Cancer and Signals

Bud Mishra

Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA

L#4: (October-0-4-2010)
Cancer and Signals
Outline

1. Cancer: Disease of the Genome
2. Genetics
Outline

1. Cancer: Disease of the Genome
2. Genetics
Evidence in Favor

- Somatic mutations, Aneuploidy, Copy-number changes and LOH (loss of heterozygosity)
- Two kinds of genes play important roles. **Oncogenes**: Act dominantly and act through gain of function; **TSG (Tumor Suppressor Genes)**: Act recessively and act through loss of function.
- Effect of radiation and chemotherapy. They are assumed to induce additional further genetic instability to trigger apoptosis.
- **Synthetic Lethality**: Target a “paired gene” to dysfunctionalize a tumor cell.
- **Knudsen’s Two Hit Hypothesis**:
  - **Familial vs Sporadic**: Acquired (or non-inherited) mutations are often same as inherited mutations
Cancer risk in families... *Li-Fraumeni syndrome*: Mutant variety of one copy of the pair of p53 genes is inherited. Increases risk of several forms of cancer... [Breast carcinoma, sarcoma and leukemia]

Hereditary Colon Cancer:
- Multiple independent primary tumors
- Same mutant gene (APC) in colon stem cells, on the other hand, is characterized by monoclonality and slower progression

Hereditary Mutations: Leukemia by age 3...
Retinoblastoma by age 5: Caused by a mutation in RB1 gene in chromosome 13.
Evidence Against

- Not all carcinogens are mutagens.
- Incidence of various cancer varies from population to population (even after correction for gender and age).
- Only about 5% of childhood cancer have a clear hereditary basis.
- *Field Effects*: Multiple primary tumors in the same organ, but no familial disposition. Locally recurrent tumors.
- **Debulking and Remission:**
Outline

1  Cancer: Disease of the Genome

2  Genetics
Population Genetics

- Study of Genetic Basis of Evolution.
- Frequencies and fitness of genotypes in natural population.
- Evolution is the change in the frequencies of genotypes through time, perhaps due to their differences in fitness.
- Fitness of genotypes are determined by the phenotypes.
- Associating genotypes to phenotypes (either in an individual or a population).
Forces in Genotypic Evolution

- Mutations/Polymorphisms
- Genetic Drift
- Selection
- Migration
Mendelian Genetics

- Mendelian genetics apply to virtually all sexual organisms: **metazoa** (multicellular animals) as well as **metaphyta** (multicellular plants).

- Mendel’s insights:
  1. Genetic information is passed in particular forms from an organism to its offspring. (Genes, genome, epigenome)
  2. Constitution of an organism could be divided into a series of discrete, separable entities. (Traits: Particulate theory)
  3. Each observable trait of an individual might be traceable to a separate gene.
  4. **Genotypes** and **Phenotypes**
In **diploid** organisms, a gene has two fold redundancy – with the exception of the sex chromosomes.

Two copies of a gene could convey different, possibly conflicting information.

Different versions of genes are called **alleles**. A gene is called **biallelic**, if it has primarily two different versions in the population.

If an organism carries two identical alleles of a gene, it is said to be **homozygous**. If it has two distinct alleles, it is **heterozygous**.
If a single allele determines the phenotype (irrespective of what the other allele is), then that phenotype is called **dominant**. If, on the other hand, both copies of the gene must have the same allele to determine the phenotype, then it is **recessive**.

There is a spectrum of phenotypes determined by the control of the two alleles: **incomplete dominance** (two phenotypes blend: flower color); **co-dominance** (both phenotypes are present, blood types).
Genetic information is corruptible. **Mutations** modify the information content of a gene (creating a new allele), regulation of a gene (changing the dosage) or copy-number of a gene (also, changing the dosage). Thus, mutations *may* be able to affect the phenotypes. It also modifies the gene-frequencies within a population.

An allele that is present in the great majority of the population is termed **wild type** — compatible with normal structure and function.

The collection of alleles present in the genomes of all members of a species: the **gene pool**.
Selection: Most mutations are neutral. Otherwise, they are very likely lethal (killing the organism with the mutation) and do not enter the gene pool. If a mutation is advantageous, it spreads in the gene pool through a selective sweep.

Heterozygous Advantage
Neutral Mutations

- The great bulk of the genetic information in human genomes (generally, in all mammals) is non-functional (non-coding, non-regulatory, etc.): junk DNA.
- Certain modification in certain base-positions (synonymous modification) in a gene will not affect the encoded protein. Silent mutations
- Such mutations are neutral mutations.
Mutations

- **Single-base substitutions**: *Missense mutations* (altered amino-acid), *Nonsense mutations* (changes the STOP codon), *Silent mutations*, *Splice-site mutations* and *Regulatory-site mutations*. Loss of Heterozygousity (LOH)...

- **Insertions and Deletions**: Frame-shift, Splice-variants...

