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Genome Sequence Assembly Problem Shotgun Sequencing

Shotgun Sequencing

@ The DNA sequence of an organism is sheared into a large
number of small fragments, the ends of the fragments are
sequenced, then the resulting sequences are joined together
using a computer program called assembler.
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Genome Sequence Assembly Problem Shotgun Sequencing

Basic Assumption

@ Two sequence reads (two strings of letters produced by the
sequencing machine) that share a same string of letters originated
from the same place in the genome.

@ Using such overlaps between the sequences, the assembler can

join the sequences together in a manner similar to solving a jigsaw
puzzle.
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Genome Sequence Assembly Problem Assembly Modules & Algorithms

Assembly Modules

@ Overlap Detection/Pairing
@ Genome Assembly

@ Consensus Generation
@ Scaffolding

® Assembly Validation

® Finishing
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Genome Sequence Assembly Problem Assembly Modules & Algorithms

AMOS

A Modular Open-Source assembler

o Bank
o Central data-structure consisting of a collection of indexed files comprising
assembly related objects (reads, inserts, overlaps, contigs, scaffolds, etc).
Programs in the assembly pipeline communicate with each other using the
bank as an intermediate storage space.
o Overlapper
o Use "minimizers" technique for reducing the number of k-mers considered
in the initial phase of overlapping by an order of magnitude.
o Consensus Computation
@ Parametric implementation of the Churchill-Waterman algorithm for
computing the consensus base from a column in a multiple alignment of
reads.
o Hawkeye visualizer
o Facilitate inspection of large-scale assembly data minimizing the time
needed to detect mis-assemblies and make accurate judgments of
assembly quality.
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Genome Sequence Assembly Problem Assembly Modules & Algorithms

Assembly Algorithms

o Greedy Algorithms (TIGR,Phrap,CAP3)

o Graph-based Algorithms (CELERA, EULER)

o ML Algorithms & Genetic Algorithms (Parsons et al.)
o Brute-Force Algorithms (SUTTA)
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Genome Sequence Assembly Problem Shortest Superstring Problem

Shortest Superstring Problem

First approximation

Researchers first approximated the shotgun sequence assembly
problem as one of finding the shortest common superstring of a set of

sequences:
Definition (Shortest Superstring Problem)

Given a set of strings {si1,S>, ..., Sy} find the shortest string T such
that Vi, s; is a substring of T.

@ This is an NP-hard problem!

9 It does not correctly model the assembly problem. It can produce
compression and other assembly errors that are associated with
non-random structures in Eukaryotic genomes (e.g., repeated
regions, rearrangements, segmental duplications).
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Genome Sequence Assembly Problem Shortest Superstring Problem

Graph-Theoretical Approaches

o Overlap-Layout-Consensus

o construct a graph in which nodes represent reads and edges
indicate overlaps. The set of contigs is represented as the set of
nonintersecting simple paths in the graph.

o Sequencing by Hybridization (Eularian Path)

o Create a virtual SBH problem by breaking the reads into
overlapping n-mers (an n-mer is a substring of length n). Build a
deBruijn graph in which each edge is an n-mer and and the source
and destination nodes are respectively the n — 1 prefixandn — 1
suffix of the corresponding n-mer. Find a path that uses all the
edges (an Eulerian path).
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Fragment Assembly Framework Fragment and Overlap representation

Fragment Representation
Basic definitions
O A setof fragments/reads F = {f1,fz,...,fn}.
O Each fragments is represented as pairs of integers:

fi=(si,ei),i € [1,[F]] 1)
where 1 < sj,e; < |R|, and R is the reconstructed string.
O The following convention applies:

o if sj < ej then R[sj, g] is the substring of R covered by fragment f;
o if e < sj then R[ej, si]° = R]si, €] is the substring of R® covered by
fragment f;

O The order of s; and e; encodes the orientation of the fragment read in the layout
(whether f; was sampled from R or it complement strand R°®).

