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“Damn the Human Genomes. Small initial populations; genes
too distant; pestered with transposons; feeble contrivance;
could make a better one myself”

—Lord Jefferey (badly paraphrased)

B Mishra Computational Systems Biology: Biology X



Recapitulation: Wright-Fisher & Moran models

Outline

0 Recapitulation: Wright-Fisher & Moran models

B Mishra Computational Systems Biology: Biology X



Recapitulation: Wright-Fisher & Moran models

Wright-Fisher model

@ Model of population for genealogical relationship among
genes — Wright (1931) and Fisher (1930).

@ |dealized haploid model of reproduction: Model of
transmission of genes from one generation to the next in a
population of fixed size; population of 2N genes,
corresponding to N diploid or 2N haploid individuals.

@ Each of the genes of generation t + 1 are obtained by
copying the gene of a random individual from generation t;
this process is repeated until 2N genes have been
sampled to create the population att + 1.

@ A gene in generation t might not have any descendant in
generation t + 1 and thus its lineage dies out.
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Recapitulation: Wright-Fisher & Moran models

Moran model
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An alternative model to Wright-Fisher — Moran (1958)
Moran model allows overlapping generations
The population has 2N haploid individuals or genes

A new generation is created from the previous one by
sampling randomly randomly to give birth to a new gene,
and one gene to die: The gene that dies is distinct from the
one that gives birth. Population size remains fixed.

@ The Moran model rules out the possibility of multiple
coalescent events in the same generation (i.e., no more
than two genes share the same common ancestor in the
previous generation).
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Recapitulation: Wright-Fisher & Moran models

@ Thus, one out of (3') possible pairs has the desired
coalescent property, Thus the natural time scale is in units
of N(2N — 1) Moran-generations, rather than in units of 2N
Wright-Fisher genrations.

@ After adjusting for the differences in time scales, the two
models have approximately equivalent coalescence and
fixation properties.
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Recapitulation: Wright-Fisher & Moran models

Assumptions of the Wright-Fisher Model

@ Discrete and non-overlapping generations  : For
humans, a generation (from conception to reproduction) is
assumed to be about 25 years.

@ Haploid individuals vs. two subpopulation : Note that in
practice, generation time differs for males and females,
e.g., 30 vs. 20 years. If the selection does not involve
heterosis, the difference has little quantitative
consequence.

@ The population size is constant : Population bottleneck
effects not accounted for.
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Recapitulation: Wright-Fisher & Moran models

Assumptions of the Wright-Fisher Model

@ All individuals are equally fit : Presence and strength of
natural selection is ignored.

@ The population has no geographical or social
structure : Itis a hard assumption to relax; but very
important in modeling mechanism of reproduction in a real
population.

@ The genes do not recombine within the population
Mitochondria and Y chromosomes are possible
exceptions... Must be modeled by an ancestral
recombination graph.
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Recapitulation: Wright-Fisher & Moran models

Number of Descendants

@ Number of descendants of a particular gene, i, in
generation t: A stochastic variable.

@ Let v; be the number of descendants of gene i in
generationt... 1 <i < 2N.

2N il 1 1\Nk
rio-n () () (- )i

@ This is a binomial distribution Bin(m, p) (m = 2N;
p = 1/2N) with a Poisson approximation Poisson(1).
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Recapitulation: Wright-Fisher & Moran models

. . . t_1 2N
@ The moment generating function is ¢ (t) = [1 + (ez,\, )} :

and for v;, its mean is 1 and variance is

1 1 1
2Nm<1‘m>:1‘m

@ If mean number had deviated from one, the population
would grow without bound, or shrink to extinction.
@ The covariance of the off-spring number for two genes i
andj is
1
Cov(vi,Vj) = E(vivj) — E(Vi)E(v)) = N
@ The correlation coefficient is
COV(Vi,Vj) . 1
Var(vi)Var(vy) 2N -1’
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Recapitulation: Wright-Fisher & Moran models

Covariance

@ A negative covariance is expected because if gene i leaves
many descendants in next generation, then gene i is more
likely to leave few.

@ However, v; and v; are almost independent of each other
for large 2N.

@ Note that the probability that a gene has no immediate
descendant is Pr(v; = 0) = e~1. Thus approximately 0.63
fraction of all genes have descendants.

@ In a few generations (i.e., relative to 2N) a randomly mating
population descends from a small number of genes.

