript 1: caatattccgicictecgtacttcccagagicicgette
transcript 2: ttatcttatatcggca aatyicicctccaactetg....
transcript 3: ctcgicicaactgataaaatyicicettcccagec....
transcript 4: atatcggcaatagicictcggcaatatcggcaaatatce...

Sequence Database (D)) :
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Raw Data

Sequences (1-15)




Molecules (1500)
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In this analysis, we treat each map as a unigue ‘molecular signature.” The
first step in determining this probability is to calculate the Hamming
distance between molecular signatures, HamDist, assuming a total
number of ‘good signatures’, S.

Each signature is randomly selected from the set of all possible binary
vectors, with a probability 1. The computation of this probability proceeds
as follows: start with a selected signature fO from the set S, and compute
all the possible signatures whose Hamming distances from fO0 range
between 1 and HamDist; there are

HamDist—1
E Binomial[ M, k]
k=0

such signatures, and with high probability, they do not contain even a
single signature from the set S (probability > (1 -10*{-12}) > (1 - rt)*vol)



We compute the uniqueness of the identification probability, given a fixed sizing

accuracy, a, enzyme recognition site frequency, p_c, and cleavage rate, p_d: we
compute this probability as follows

Floor(HamDist/2) M—b

Z Z Multinomial[a, b, M — a — b](a p. pq)°
b=0 a=0

X (o pe (1 — pd))b(l — /)C)(M_“_b). (2)

That is, we sum the probabilities that starting with a signature with (a + b) unit
bits, exactly b unit bits are lost from the mapped signature as a consequence of
incomplete cleavage
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Figure 2. Computations of the number of unambiguously identifiable cDNA species (>95% probability) for a given bp sizing accuracy as a
function of cleavage efficiency and cDNA size: 2.5 kb, (b) 2 kb, (¢) 1 kb and (d) 0.5 kb. For cDNA length 2kb, as sizing resolution degrades
from 50 to 90 bp, difficult-to-achieve cleavage efficiency (>809%) is needed to distinguish many species (> 10*). As sizing resolution
approaches 30 bp, 10 to 10° species can be detected, even at very low cleavage rates (30%-509). Region B indicates the parametric space
accessible given the resolution (~30 bp) and cleavage efficiency demonstrated (~40%) in our experiments.



Analysis of Atomic Force Micrographs
to Measure RNA and DNA Length with High Precision




A Brief Introduction to AFM

Detector and
Feedback

Electronics

Photodiode

Laser

d
Sample Surface\r Cantilever & Tip
. PZT Scanner



Two Basic Measurements from AFM

e At each point, (x,y), in an area, we can measure:
e the displacement in the z-direction for height
e the change in oscillation frequency for softness

Height map Deflection map




Two Intrinsic Problems with AFM

e Tip convolution effects, especially on the ends of molecules
e Thermal drift



Tip Convolution (continued)

In an electron microscope:

this surface... ...and this function... ...give this image.
= f
e |
In an atomic force microscope:
this surface... ...and this function... ...give this image.

b
b

=



Problem: Thermal Drift

Each component of the AFM (tip, cantilever arm, sample, stage,
pezioelectronics) has its own coefficient of thermal expansion.

Even minute fluctuations in ambient temperature lead to an aggregate
displacement of the materials with respect to each other, hence drift.



An Example of Thermal Drift

8 images of pUC19 DNA plasmids taken in sequence
The mean scan period is 33.7 min/img.

Each image is 1408x1408 pixels (2x2 microns)

The resolution is 1.42 nm/pix

The scan rate is 0.001 sec/pix, 980 pix/sec, 1392 nm/sec
The images were scanned in the top-to-bottom direction.









Figure 1: Alignment of the first two AFM top-to-bottom scans (at ¢ + 0
min and ¢ + 34 min), with displacement vector (red) added. The vector

nm
pixel

magnitude is 80 pixels, which, at 1.42
of 113 nm, at a rate of 3.3 2%

min

resolution, gives a displacement



Figure 2: Alignment of the first and last AFM top-to-bottom scans (at t +0
min and ¢ + 404 min), with displacement vector (red) added. The vector

p’z?;’él resolution, gives a displacement

representing the average drift rate over the

magnitude is 593 pixels, which, at 1.42
of 842 nm, at a rate of 2.1 22

min’

net displacement in 404 min.