Q@ We define the start-point sp; and end-point ep; of read f; in the layout as follows:

spi = min{si,ei}, epi = max{si,ei} (2)
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Fragment Assembly Framework Fragment and Overlap representation

Overlap Representation

@ The complete specification of an overlap  is given by specifying:
@ the substrings 7.A[r.Sp, 7.ea] and 7.B[r.Sg, 7.€g]
@ the offsets from the left-most and right-most positions of the reads
W-Ahang and 7T-Bhang
@ the relative directions of the two reads: Normal (N), Innie (1)
@ a predicate suffix,(R) on aread R s.t.:

) true iff the suffix ofR participates in the overlap
suffix;(R) = . . " :
false iff the prefix ofR participates in the overlap
©)
o The first read is always normalized in the forward orientation.
A A
S & S 8
A han S&\\S§\\\§S$§ A han \\S&\\§S§\§
’ NN 7 ARRYY B
$ IC $ &
B B
Normal Innie
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Fragment Assembly Framework

Overlap Taxonomy

Containment

Regular dovetail

Suffix dovetail

Prefix dovetail

Giuseppe Narzisi ( Courant Institute of Mathe

A
B &
Ahang \ B hang
Y >
B
A
S 8
A hang ? B hang
3
B
A
% &
Ahang \ B
§ hang
3
B
A
Y &
A hang B hang
3
B
SUTTA

Fragment and Overlap representation

February 2009

16/ 47



Fragment Assembly Framework Fragment and Overlap representation

Layout Representation

@ Let us define the layout L associated to a set of fragments

F = {f;,fo,...,f\} as follows:
L=f 2 2f 2. = gy (4)

where there are no containments (contained reads can be initially
removed and then added later after the layout has been created)

@ A layout L is consistent if the following property holds:

Ti—1 | Tit1

= fi = iff suffix,_,(f) # suffix, . (f;) (5)

o The estimated start positions for each fragment is given by:

sp1 =1, spi=spi_1+m_1.hang; , ifi>1 (6)
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Fragment Assembly Framework Layout Representation

Layout Representation

Example

Layout for a set of fragments F = {A,B,C,D,E,F,G} with a
sequence of overlaps wE\‘A’B), WEB@)’ WE\IC,D)’ w}QE), WE\IE,F)’ WPIF,G)

A -

N Y B

S\
o N D
NN
: 1 : 3 F
Ny,
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Fragment Assembly Framework Min-length reconstruction theorem

Min-length reconstruction theorem

Let us define the length of an overlap to be the average length of the
two overlapping substrings:

(‘W.SA—T('.GA‘ —;‘7‘(’.83 —W.eB‘) 7)

and let us define the length of a layout |L| to be the sum of the lengths
of its edges:

length(7) =

weight(L) = length(r) (8)

meL

then the following theorem holds:

Theorem (Tarhio & Ukkonen (88) and Turner (89))

A layout of maximum weight results in a reconstruction of minimum
length
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Fragment Assembly Framework Min-length reconstruction theorem

Min-length reconstruction theorem
Proof

First note that:

N—1
IL| = spn + [fu] = Y _ mi-hang; + [fy| ©)
i=1

using the fact that

@ m.hang; ~ [fi| — length(m;)

@ length(7;) ~ |g| when 7 is a containment edge and g is the

contained fragment

it follows that:

Ll =) If| =) length(r) (10)
f T

weight(L)
but the second sum is the weight of the layout. Thus maximizing

weight minimizes length.

Giuseppe Narzisi ( Courant Institute of Mathe SUTTA February 2009 22 /47



Fragment Assembly Framework

Min-length reconstruction theorem
A few problems
o Although the previous theorem suggests to look for a
reconstruction of maximum weight (minimum length), the
reconstructed string can still have many errors due to repeats

B R,
I !
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Fragment Assembly Framework Min-length reconstruction theorem

Genome Sequence Assembly problem

Definition (Genome Sequence Assembly Problem)
Given a set of fragments/reads F = {f;,f,,...,f,} find a reconstruction
R and a valid layout of the reads L such that:
@ The observed distribution of fragment reads start point, Dyps, has
the minimum deviation from the source distribution Dgc

O The distance between mated reads must be consistent with the
size of the fragments generated.

O The observed distribution of restriction enzyme cutting point, Cgps
is consistent with the distribution of experimental optical map data
CSI’C-

Q9 ...

This formulation assumes no errors in the fragments.
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SUTTA assembler Main Ingredients

SUTTA

Main Ingredients

o Exhaustive

o Not a greedy algorithm.
o Avoid getting stuck with a locally best solution

o Use Branch-and-Bound (or Beam-Search) algorithm to improve
algorithmic complexity.

o Provide bounds and allow pruning of unpromising
regions/directions.

o Implement by "dove-tailing" between local (short sequence-reads)
and global (long-range maps and haplotypic) information.

o Tune heuristically (e.g., size of a priority queue) to get the best
computational complexity and resource consumption for a specific
error parameters and required accuracy

o Exploit underlying 0-1 laws

o Parallelize in a straight-forward way
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SUTTA

