
Lecture #20 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 20

Programming Languages • MISHRA 2008

Lecture #20 • 1

—Slide 1—

Generic

A generic abstract data type definition

allows certain attribute of the type to be spec-

ified separately so that one base type definition

may be given, with the attributes as parameters,

and then several specialized types derived from

the same base type may be created.

• Like type definitions with parameters

• Parameters may be type names as well as values

• Parameters may affect the operations in the abstract

data type definition

Generic Facility in Ada

• Provides means of parameterizing subprograms and pack-

ages

• Generic packages provide families of abstract data types

• Generic subprograms provide families of abstract opera-

tions

Programming Languages • MISHRA 2008

Lecture #20 • 2

—Slide 2—

Use of generic in Ada

package QUEUE_PACKAGE is

procedure APPEND(C: in Character);

procedure REMOVE(C: out Character);

function IS_EMPTY return Boolean;

function IS_FULL return Boolean;

procedure INIT_QUEUE;

procedure DESTROY_QUEUE;

end;

Programming Languages • MISHRA 2008

Lecture #20 • 3

—Slide 3—

Generic QUEUE_PACKAGE

generic

type Elem is private;

MAXELTS: in Natural;

package QUEUE_PACKAGE is

type Queue is limited private;

procedure APPEND(Q: in out Queue; C: in Elem);

procedure REMOVE(Q: in out Queue; C: out Elem);

function IS_EMPTY(Q: in Queue) return Boolean;

function IS_FULL(Q: in Queue) return Boolean;

procedure INIT_QUEUE(Q: in out Queue);

procedure DESTROY_QUEUE(Q: in out Queue);

FULL_QUEUE, EMPTY_QUEUE: exceptions;

private

type Queue is

record

FIRSTELT, LASTELT: Integer range 0..MAXELTS - 1 := 0;

CURSIZE : Integer range 0..MAXELTS := 0;

ELEMENTS: array (0..MAXELTS - 1) of Elem;

end record;

end QUEUE_PACKAGE;

Programming Languages • MISHRA 2008

Lecture #20 • 4

—Slide 4—

Generic Formal Parameters

Can be: Object parameters , Type Parameters , Sub-

program parameters , or Package Parameters

• Object Parameters

– Similar to parameters of subprograms
– Modes: in & out

generic

MAX_LEN : in Natural; --Local Constants

• Type Parameters

– Necessary to specify some of the properties of the actual

type parameters to allow syntactic and semantic checks to
be performed on the body of the generic subprogram inde-

pendently of the generic instantiation.

generic

type Item is private;

type Sort_Array is array (positive range <>) of Item;

with function "<"(u,v: Item) return Boolean is <>;

function HEAP_SORT(A: Sort_Array) return Sort_Array is

...

end HEAP_SORT;

Programming Languages • MISHRA 2008

Lecture #20 • 5

—Slide 5—

Generic Subprogram Parameters

Three Forms:

• with function SUM(X, Y: Item) return Item;

– An actual function of the appropriate function type

Item× Item → Item

must be provided.

• with function "*"(X, Y: Item) return Item is <>;

– An actual function may be omitted

– The default is obtained from the instantiation.

• type Enum is (<>);

with function NEXT(A: Enum) return Enum is Enum’Succ;

– An actual function may be omitted

– The default is then the one specified in the decla-

ration: (e.g., Enum’Succ)

Programming Languages • MISHRA 2008

Lecture #20 • 6

—Slide 6—

Generic Package Parameters

Two Forms:

• with package P is new Q(<>);

– Actual parameters corresponding to P must be a

package—obtained by instantiating a generic package

Q.

• with package R is new Q(P1, P2, ...);

– Actual parameters corresponding to R must have

been instantiated with the given parameters P1, P2,

etc.

Programming Languages • MISHRA 2008

Lecture #20 • 7

—Slide 7—

Generic Package Parameters (Example)

generic

type Floating is digits <>;

package Generic_Complex_Numbers is

type Complex is private;

...

end;

generic

type Index is (<>);

with package Complex_Number is new Genric_Complex_Numbers(<>);

package Generic_Complex_Vectors is

use Complex_Numbers;

type Vector is array (Index range <>) of Complex;

...

end;

package Long_Complex is new Generic_Complex_Numbers(Long_Float);

use Long_Complex;

package Long_Complex_Vectors is

new Generic_Complex_Vectors(Integer, Long_Complex);

Programming Languages • MISHRA 2008

Lecture #20 • 8

—Slide 8—

Polymorphism

Polymorphism means the ability of a
single operator or a subprogram name
to refer to any number of functions, de-
pending on the data types of the argu-
ments and results.