Image Analysis



Set up the Image for Processing

Start

Convert RGB to grayscale image
(cvCvtColor)

AFM RGB image

Equalize image intensity level histogram
(cvEqualizeHist)

Smooth image
(cvSmooth)
dst(x,y) = median(5x5 neighborhood about src(x,y))



Extract Foreground from Background

Suppress pixels that are too dim

(cvThreshold)
dst(x,y) = src(x,y), if src(x,y) > T1; 0, otherwise

Promote pixels that are locally bright enough, and suppress the rest
(cvAdaptive Threshold)
dst(x,y) = 255, if src(x,y) > mean(31x31 neighborhood about src(x,y)); 0, otherwise



Reduce the Image to Its Essential Morphology

Iteratively erode binary regions, resulting

in 1-D 8-connected edge pixels
(using custom 3x3 kernels)

Molecular
backbone
candidate image




Transform the Morphological Features into a Graph

Recursively traverse 8-connected edge pixels, labeling distinct
branches, scoring them according to Euclidean length ({N,S,E,W} =1,
{NW,NE,SW,SE} = v2), resulting in weighted edge tree graphs




Identify the Longest Path through the Graph

Molecular
backbone
final image

Identify the longest path through
each weighted edge tree graph,
pruning side branches from trunk




Original AFM Image




Filtered Image Showing 1-D Edge Trees




Final Backbone Image




The Backbone in Edge Tree Context




The Backbone in Original Context

=




Magnified




The Obvious Problem




And Yet, Early Comparative Results Show
the AFME Does Very Well

245 molecular fragments from 50 images of digested pUC19 (automated AFME vs manual NIH Image)
As molecule fragment length increased, AFME progressively underestimated length

AFME’s initial length estimation error is below 2%

Note the clusters: they indicate fragment lengths matching the restriction map: 75, 223, and 584 nm

Automated vs. Manual Length Measurements for a Preparation of Monodisperse pUS19 Plasmids
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Example 5- and 10-spline Stmulated Molecules

8

N
T




Example Real Molecule
18-spline calibration molecule

200

L=75nm
Ls=79.92nm
Les=79.78 nm

75 100 125




Solve for Lg Length Correction Without Weighting

The model We train a linear regression model on ¢ > 5 calibrating
molecule backbones, V' € B, having known theoretical length £, using values
from these 5 features: {npnorz, Nwert, Ndiag, Pperps Nikav }> giving

nhorz(b ) nvert(b ) ndiag(bl) npe'rp(l}:/l) ntkav(b ) -ll_
nhOTZ(b ) ”vert(b ) ndiag(lzg) nPeTp({lg) ntkav(bz) ay lo
nhorz(bj) nvert(bd) ndiag(ég) nperp(ég) ntkav(bd) ag ld
nhorz(b4) nvert(b4) ndiag(bil) nperp(bﬁl) ntkav(b4) az| = |l
”horz(bs) ”vert(b5) ”diag(g5) ”pew(g.{s) ntkav(bS) a4 s (1)
as .
[hor=(B) Moert(By) aiag (By) mperp(By) mokan ()] Lla]

<:>Nd:ﬂ

where N is the ¢ x 5 feature matrix, @ is the correction coefficient 5-vector
to solve for, and [ is the length estimate error g-vector [..., (£ — Log(b})), -..],
where i = 1,...,q. The model has the analytic solution

= (NTN)"'NTI. (2)

Then each ¥ € B’ obtains its final estimate, £/ € {L'r,L'w}, from the
correction function

C : B—>R
Vo
al”horz(?)"’
agyert (b')+ (3)
agndiag(l;')—i—
N
a5ntk(w(bl)7

and is given by

L'(V) = Log(®) + C0). (4)



QOutliers

e Upon taking into consideration the difference between the empirically
measured null distribution and the actual shape of the L., measurement
distribution, certain observations appear to be false positives and others false
negatives

e Use the empirical local false discovery rate (fdr)

e This suggests a weighted formulation of the error minimization problem given
by

min ||7|3, = min Z W(g’)rz%,,
ben

where ;= £-Les(V)

and W:R-R

is the local fdr weighting function.