SUTTA assembler Main Ingredients

The power of scoring

o Use a "score" function to choose the best global solution.

o
o

(5]

Achieve high accuracy

Model the "error processes" in the score, consisting of Bayesian
likelihood and penalty functions

Use side-information (e.g., optical maps, mated pairs,
base-content, homologous reference sequences, etc.) to sharpen
the score function

Use empirical-Bayes method to decide the statistics (nhull-model,
threshold, p-values, base- or sequence-quality)

Agnostic to the underlying technology, while being able to
mix-and-match technologies
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SUTTA

Pseudo-Code

1
2

© ©® N O U A~ W

10
11
12
13

14
15
16

SUTTA assembler Main Ingredients

Algorithm 1: SUTTA - pseudo code

Input: Set of N reads
Output: Set of contigs

F:=0; /+ Forest of trees
C =0 /+ Set of contigs
B:=UNRi; /+ Al the avail abl e reads
while (B # ©) do
‘R := B.getNextRead();
if (R.isUsed() && !R.isContained() ) then
DT :=create_double_tree(R);
F.add(DT);
Contig C7 G := create_contig(D7T);
C.add(CTG);
CT G.layout(); /= Compute | ayout of the contig
B:= B\ {CTG.reads}, /* Rerove used reads
else
| /* junmp to next avail able read
end
end
return C

*/
*/
*/

«/
«/
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SUTTA assembler Main Ingredients

Node expansion

High-level Description

@ Start with a random read (It will be the root of a tree; Use only the
read that has not been "used" in a contig yet, or that is not
"contained")

@ Create RIGHT Tree: Start with an unexplored leaf node (a read)
with the best score-value; Choose all its hon-contained
"right"-overlapping reads and expand the node by making them its
children; Compute their scores. (Add the "contained" nodes along
the way, while including them in the computed scores; Check that
no read occurs repeatedly along any path of the tree). STOP
when the tree cannot be expanded any further.

@ Create LEFT Tree: Symmetric to previous step.
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SUTTA assembler Main Ingredients

Double Tree

lllustration
@ The expand node routine is applied twice to generate LEFT and RIGHT trees for
the start read.
O Next, the best LEFT path is concatenated with the root and the best RIGHT path
to create a globally optimal contig.

Start nw

¢

Double tree

Reads layout Best path
-
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SUTTA assembler Main Ingredients

Node expansion

Branch-and-Bound

1
2

3

© ® N o o &

11
12
13
14
15
16

Algorithm 2: Node expansion - Branch-and-Bound
Input: Start read Ro, max queue size K
Output: Contig for the input read

T:=0; [+ Set of |eaves */
L:={(Ro,9(Ro))};/* Set of live nodes (priority queue)
*/

while (£ # ©) do
L := Prune(L,K); /* Prune the queue to size K */
Ri := L.getNext();
L:=L\{Ri};
if (no reads align with R;) then
| T:=Tu{Ri} I+ Riis a leaf */
else
Add contained reads to R;;
/'« Branch on R; generating Ri,Ri,...Ri, */
for (=1to M) do
| £:=LU{(Ri,9(R))};
end
end
end
return maxg,er {9(Ri)};
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SUTTA assembler Main Ingredients

Node expansion

Beam-Search

1
2
3
4

© ©® N o o

11
12

13
14
15
16
17
18
19

Algorithm 3: Node expansion - Beam-Search
Input: Start read R, max queue size K
Output: Contig for the input read

T :=0; /+ Set of |eaves */
L:={(Ro,9(Ro))}; !+ Set of live nodes (FIFO queue) x/
while (£ # ©) do

Sort(£); /= Sort live nodes based on their score */
L := Prune(L,K); /+ Prune the queue to size K =/
for (i=1 to min(K, |£|)) do
Ri := L.getNext();
L:=L\{Ri};
if (no reads align with R;) then
| T:=TU{Ri} I+ Ri is a leaf =/
else
Add contained reads to R;;
/'« Branch on R; generating Ri,Ri,...Ri, */
for (j=1to M) do
| £=LU{(R.9(R))};
end
end
end
end

return maxg,er {9(Ri)}:
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SUTTA assembler Main Ingredients

Notes

o Use Branch-and-Bound (or Beam Search) to avoid exponential
space and time complexity.

o Use depth-first search interval schemes to see if a read occurs
repeatedly along a path.

@ Only check right- or left-overlapping properties between two reads
while expanding the root; checking just the consistency relation for
the non-root node suffices.

o Caution must be taken in avoiding reads from the best right path
to be included in any left path.

