V22.0490.001
Special Topics: Programming Languages

B. Mishra
New York University.

Lecture # 20

Programming Languages e MISHRA 2008

LECTURE #20 @ 1

—Slide 1—
Generic

A generic abstract data type definition

allows certain attribute of the type to be spec-
ified separately so that one base type definition
may be given, with the attributes as parameters,
and then several specialized types derived from
the same base type may be created.

e Like type definitions with parameters

e Parameters may be type names as well as values

e Parameters may affect the operations in the abstract

data type definition
Generic Facility in Ada

e Provides means of parameterizing subprograms and pack-
ages

e Generic packages provide families of abstract data types

e Generic subprograms provide families of abstract opera-

tions

Programming Languages e MISHRA 2008

—Slide 2—

Use of generic in Ada

package QUEUE_PACKAGE is
procedure APPEND(C: in Character);

procedure REMOVE(C: out Character);
function IS_EMPTY return Boolean;
function IS_FULL return Boolean;
procedure INIT_QUEUE;

procedure DESTROY_QUEUE;
end;

Programming Languages e MISHRA 2008

LECTURE #20 @ 3

—Slide 3—
Generic QUEUE_PACKAGE

generic
type Elem is private;
MAXELTS: in Natural;
package QUEUE_PACKAGE is
type (Queue is limited private;

procedure APPEND(Q: in out Queue; C: in Elem);
procedure REMOVE(Q: in out Queue; C: out Elem);
function IS_EMPTY(Q: in Queue) return Boolean;
function IS_FULL(Q: in Queue) return Boolean;
procedure INIT_QUEUE(Q: in out Queue);
procedure DESTROY_QUEUE(Q: in out Queue);

FULL_QUEUE, EMPTY_QUEUE: exceptions;
private
type Queue is
record
FIRSTELT, LASTELT: Integer range O..MAXELTS - 1 := O;
CURSIZE : Integer range O..MAXELTS := O;
ELEMENTS: array (O..MAXELTS - 1) of Elem;
end record;
end QUEUE_PACKAGE;

Programming Languages e MISHRA 2008

LECTURE #20 @ 4

—Slide 4—

Generic Formal Parameters

Can be: Object parameters, Type Parameters, Sub-

program parameters, or Package Parameters

e Object Parameters
— Similar to parameters of subprograms
— Modes: in & out

generic
MAX_LEN : in Natural; --Local Constants

e Type Parameters
— Necessary to specify some of the properties of the actual
type parameters to allow syntactic and semantic checks to
be performed on the body of the generic subprogram inde-
pendently of the generic instantiation.

generic
type Item is private;
type Sort_Array is array (positive range <>) of Item;
with function "<"(u,v: Item) return Boolean is <>;
function HEAP_SORT(A: Sort_Array) return Sort_Array is

end HEAP_SORT;

Programming Languages e MISHRA 2008

LECTURE #20 @ 5

—Slide b—

Generic Subprogram Parameters

Three Forms:

® with function SUM(X, Y: Item) return Item;
— An actual function of the appropriate function type

Item X Item — Item

must be provided.

® with function "*"(X, Y: Item) return Item is <>;
— An actual function may be omitted
— The default is obtained from the instantiation.

® type Enum is (<>);
with function NEXT(A: Enum) return Enum is Enum’Succ;
— An actual function may be omitted
— The default is then the one specified in the decla-

ration: (e.g., Enum’Succ)

Programming Languages e MISHRA 2008

LECTURE #20 @ 6

—Slide 6—

Generic Package Parameters

Two Forms:

® with package P is new Q(<>);
— Actual parameters corresponding to P must be a
package—obtained by instantiating a generic package

Q.

® with package R is new Q(P1, P2, ...);
— Actual parameters corresponding to R must have
been instantiated with the given parameters P1, P2,

etc.

Programming Languages e MISHRA 2008

LECTURE #20 @ 7

—Slide 7—

Generic Package Parameters (Example)

generic
type Floating is digits <>;
package Generic_Complex_Numbers is
type Complex is private;

end;

generic

type Index is (<>);

with package Complex_Number is new Genric_Complex_Numbers(<>);
package Generic_Complex_Vectors is

use Complex_Numbers;

type Vector is array (Index range <>) of Complex;

end;
package Long_Complex is new Generic_Complex_Numbers(Long_Float);
use Long_Complex;

package Long_Complex_Vectors is
new Generic_Complex_Vectors(Integer, Long_Complex);

Programming Languages e MISHRA 2008

LECTURE #20 @ 8

——>olide 8—
Polymorphism

Polymorphism means the ability of a
single operator or a subprogram name
to refer to any number of functions, de-
pending on the data types of the argu-
ments and results.

e Usually, parameters are assumed to have L-values.
Polymorphism allows one to go beyond simply those
objects with L-values.

e Note+inl + 2and 1.1 + 2.1 1is overloaded, sig-
nifying polymorphism.

e [ixamples: generic in Ada and template in C4++

allow limited forms of polymorphism

Programming Languages e MISHRA 2008

LECTURE #20 @ 9

—Slide 9—

Inheritance

Information passed implicitly among program
components

e Inheritance is
the receiving in one program component of properties
or characteristics of another component according to
the special relationship that exists between the two
components.