Number of Fragments

Local FDR

Theoretical and Empirical Nulls

Data
------ Smooth Function Fit
—— Empirical Null
— Theoretical Null

-2 -1

Theoretical and Empirical Null Estimates of Local FDR

1.6r

1.41

0.6r

0.4

b

T T
—— Empirical Null Estimate
—— Theoretical Null Estimate
—+— Data Density in Z

-3

No

(a) Theoretical and empirical null distributions of L¢g val-
ues of Train. N = 263, ur = 85.49 nm, or = 6.73 nm,
Ccopr = 0.08, pp = 86.39 nm, og = 7.09, ¢, = 0.08 nm. We
obtain the empirical null by using the characteristic function
approach taken by J. Jin and T. Cai. The smooth function
fit, f(Z), was created using Matlab’s ksdensity function with
a kernel width of 0.2.

(b) Local FDR curves derived from the theoretical and em-
pirical null distributions of L¢s values of Train, with re-
spect to f(Z). The line at Local FDR = 1 indicates the
data density along the Z axis. The local FDR curve derived
from the empirical null distribution is used to weight Train
data during the training phase.



Solving for the fdr-Weighted Correction Coefficients

The new weighted formulation of the estimator, £y, is obtained by solving
for @ using the following Matlab pseudocode.

N = diag(W) x N;
[ = diag(W) x (L — L¢cs);
i = N\[;



James-Stein Shrinkage

In our modeling of estimation error so far, one or more features in training
may introduce too much variance (systematic error) or dependence (model
error)

In 1961, James and Stein published their seminal paper describing a method
to improve estimating a multivariate normal mean

IE = [Mh ey Nk]

under expected sum of squares loss, provided the degree of freedom, k, is at
least 3



Background for James-Stein Shrinkage (continued)
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Spherical James-Stein Shrinkage

Let @ = [ay, ..., ai] have a k-variate normal distribution with mean vector
ji and covariance matrix o2, which we measure empirically in train mode.
We would like to estimate ji using an estimator

6(a@) = [61(a), ..., 6k ()] (1)

under the sum of squares error loss

k
L(ji,0) = Z (i — 61)2 (2)
i=1
In terms of expected loss,
R(ji,0) = E,[L(f,6(a))], (3)

James and Stein show that when k£ > 3, an improved estimator is obtained
by a symmetric (or spherical) shrinkage in @ given by

+
5(@) = |1 Kla=k)s® L (4)
(vay?
i=1
where
_ (k-2)
Ri(q—k+2)’ (5)

and s? is the empirical estimate of variance, o2, given by

Sete 1 5 2 (£~ Los, — (N (6)
=1

and where [z]" = max{0, z}.




Truncated James-Stein Shrinkage

When extreme p; are likely, then spherical shrinkage may give little im-
provement. This may occur, for instance, when the pu; arise from a prior
distribution with a long tail. A property of spherical shrinkage is that its
performance is guaranteed only in a small subspace of parameter space, re-
quiring that one select an estimator designed with some notion of where [
is likely to be, such that the estimator shrinks toward it. An extreme pu; will
likely be outside of any small selected subspace, implying a large denomi-
nator and so little, if any, shrinkage in @, thereby giving no improvement.
To address this problem, Stein proposed a coordinate-based (or truncated)
shrinkage method, given by

+
(f —2)s*min 1,%
s (@) =|1- )q th T a;, (1)
'21 (Nﬁ'z)?
]:

where f is a “large fraction” of k, z; = |a;|,i = 1,....k, zq) < z2) < ... <
2(p) < .. < z() forms a strictly increasing ordering on 21, ..., 2, s? is the
empirical estimate of variance, o2, given by

1 q

2 2

s§T = ,C*L(jsifNai 5 2

L (Na)) &)
and 1; = min{a;, 2(s)},4 = 1,..., k. tein shows this estimator is minimax if
f > 3. Observe that the denominator is small even when (k — f) of the y;
are extreme.