@ Some book-keeping must be done to keep track of "used",
"explored”, "overlapping”, and "contained" relationships.
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SUTTA assembler Computational Complexity

Computational Complexity

@ Function of the Queue Size
o Higher values clearly increase the computational time, however,
due to the 0-1 law phenomena, optimal values can be chosen to
reduce complexity maintaining the quality of results.
o Time to compute
o Few seconds for influenza (12 Kbp) and zgene .
o 20 minutes for Brucella suis.
o 1hr for Wolbachia sp.
o Function of Score-Bounds
o Strong bounds on the score function will allow to drastically reduce
the search space (and the computational time) with minimum lost in
quality.
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SUTTA assembler Score Functions

Score Function

O Started with a very simple score function:

o We used a "weighted transitivity" score that formulates the following
intuition: if read A overlaps read B, and read B overlaps read C, we
will score those overlaps strongly if in addition A and C also
overlap. This implicitly assumes that the coverage is higher than 3.

if (7T(/’-\,B)/\7T(B,C))t han{SW(A,B,c) = SW(A,B)+SW(B,C)+(7T(A,C)?S7T(A,C) : O)}
(11)
S C

® ‘ [
o A simple generalization for higher coverage is obvious.

O This score cannot resolve repeats or haplotypic variations. Solution:
augment the score with information for optical map alignment or
mated-pair distances to put an appropriate reward/penalty term.
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SUTTA assembler Score Functions

Dynamic Coverage Score

@ Observation: compressed (expanded) regions are characterized
by an increase (decrease) in the depth of coverage compared to

the expected average coverage of the shotgun process.
o Idea: penalize solutions whose observed coverage deviates from
the expected coverage of the shotgun process.

Py N Ny &P
Ny —
SP2 [\\\\\\\\\\\\\\\\\\\\\\\\\\\ X €pz
m\ NN NN NN
SPs T ‘\ NN NN ePa
Dosp, e NN N ep
3 R RrsRmrrrrrrRyy e
| SPs E\\\\\ R €ps
' AR N
1 sp NN » ep
L — maag e
] i N -
o Sp7. \ — €Dy
coverage 3 5 4 3 3 2 1
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SUTTA assembler Score Functions

Optical Map Score

O Observation: restriction enzymes cut at precise locations in the genome. Let
< a,ay,...,an > be the restriction map obtained by a restriction enzyme
digestion process.

@ Idea: Organize the restriction sizes a; into n-tuples. Build an hash table
according to:

b b, by
H(a,bl,...,bn)_<{aan,{aan,...,{aan> (12)
store a in the corresponding slot (with possible collisions).

O Create an in-silico map of the candidate solution and score it according to the
number of hits that its n-tuples have in the hash table.

a a & 8 ]
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SUTTA assembler Results

Streptococcus Suis strain P1/7 - 2,007,491 bp

Queue size analysis

Streptococcus Suis (2,007,491 bp) Streptococeus Suis (2,007,491 bp)
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£ 1000
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2 6100 |-
940 6000 ]
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queue size queue size
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SUTTA assembler Results

Streptococcus Suis strain P1/7 - 2,007,491 bp

DotPlot
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SUTTA assembler

Brucella Suis
2 chromosomes of 2,107,792 and 1,207,381 bp

Queue size analysis

total number of contigs
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SUTTA assembler Results

Brucella Suis
2 chromosomes of 2,107,792 and 1,207,381 bp

DotPlot
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SUTTA assembler Results

Staphylococcus Epidermidis - 2,616,530 bp

Queue size analysis

Staphylococcus Epidermidis (2,616,530 bp) Staphylococcus Epidermidis (2,616,530 bp)
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SUTTA assembler Results

Staphylococcus Epidermidis - 2,616,530 bp
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Appendix For Further Reading

For Further Reading

® Sun Kim, Haixu Tang and Elaine R. Mardis
Genome Sequencing Technology and Algorithms.
Artech House Publishers, 1 edition (October 31, 2007).

[ Myers EW.
Toward simplifying and accurately formulating fragment assembly.
J Comput Biol. 1995 Summer; 2(2):275-90.

[§ Kececioglu and Myers.
Combinatorial algorithms for DNA sequence assembly.
Algorithmica (1995) vol. 13 (1-2) pp. 7-51

[ Adam M Phillippy et al.
Genome assembly forensics: finding the elusive mis-assembly.
Genome Biology (2008) vol. 9 (3) pp. R55
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