— Passing of data and functions between indepen-
dent modules.

— A = B — inheritance relationship between class

A and class B is established.

— If a certain object X is declared within class A
and is not redefined in class B, then a reference
to X in B actually refers to object X of class A
via inheritance.

Programming Languages e MISHRA 2008

LECTURE #20 @ 10

—-lide 10—
Single € Multiple Inheritance

e A= DB

— A is the parent class, base class or superclass

— B is the child class, dependent class or subclass
A 4 U

p(_) v ()

Single Inheritance Multiple Inheritance
e Single Inheritance: Class can only have a single parent.

o Multiple Inheritance: Class can have multiple parents.

Programming Languages e MISHRA 2008

LECTURE #20 @ 11

—lide 11—
Erample: C++

class elem {
public:
elem(O){v = 0}
void ToElem(int b){v = b;}
int FromElem(){ return v;}
private:
int v;}

class ElemStack: elem {
public:
ElemStack() { size=0;}
void push(elem i)
{storage[++size] = i;}
void pop()
{return storage[size--];%}
void MyType() {printf("I am type ElemStack\n")}
protected:
int size;
elem storage[100];}

Programming Languages e MISHRA 2008

LECTURE #20 @ 12

—Slide 12—
Deriwed Class and Method Inheritance

class NewStack: ElemStack {
public:
int peek(){ return storagel[size] .FromElem()}

+

{ elem x;
ElemStack y;
int 1;
read(i);
x.ToElem(i); // Coercion to elem type
y.push(x) ;

Programming Languages e MISHRA 2008

LECTURE #20 @ 13

—>lide 13—

Mixin Inheritance

e A= B — (Class B is derived from and is a modi-
fication of class A.

o Mizin Inheritance: Define only the difference be-
tween the base class and the new derived class.

deltaclass StackMod{
int peek(){return storagelsize].FromElem() ;}
}// Does not exist in C++

class NewStack
= class ElemStack + deltaclass StackMod;

Programming Languages e MISHRA 2008

LECTURE #20 @ 14

—olide 14—
History of Inheritance

Emerged from Artificial Intelligence research in the
1970’s on Knowledge representation.
Scott Fahlman’s NETL.

Developed as a way to organize knowledge efficiently.

Adopted by object-oriented programming as a way
to organize programs and facilitate reuse.

Elelphant extends Mammal, PhysicalObject;
//Elephant is a (kind of) mammal
//Elephant is a (kind of) physical object

Clyde extends Elephant;

//Clyde is an (instance of) elephant
o Does Clyde have big ears?
—Yes, because it’s an elephant.
o Can Clyde lay eggs?
—No, elephant is a mammal.
o What will happen to Clyde, if you shoot it while it’s flying?
—It’11 fall, since it’s a physical object.

Programming Languages e MISHRA 2008

LECTURE #20 @ 15

—olide 15—
Clyde’s Story

. Clyde inherits all the properties of elephants.

. Elephants inherit all
the properties of
mammals.
Elephants inherit all
the properties of
physical objects.

[ELEPHANT }

. Clyde is an instance of elephant. L
But elephant is a kind of (specialization) z
mammal and physical object c %
© |+
. Elephant is a class. Clyde is its subclass. ‘f %)
Mammal and PhysicalObject are its
superclass. (Multiple inheritance). { CLYDE }

Programming Languages e MISHRA 2008

LECTURE #20 @ 16

—>lide 16—

Inheritance Fosters Reuse

e Build a Taxi by starting with an existing car and
modifying it.

e A new legal contract can often be drafted by starting
with existing boilerplate for that type of agreement.

e A new graphical user interface (GUI) control can of-

ten be built by basing it on an existing control.

Programming Languages e MISHRA 2008

LECTURE #20 @ 17

—Slide 17—

Abstraction Concepts
Specialization & Decomposition

If A= B means B is a related class to A
what is the relationship between objects of A and B¢

composﬂe

Fe e

(int stack) ~ (real stack)

Specialization Decomposition

storage(100

e Specialization
— Allows the derived object B to obtain more precise prop-
erties than A.
— Class NewStack is a specialization of ElemStack

— Converse process, Generalization.

e Decomposition
— Separates an abstraction into its components

— Converse process, Aggregation.

Programming Languages e MISHRA 2008

LECTURE #20 @ 18

—>lide 18—

Abstraction Concepts
Instantiation € Individualization

stack

(stackA)(stackB [stackC

Instantiation Individualization

e Instantiation
— Creates instances of a class (copy operation)

— Converse process, Classification.

e Individualization
— Groups similar objects with common purposes

— Converse process, Grouping.

Programming Languages e MISHRA 2008

LECTURE #20 @ 19

—Last Slide—
Inheritance in Ada 95

e Single Inheritance
Note: Adventure has all the “methods” of Tried_And_Trusted,
but none of Wizard_Stuff

e Mixin Inheritance

— Combines inheritance with static polymorphism
e Containers

e Iterators

e Multiple Views

[End of Lecture #20]

Programming Languages e MISHRA 2008