Shrinking Did Little to Our Feature Space

i 1 2 3 4 5

train 1.000000 1.000000 1.000000 1.000000 1.000000
a; -0.258699 -0.316009 -0.197179 -0.742293 1.637360

spherical 0.997422 0.997422 0.997422 0.997422 0.997422
4;(a) -0.258037 -0.315201 -0.196675 -0.740394 1.633170

truncated (f = 5) 0.997422 0.997422 0.997422 0.997422 0.997422
5;5) (a) -0.258037 -0.315201 -0.196675 -0.740394 1.633170

truncated (f = 4) 0.999108  0.999108  0.999108  0.999108  0.999596
554)(5) -0.258468  -0.315727  -0.197003  -0.741631  1.636700

truncated (f = 3) 0.999655  0.999655  0.999655  0.999853  0.999933
5i(3>(a) -0.258610  -0.315900  -0.197111  -0.742184  1.637250

e In our experiments, James-Stein shrinkage factors were nearly 1, indicating
our 5 features had little noise or dependence

e Hence, we were confident our linear regression model did not overfit



Training and Test Data Sets Used in Experiments

Data Set Images Fragments 7 (nm)
Train 5 263 75
Test Knowns 14 2,452 75
Test Unknowns A 44 15,477 223

Test Unknowns B 101 54,093 584



Experimental Results (continued)

Test Knowns
N=2,452
T=75 nm

K o Cy

Lcs 89.05 8.27  0.09
78.54 7.91  0.10

Test Unknowns A

N=15,477
7=223 nm
H o Cy

278.91 14.75 0.05
233.57 10.85 0.05

Test Unknowns B

N=15,093
7=584 nm
2 9 Cv

669.66 87.21 0.13
553.42 36.71 0.07



Experiments



Gene Family # Members # Variants # Unique Variants Percentage

ABC 81 54 1 67.50
ABHD 26 15 0 57.69
ADAMTS 23 7 0 30.43
ALDH 33 25 1 78.13
ATP 222 153 2 69.55
CACN 88 74 0 84.05
CATSPER 8 3 0 37.50
C1s 26 15 0 57.65
Cyp 75 32 0 42.67
DNA) S8 27 1 47.37
FOX 64 26 0 40.63
FZD 13 3 0 23.08
G) 27 12 0 44 44
GPR 207 92 2 44,88
IFT 32 26 0 81.25
L 157 99 2 63.87
KCN 154 98 0 63.64
KIF 57 24 0 42,11
KRT 60 9 0 15.00
NLR 38 23 0 60.53
PAX 27 23 0 85.19
PD! 23 7 1 31.82
PG 64 36 0 56.25
PTP 227 177 0 77.97
RAB 84 38 1 45,78
SCN 38 29 0 76.32
SERPIN 59 35 0 59.32
SLC 600 368 7 62.06
SMAD 18 16 0 88.85
SMC 11 7 0 63.64
SOX 25 9 0 36.00
TBX 27 16 0 59.26
TNFRSF 43 25 0 58.14
TNFSF 85 45 0 52.94
TRIM 125 79 1 63.71
UBA 10 6 0 60.00
USP 75 36 0 48.00
WNT 22 7 1 33.33
ZFYVE 55 35 0 63.64
ZNF 904 467 0 51.66
All families 3971 2278 20 57.66

Whole database 29563 16885 267 57.64



Simulated molecules

labeling rate: 80%

labeling position error
— normal distribution
— s5.d. =0.5%/1%/1.5%/2% of length
— bounded to +/- 2 s.d.

false label probability: 3%
length truncated from 5’ end

— uniform distribution
— 0-20%



Notations

Total number of genes in database n = 29563
Hypothesis H,, k=1 to n
Molecule M; i=1 to n, j=1 to 100