- **Translocation**

- **Copy-number changes** (Duplication, Hemizygous Deletion, Homozygous Deletions, Loss of Heterozygousity)

- **Somatic vs. Germline Mutations**
Cancer in Population

- Cancer is a disease of the genome and has its origin in mutations occurring at mitosis. There are $10^{13}$ cells in the body. (The total number of cells during an average human lifetime $\approx 10^{16}$. Amount of cell turn over – involving cell death and replacement – about $10^7$ events per second.

- Conclusion: The cancer risk (of each kind) should have similar distributions in all human sub-populations... (and both genders).

- This is not true (except for certain pediatric tumors).

- Role of heredity and environment
Cancer Mutagens

- Katsusaburo Yamagiwa (1915): Repeated painting of localized areas of the skin of rabbits’ ears resulted in carcinoma.
- Theory: Cancer is a disease of mutant genes and that carcinogenic agents induced cancer through their ability to mutate genes.
- Some carcinogens are not mutagens (they promote tumorigenesis through non-genetic mechanisms): tumor promoters.
Standard Approach: “Bean Bag Genetics”

- **Strategy:**
  - Ignore the complexities of real populations and focus on the evolution of just one (or a few loci)
  - Treat the population as mating at random or, if subdivided, cross-migrating in a simple pattern

- Though successful, this strategy was mocked as “Bean Bag Genetics:” Ernst Mayr.

- In the absence of large number of genomic sequence data and powerful statistical algorithms, this strategy appeared to be the only viable one...
Example: DNA Variation in Drosophila

- Marty Kreitman: “Nucleotide polymorphism at the alcohol dehydrogenase locus of *Drosophila melanogaster*.”
- Sequence variation in a sample of natural (wild-type) alleles: 11 alleles from Florida (F1), Washington (Wa), Africa (Af), Japan (Ja) and France (Fr)
- In the region of 11 ADH alleles: No two alleles matched in their DNA sequences
Polymorphisms

- In the coding regions, some alleles did have the same sequence; 14 sites have two alternative nucleotides (biallelic); A site with different nucleotides in independently samples: a segregating site, or a polymorphic site.
# Polymorphisms

<table>
<thead>
<tr>
<th>allele</th>
<th>39</th>
<th>226</th>
<th>387</th>
<th>393</th>
<th>441</th>
<th>513</th>
<th>519</th>
<th>531</th>
<th>540</th>
<th>578</th>
<th>606</th>
<th>615</th>
<th>645</th>
<th>684</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Wa-S</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1-1S</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Af-S</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Fr-S</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>F1-2S</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Ja-S</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td>T</td>
<td></td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>F1-F</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Fr-F</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Wa-F</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Af-F</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Ja-F</td>
<td>G</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

*B*
About 1.8 of every 100 sites are segregating in the ADH sample (typical for *D. melanogaster*).

The variation at 13 of the 14 segregating sites is **silent** (i.e., they represent synonymous mutations, that changes the codon but not the encoded amino acid).

The variation at the 578th nucleotide position results in a change of the amino acid at position 192 in protein, where a lysine (AAG) or a threonine (ACG) is found. This is a replacement or non-synonymous polymorphism as this nucleotide polymorphism causes an amino acid polymorphism.
Questions

- What causes these diversities within the same species?
- Why are there so many synonymous polymorphisms? Random mutations are mostly lethal...
- Note: Alcohol Dehydrogenase is an important enzyme as flies and their larvae are often found in fermenting fruits with high alcohol concentration
- Alcohol Dehydrogenase is used in the detoxification of ingested alcohol... A small change in the protein could have a serious consequence.
Comparison of the coding region of the ADH loci in *D. melanogaster* vs. *D. erecta*:

- 36 out of 768 nucleotides differ between the two species
- Of the 36 differences, only 10 (26%) are non-synonymous
Loci and Alleles

- **Locus**: A chromosomal location referring to a segment of DNA (which may or may not have a phenotypic effect). A locus is a template for an allele.

- **Allele**: A segment of DNA sequence at a locus. An allele is an instantiation of a locus.

The genome consists of a sequence of loci: one for each haploid chromosome. A diploid human has two alleles at a particular autosomal locus (one from father and the other from the mother). If they differ in nucleotide sequences, the human is heterozygote; otherwise, homozygote. They can also vary in copy-numbers... (things get a bit complicated)...
Different Alleles

- **By Origin**: They come from the same locus on different chromosomes (perhaps belonging to different individuals)
- **By State**: They have different nucleotide sequences
- **By Descent**: They do not share a common ancestor allele (i.e., during a relatively short time period in the recent past)
- **Identity by origin, Identity by state or Identity by descent...**
Why Cancer?

- If cancer is a disease of the genome...
- And since it should be under a negative selection pressure...
- *Why hasn’t cancer been eliminated from multi-cellular metazoans by evolution?*
Few plausible answers

- *Shadow of evolution...*
- *Cancer has a selective advantage...* (surveillance vs. growth or fertility: P53, P63 & P73)... What is bad in somatic cells, could be an advantage for germline cells.
- *Cancer is a natural evolutionary process...* and intimately associated with multicellularity.
[End of Lecture #4]