
Lecture #24 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 24

Programming Languages • MISHRA 2008



Lecture #24 • 1

—Slide 1—

Classes

• Similar to C++ classes

• All classes are derived from the class Object

• Instance variables and methods can be public, protected,

or private (same definitions as C++).

• Anything not declared as public, protected, or

private is visible throughout its package.

This is the only way to get “friendly” behavior

• Single Inheritance

Each class (except Object) has exactly one super-

class.

• Initialized to null. Takes on value only through the

= operator or the new operator.

Programming Languages • MISHRA 2008



Lecture #24 • 2

—Slide 2—

Static and Final Methods and Variables

• Static variables and methods are attached to a spe-

cific class

–Instead of, to a particular instance of a class

–They are accessed through the class name (instead

of through a variable)

• Static methods may not reference instance variables

or methods

• Final variables must be initialized and may not be

changed.

They are constants

• Final methods may not be overridden.

Programming Languages • MISHRA 2008



Lecture #24 • 3

—Slide 3—

Abstract Classes and Method

• An abstract class is one that cannot be instantiated—

only subclassed.

• Abstract class provides prototypes for methods that

it does not implement.

• An abstract class definition is preceded by the word

abstract.

• An abstract method (also preceded by the word abstract)

is one which is not implemented.

Programming Languages • MISHRA 2008



Lecture #24 • 4

—Slide 4—

Java Example

class HelloWorld{

static public void main(String args[]){

System.out.println("Hello World!"):

}

}

• HelloWorld is defined to be class

• No instance variable

• A single publicmethod called main. main is static—

It is attached to the class itself and not an instance

of the class

• The method main contains in its body a single method

invocation to display the string "Hello World!" on

the standard output

Programming Languages • MISHRA 2008



Lecture #24 • 5

—Slide 5—

Classes in Java: Example

• A class defines the instance variables and methods of
an object. It is a template that defines how an object
will look and behave when it is instantiated.

class Point{

public float x;

public float y;

Point(){

x = 0.0;

y = 0.0;

}

}

• Instantiation

Point myPoint;

myPoint = new Point();

• Manipulation

myPoint.x = 10.0;

myPoint.y = 25.7;

Programming Languages • MISHRA 2008



Lecture #24 • 6

—Slide 6—

Classes in Java: Example (Contd.)

• Constructor Performs initialization when you instanti-

ate objects from a class

public final class Integer extends Number{

private int value;

public Integer(int value){this.value = value;}

}

Integer myIntegerObject = new Integer(123);

• Finalizer Performs necessary “tear-down” (or “wills-and-
testament”) before the garbage collector is about to free the

object

protected finalize(){

try{

close();

} catch (Exception e){ }

}

Programming Languages • MISHRA 2008



Lecture #24 • 7

—Slide 7—

Strings

• Provided as a Class in the java.lang package.

• Not just a string of chars.

• Provides + operator (concatenation).

• String length is fixed by constructor.

• Use StringBuffer class for variable length strings.

Programming Languages • MISHRA 2008



Lecture #24 • 8

—Slide 8—

Interfaces

• An interface specifies a group of method prototypes

and field variables

• All field variables are implicitly static and final

and must be initialized with a constant expression

• An interface, I , may extend other interfaces. Any

class that implements I must implement all the in-

terfaces that I extends

• A class that implements the interface must instanti-

ate each method in the interface

• A variable of type interface v can be instantiated

with a reference to any class that implements v

• Interface involves dynamic method binding—There

is a small performance penalty to using them

• Combining Interfaces Interface can incorporate one

or more other interfaces (using extend)—This gives

multiple inheritance over the interfaces.

Programming Languages • MISHRA 2008



Lecture #24 • 9

—Slide 9—

Interfaces: Example

public interface Storing {

void freezeDry(Stream S);

void reconstitute(Stream S);

}

public interface Painting{

...

}

public class Image implements Storing, Painting {

...

void freezeDry(Stream S){//JPEG compression of image...}

void reconstitute(Stream S){//JPEG decompression of image...}

}

interface DoesItAll extends Storing, Painting {

void doesSomethingElse();

}

Programming Languages • MISHRA 2008



Lecture #24 • 10

—Slide 10—

Arrays

• Each class type has an array type created automatically

• Array type declared by adding [] to variable

• Initialization through the new operator or =

• All arrays are single-dimensional. Must use arrays of arrays
instead of multi-dimensional arrays

• An array is an object with a number of variables. In-
stead of having names, these variables are referenced by
non-negative integers (their indices)

• The array length is not part of its type—Thus, over its life-
time, a given array variable may refer to arrays of different

lengths

• Every array has a .length field, which is a final variable.

Once an array object is allocated, its length never changes.

• Array bounds are checked at run-time; ArrayIndexOutOfBoundsException

is thrown if an attempt to reference an index out of the
range [0..length-1] is made

Programming Languages • MISHRA 2008



Lecture #24 • 11

—Slide 11—

Storage Class

• Determines lifetime of a variable.

• Local Variables: Declared and allocated within

a block.

–Discarded at end of block

–Method parameters are considered local.

• Static Variables: Local to a class.

–Allocated when class is loaded and

–Discarded when class is unloaded.

• Dynamic Objects: Instances of classes and ar-

rays.

–Allocated by new expression

–May be referenced by more than one variable

–Garbage collector handles reclamation of storage

used by dynamic objects.

Programming Languages • MISHRA 2008



Lecture #24 • 12

—Slide 12—

Structure

• Package

–Made up of compilation units

• Compilation Unit

–File made up of classes and interfaces with
at most one public class or interface

Programming Languages • MISHRA 2008



Lecture #24 • 13

—Slide 13—

Exceptions

• try block followed by one or more catch blocks.

• If an exception occurs in a try block, the following

catch blocks are examined

• The first catch block whose argument type matches

the exception is executed

• A finally clause may be attached after the catch

blocks—In this case, the code in the clause gets exe-

cuted after any catch block is executed.

Programming Languages • MISHRA 2008



Lecture #24 • 14

—Slide 14—

Java Class Libraries

• Language Foundation Classes

–Wrappers for primitive types and fundamental classes.

Also Math routines

• I/O Class Library

–File and Stream input and output.

• Another Window Toolkit Class Library

–Everything you need to build a GUI.

• Utility Class Library

–Implements a variety of encoder and decoder tech-

niques, data and time, hash table, vector, and stack.

• Network Interface Class Library

–Extends the functionality of the I/O class library

with socket interfaces and Telnet interfaces

Programming Languages • MISHRA 2008



Lecture #24 • 15

—Last Slide—

What Java Lacks

• Header files, typedefs, #define, and preprocessor

–Makes Java more context free

• Structures and Unions –Just use classes.

• Functions –Force programmers to stick to objects

• Multiple Inheritance –Interfaces address some of these

capabilities

• Goto statement

• Operator Overloading

• Automatic Coercions –Must explicitly cast if a loss of

precision may occur.

• Pointers –Cause of buggy code; major security hole.

• Templates

[End of Lecture #24]

Programming Languages • MISHRA 2008