B Mishra Computational Systems Biology: Biology X



Recapitulation: Wright-Fisher & Moran models

Descendants

@ If d; denotes the probability that a gene in generation j
leaves no descendant in the present generation, then
d; = e~1 ~ 0.37. Furthermore,

— 1 o .
d=> me_l(dj_l)k =ed7t forj> 1.
k=0
@ For example, dig = 0.85 and dsg = 0.96.

@ An entire population of size 2N = 10,000 descends from
approximately 2N (1 — dsp) = 400 genes 50 generations
ago.
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Coalescence

Coalescence of a Sample of Two Genes

@ What is the distribution of the waiting time until the MRCA
(Most Recent Common Ancestor) of two genes sampled in
a model with 2N genes?

@ (@) The probability p that these two genes find an ancestor
in the first generation back in time is p = % the first gene
chooses its parent freely, the second must choose the
same parent out of 2N possibilities; (b) The probability q
that the two genes have different ancestors is therefore
q=1- .

@ The probability that the two genes finds a common
ancestor exactly j generations back is

- 1\ 1
—iY=a1ip = = = —_—
Pr(To=j)=d " p (1 2N> S
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Coalescence

@ Note

Pr(Tz>j) = o pll+a+a®+ ]
_ gla1-e G-/,

@ Thus

Pr(T2<j) = pl+q+q?+---gY
= 1-g~1-—e/N
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Coalescence

@ Note that these models assume a Markov Property: That
is the probability of an event (such as coalescence)
depends on the present state of the population — The
process has no memory of events prior to the present

@ It also implicitly assumes that the number of offsprings is
distributed as a Poisson process with parameter 1. In
reality the mean or variance of the number of offspring may
deviate from the expected value 1 (with population
bottlenecks, etc.) They result in significant deviation from
the predicted model.

B Mishra Computational Systems Biology: Biology X



Coalescence

Statistics

@ Thus T, ~ Geo(1/2N) is geometrically distributed with
parameter p = % Hence, it has mean and variance

Mean = E(T,;) = = 2N

ROl

Variance = Var(T,) = p_ P _2neN - 1).
@ Thus the expected time until a MRCA is the same as the

number of genes in the population.
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Coalescence

Coalescence of a Sample of n Genes

@ The waiting time for k(< n) genes to have less than k
ancestral lineages: The probability that k genes have
exactly k different ancestors in the previous generation is

k—1 .
(2N -1)(2N-2) (2N—k+1):H<1_|_>

2N 2N 2N —y 2N
_ 1 k\ 1+0(1)
B 2 2N
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Coalescence

@ Thus, as before, we have

o= () ()

@ Thus Ty has approximately a geometric distribution with
parameter (§)/(2N). Note that the times Ty, -- -, T, are
independent.
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Coalescence

Properties of Geometric Distributions

@ Assume thatt, > t;. Then
Pr(T >tT >t1) =Pr(T >t — t3).

@ Let S and T be two independent geometrically distributed
random variables. S ~ Geo(p) and T ~ Geo(p’), then

min(S,T) ~ Geo(p + p’ — pp’).
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Coalescence

Properties of Exponential Distributions

@ Assume thatt, > t;, and V ~ Exp(a) and U ~ Exp(b) are
two independent exponentially distributed random
variables. Then

Pr(U>tU>t;)) = Pr(T >t —tg)
E(V) = S Var(V)=2;
EU) = £ var(U)=,
Pr(v<U) = aJ;Lb’ and

min(U,V) ~ Exp(a+Db)
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Coalescence

Continuous Time Approximation

@ One unit of time corresponds to the average time for two
genes to find a common ancestor: E(T,) = 2N
generations. Time is scaled by a factor of 2N (or N or in
some cases, 4N).

@ Coalescent becomes independent of the population size.
The structure of the coalescent process is the same
for any population as lon as the sample size is small
relative to population size  2N.

n < 2N.

Only the time scale differs between populations when 2N
varies.
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Coalescence

Rescaling Time

@ Lett =j/(2N), where j is time measured in generations.
j = 2Nt. The waiting time, TS, in the continuos
representation (for k genes to have k — 1 ancestors) is
exponentially distributed TS ~ Exp((X)).

Pr(Té¢ <t)=1-eG)X.
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Coalescence

Stochastic Algorithm to Sample Genealogies for n
Genes

@ Algorithm
© Start with k = n genes. Repeat until k = 1:

@ Simulate the waiting time Ty to the next event
T¢ ~ Exp((5))-

@ Choose a random pair (i,j) with 1 <i < j < k uniformly from
the (%) possible pairs.