81 genes in database belongs to ABC gene family
— 69 completed
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Molecules ABCB8 2%
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Alignment Score

Compare length of H, and M;;, continue only if L(M;) is
within 80-100% of L(H,)

Align H, and M;; at the 3’ end, discard the labels on H,
those exceed length L(M)

Continue only if n;-n,<3 (no more than 3 false labels)
Compute alignment table by given errors
Generate all possible alignment combinations

Select a subset of combinations that contains the
minimum number of missing labels

Calculate alignment scores (probability) for the selected
combinations and save the maximum score



Alignment Example 1

ABCB8 molecule 1: H,q4q M2958,1

Align Table
m; m, m; m, mg mg Candidates
h 1. 0 0 0 0 O m,
h, 01 0 0 0 O m,
h 0 0 0 0 0 O
h, 0 0 1 1 1 O ms, My, Mg
h. 0 0 1 1 1 O ms, My, Mg
hy 0 0 1 1 1 O ms, My, Mg
h, 0 0 1 1 1 O ms, My, Mg
hgy 0 0 0 0 O 1 Mg
1 I I I
) et b s
-1 | | |

0 =00 1000 1500



Alignment Example 1

Generate all possible combinations (# false labels<3, no
repetition, sorted order) (261 found)

Select combinations that have minimum # missing labels
h5 h6 h7 h8

mgy m;, mg 0 mg

>
[y
>
N
>
w
>
SN

m, 0 m; mg

*
my 0 m;, mg mg

3
3

©O o o o
3

O mg my mg mg

Calculate scores for all selected combinations, save the
maximum one
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1500




Alignment Example 2

* ABCA9 molecule 3: H;,4; Ms1073
* Align Table

m, m; m, mg mg Candidates
0O 0 0 O m,
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w

M3, My

ms, M,
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Alignment Example 2

* 305 possible combinations found

* Select combinations that have minimum # missing labels

hy h, hy h, he h, h, hg hg
m O m my mg 0 mg O mg
m O m my 0 my mg O mg
m O m O myg mg mg 0O mg
m 0 m, my m, O 0 mg mg
m O m mg O my O mg mg
m 0 m O my m; 0 mg mg
m O m my 0O O my mg mg
m O m O mgy 0 m;, mg mg
m 0 m, O 0O mg m, mg mg
| I I I | Bl | | |
it : (N AU B
! 1 1 | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000




ROC

* Every gene i has a score matrix S;={s;}, j=1 to
100, k=1 to n

e Calculate number of True Positives and False
Positives while varying threshold 6 from O to 1
— True positive: For each row of S, (fixed j, k=1 to n),

if max({s;}) = s;26 and there exists only one max,
i.e. molecule M;; matches with H,

— False positive: otherwise (M;; matches with H,, izk
or more than one max score or max score<0)
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AFM vs smsDGE ensemble

— AFM 2%
AFM 1.5%
—AFM 1%
AFM0.5%
— — —smsDGE all
———— smsDGE length>=24nt

100



How do we make sense of the massive
amount of such single-cell single-
molecule data?



Hooke
Thursday 25 May 1676

Damned Doggs.

Vindica me deus.

* Commenting on
Sir Nicholas Gimcrack character in
The Virtuoso, a play by Thomas Shadwell.




Hooke...

“So many are the links, upon which the true Philosophy
depends, of which, if any can be loose, or weak, the whole
chain is in danger of being dissolved;

“it is to begin with the Hands and Eyes, and to proceed on
through the Memory, to be continued by the Reason;

“nor is it to stop there, but to come about to the Hands and
Eyes again, and so, by a continuall passage round from one
Faculty to another, it is to be maintained in life and strength.”



Hooke
in the Royal Society, 26 June 1689

“I have had the misfortune either not to be understood by
some who have asserted | have done nothing...

“Or to be misunderstood and misconstrued (for what ends |
now enquire not) by others...

“And though many things | have first Discovered could not find
acceptance yet | finde there are not wanting some who pride
themselves on arrogating of them for their own...

“—But | let that passe for the present.”



