
Lecture #22 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 22

Programming Languages • MISHRA 2008



Lecture #22 • 1

—Slide 1—

Public & Private Bases Classes

• Public Base Class if its derived class
maintains the visibility of all inherited mem-
bers:

class <derived>: public <base>{

<member-declarations> //visibility is kept

}

• Private Base Class if its derived class
hides the visibility of all inherited members:

class <derived>: private <base>{

<member-declarations> //visibility is lost

}

• Note

class b{ class d: private b{

public: protected:

int f; ==> int b::g;

int g; public:

} int b::f;

}

Programming Languages • MISHRA 2008



Lecture #22 • 2

—Slide 2—

Example

• circlist Revisited

class circlist{

public:

//visible outside

boolean empty();

protected:

//visible to members of derived classes

circlist();

void push(int);

int pop();

void enter(int)

private:

cell *rear;

};

Programming Languages • MISHRA 2008



Lecture #22 • 3

—Slide 3—

Derived Class queue

• queue example

class queue: private circlist{

public:

queue(){}

void enter(int x){circlist::enter(x);}

int exit(){return pop();}

circlist::empty;

}

• Note: enter is overloaded. Full name
has to be used.

• Following are private to queue: Inherited
functions: push, pop, enter. Inherited vari-
able rear. rear is available only to the in-
herited function.

Programming Languages • MISHRA 2008



Lecture #22 • 4

—Slide 4—

Derived Class stack

• stack example

class stack: private circlist{

public:

stack(){}

void push(int x){circlist::push(x);}

int pop(){return circlist::pop();}

circlist::empty;

}

• Note: push and pop are overloaded. Full
names have to be used.

• Following are private to queue: Inherited
functions: push, pop, enter. Inherited vari-
able rear: Available only to the inherited
functions.

Programming Languages • MISHRA 2008



Lecture #22 • 5

—Slide 5—

Usage Example

main(){

stack s;

queue q;

s.push(1);

s.push(2);

s.pop;

q.enter(4);

q.exit();

q.enter(5);

.

.

.

}

• Note: Members in the derived class can-
not see the private members of its base class.

Programming Languages • MISHRA 2008



Lecture #22 • 6

—Slide 6—

Virtual Functions

• Allows Object-Oriented Programming Style (OOPS) in C++

• Basic idea:

\\BASE CLASS \\DERIVED CLASS

virtual fn() ... fn()

...

... A(){ \\ inherits A, But A’s

fn; \\ body uses the fn,

} \\ defined here.

Suppose also that the virtual function fn is used in another
member F of Base class.

Now a derived class that inherits F, gets an inherited in-

stance of F that normally uses the same instance of fn

(i.e., the one in the BASE CLASS) independent of whether
fn is redefined in the Derived Class or not.

• But, in the case when fn is virtual, the rule is only to “use
the virtual function body only as a default.”

Programming Languages • MISHRA 2008



Lecture #22 • 7

—Slide 7—

Example

• Example of a virtual Function

class Base{

public:

virtual char f(){return ’B’;}

char g(){return ’B’;}

void testF{cout << f() << "\n";}

void testG{cout << g() << "\n";}

}

class Derive: public Base{

public:

char f(){return ’D’;}

char g(){return ’D’;}

}

Programming Languages • MISHRA 2008



Lecture #22 • 8

—Slide 8—

Example (contd)

• Virtual Function

Base b; Derive d;

b.testF; //=> B

b.testG; //=> B

d.testF; //=> D

d.testG; //=> B

• Remark on d.testF:
testF is inherited by d.

When testF calls f—Since f is virtual in
the Base, the body of f in Derive has to
be used.

Programming Languages • MISHRA 2008



Lecture #22 • 9

—Slide 9—

Usage: Virtual Functions

• shape ⇒ circle & square

class shape{

point center; ...

public:

void move(point to){center = to; draw();}

virtual void draw();

virtual void rotate(); ...

}

class circle: public shape{

int radius;

public:

void draw();

void rotate(){}; ...

}

class square: public shape{

int side;

public:

void draw(); ...

}

The draw used by different shapes (e.g., in
move) is different.

Programming Languages • MISHRA 2008



Lecture #22 • 10

—Slide 10—

Subtypes & Supertypes

• S = Subtype of T (T = Supertype of S),
if any S-object (object of type S) is at the same time

a T-object (object of type T).

⇒ Any operation that can be applied to a T-object

can also be applied to an S-object.

Shapes

=> Polygons

==> Squares

=> Circles

• Subtype Principle: An object of subtype can
appear whenever an object of a supertype is ex-
pected.

class S: public T{

...

}

• S can appear wherever public base class T is expected.

Programming Languages • MISHRA 2008



Lecture #22 • 11

—Slide 11—

Parametric Polymorphism: TEMPLATE

• Template in C++ allows the same code to be used with

respect to different types where the type is a parameter of

the code body.

template <class TYPE>

class stack{

public:

stack():max_len(1000), top(EMPTY)

{s = new TYPE[1000];}

stack(int size):max_len(size), top(EMPTY)

{s = new TYPE[size];}

~stack(){delete []s;}

void push(TYPE c){s[++top] = c;}

TYPE pop(){return (s[top--]);}

TYPE top_of() const{return (s[top]);}

boolean empty() const{return boolean(top==EMPTY);}

boolean full() const{return boolean(top==max_len-1);}

private:

enum {EMPTY = -1};

TYPE* s;

int max_len;

int top;

}

Programming Languages • MISHRA 2008



Lecture #22 • 12

—Slide 12—

Template Instantiation

• reverse

stack<char> stk_ch;

//1000 elements char stack

stack<char*> stk_str(200);

//200 element string stack

//Reversing a sequence of strings

void reverse(char * str[], int(n){

stack<char*> stk(n);

for(int i=0; i<n; i++)

stk.push(str[i]);

for(i=0; i<n; i++)

str[i] = stk.pop();

}

Programming Languages • MISHRA 2008



Lecture #22 • 13

—Slide 13—

Function Templates

• copy

template<class TYPE>

void copy(TYPE a[], TYPE b[], int n){

for(int i = 0; i<n; i++)

a[i] = b[i];

}

double f1[50], f2[50];

copy(f1, f2, 50);

• With two distinct class template arguments:

template <class T1, class T2>

boolean coerce(T1& x, T2& y){

if(boolean b = (sizeof(x) >= sizeof(y)))

x = (T1)y;

return b;

}

Programming Languages • MISHRA 2008



Lecture #22 • 14

—Last Slide—

Inheritance

• Parameterized types can be reused through
inheritance.

class safe_char_stack: public stack<char>{

public:

void push(char c){assert(!full());

stack<char>::push(c);}

char pop(){assert(!empty());

return(stack<char>::pop());}

};

• Other Template Arguments:
Constant Expressions, Function Names, Strings,...

template<int n, class T>

class declare_array{

public: T a[n];

};

declare_array<50,int> x, y, z;

[End of Lecture #22]

Programming Languages • MISHRA 2008