© Mergei and j into one gene and decrease the sample size
by one: k — k — 1.
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Coalescence

Effective Population Size

@ Most real populations show some form of reproductive
structure: either due to geological proximity of individuals
or due to social constraints. Also, the number of
descendants of a gene in one generation does not follow
the Poisson distribution with intensity one.

@ For a real population, the population size of the haploid
Wright-Fisher that “best approximates”the real population
is called the effective population size Ne. One could
choose one of the following two:

1 E(T2)

@iy (t) _
Ne' =Smrm, =1y & MNe 2
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Coalescence

) Néi) (inbreeding effective population size) relates to the

immediate past, where as Nét) relates to the number of
generations until an MRCA is found.

@ For the haploid Wright-Fisher model, both definitions agree
N =N = N, since

1
Pr(T,=1) = N’ and E(T2)=2N.

B Mishra Computational Systems Biology: Biology X



Coalescence

Diploid Model

@ In the diploid model with N = cN females and
Nm = (1 — ¢c)N males:

1\ N
PrTo=1)= (1—=—)—"
"(Tz=1) < 2N)8Nme

@ Hence
Ne =~ 4c(1 —c)N.

@ There are other robust ways of defining effective
population size: but the differences are minor.

B Mishra Computational Systems Biology: Biology X



Coalescence

Mutation

Three interesting models:
@ The infinite alleles model — Kimura and Crow 1964
@ The infinite sites model — Kimura 1969
@ The finite sites model - Jukes and Cantor 1969

Mutations are assumed to be selectively neutral. Thus the
mutation process can be separated from the genealogical
process.
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Coalescence

@ In the absence of selection , the mutational process and
the transmission of genes from one generation to the next
are independent processes.

@ Thus a sample configuration or n genes can be simulated
using a two step procedure:

© Simulate the genealogy of n genes;
@ Add mutations to the genealogy according to the chosen
model.
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Coalescence

The Wright-Fisher Model with Mutation

@ Impose a process of mutation on top of the process of
reproduction.

@ Each gene chosen to be passed on is subject to a mutation
with probability u. [[With probability 1 — u the gene is
copied without modification to the offspring, and with
probability u it mutates.]]

@ If we follow a lineage from the present time to the past,
then with probability u the parental gene in generation t
differs from the offspring gene at time t + 1.

@ The probability that a lineage experiences the first mutation
j generations back is

U
u-—-1
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Coalescence

Continuous Approximation

@ If time is measured in units of 2N generations (like in
coalescence) then

Pr(Tu <j)=1-(1-uy ~1-e 2 =Pr(Ty <t),

wheret =j/(2N), 6 = 4Nu and T, is the time in 2N
(assumed large) generations units.

@ The parameter 6 is called the population mutation rate or
the scaled mutation rate. It also tells us about how fixation
and mutations work against each other...
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Coalescence

n > 2 Lineages

@ Consider n disjoint lineages. The time until the first
mutation event in any of the n lineages is exponentially
distributed with parameter nd /2.

@ If we wait for mutation events of coalescence events then
the parameter of the exponentially distributed waiting time
is the sum of the two parameters, which is

n +n_«9_n(n—1+0)
2 2 2
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Coalescence

@ Whether the first event is a coalescence or a mutation is
determined by a Bernoulli trial:

@ With probability

) _ n-1

O+% n-1+0

the event is a coalescence; and

@ With probability
0

n—1+86’
it is a mutation.
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Coalescence

Stochastic Algorithm to Sample Genealogies with
Mutations

@ Algorithm
© Start with k = n genes (sample size). Repeat until k = 1:

@ Simulate the waiting time Ty to the next event
TS ~ Exp(k(k — 1+ 6)/2).

@ With probability (k — 1)/(k — 1 + 0) the event is coalescence,
and with probability 6/(k — 1 + 6) the event is mutation.

© Case Coalescence : Choose a random pair (i, j) with
1 <i < j <k uniformly from the () possible pairs. Merge i
and j into one gene and decrease the sample size by one:
ki —k—1.

@ Case Mutation : Choose a lineage at random to leave. The
sample size k remains unchanged.
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Coalescence

[End of Lecture #10]

wTHE END*** J
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