• Usually, parameters are assumed to have L-values.

Polymorphism allows one to go beyond simply those

objects with L-values.

• Note + in 1 + 2 and 1.1 + 2.1 is overloaded , sig-

nifying polymorphism.

• Examples: generic in Ada and template in C++

allow limited forms of polymorphism

Programming Languages • MISHRA 2008

Lecture #20 • 9

—Slide 9—

Inheritance

Information passed implicitly among program
components

• Inheritance is

the receiving in one program component of properties

or characteristics of another component according to

the special relationship that exists between the two

components.

– Passing of data and functions between indepen-

dent modules.

– A ⇒ B — inheritance relationship between class

A and class B is established.

– If a certain object X is declared within class A

and is not redefined in class B, then a reference

to X in B actually refers to object X of class A

via inheritance.

Programming Languages • MISHRA 2008

Lecture #20 • 10

—Slide 10—

Single & Multiple Inheritance

• A ⇒ B

– A is the parent class, base class or superclass

– B is the child class, dependent class or subclass

Single Inheritance Multiple Inheritance

A V U

XWB C

D Y

• Single Inheritance: Class can only have a single parent.

• Multiple Inheritance: Class can have multiple parents.

Programming Languages • MISHRA 2008

Lecture #20 • 11

—Slide 11—

Example: C++

class elem {

public:

elem(){v = 0}

void ToElem(int b){v = b;}

int FromElem(){ return v;}

private:

int v;}

class ElemStack: elem {

public:

ElemStack() { size=0;}

void push(elem i)

{storage[++size] = i;}

void pop()

{return storage[size--];}

void MyType() {printf("I am type ElemStack\n")}

protected:

int size;

elem storage[100];}

Programming Languages • MISHRA 2008

Lecture #20 • 12

—Slide 12—

Derived Class and Method Inheritance

class NewStack: ElemStack {

public:

int peek(){ return storage[size].FromElem()}

}

. . .

{ elem x;

ElemStack y;

int i;

read(i);

x.ToElem(i); // Coercion to elem type

y.push(x);

...

}

Programming Languages • MISHRA 2008

Lecture #20 • 13

—Slide 13—

Mixin Inheritance

• A ⇒ B — Class B is derived from and is a modi-

fication of class A.

• Mixin Inheritance : Define only the difference be-

tween the base class and the new derived class.

deltaclass StackMod{

int peek(){return storage[size].FromElem();}

}// Does not exist in C++

class NewStack

= class ElemStack + deltaclass StackMod;

Programming Languages • MISHRA 2008

Lecture #20 • 14

—Slide 14—

History of Inheritance

• Emerged from Artificial Intelligence research in the

1970’s on Knowledge representation.

Scott Fahlman’s NETL.

• Developed as a way to organize knowledge efficiently.

• Adopted by object-oriented programming as a way

to organize programs and facilitate reuse.

• Elelphant extends Mammal, PhysicalObject;

//Elephant is a (kind of) mammal

//Elephant is a (kind of) physical object

Clyde extends Elephant;

//Clyde is an (instance of) elephant

◦ Does Clyde have big ears?

—Yes, because it’s an elephant.

◦ Can Clyde lay eggs?

—No, elephant is a mammal.

◦ What will happen to Clyde, if you shoot it while it’s flying?

—It’ll fall, since it’s a physical object.

Programming Languages • MISHRA 2008

Lecture #20 • 15

—Slide 15—

Clyde’s Story

i
s
-
a
-

k
i
n
d
-
o
f

i
s
-
a
-

k
i
n
d
-
o
f

CLYDE

i
n
s
t
a
n
c
e
-
o
f

i
s
-
a
n

MAMMAL

ELEPHANT

PhysicalObject

1. Clyde inherits all the properties of elephants.

2. Elephants inherit all
 the properties of
 mammals.
 Elephants inherit all
 the properties of
 physical objects.

3. Clyde is an instance of elephant.
 But elephant is a kind of (specialization)
 mammal and physical object

4. Elephant is a class. Clyde is its subclass.
 Mammal and PhysicalObject are its
 superclass. (Multiple inheritance).

Programming Languages • MISHRA 2008

Lecture #20 • 16

—Slide 16—

Inheritance Fosters Reuse

• Build a Taxi by starting with an existing car and

modifying it.

• A new legal contract can often be drafted by starting

with existing boilerplate for that type of agreement.

• A new graphical user interface (GUI) control can of-

ten be built by basing it on an existing control.

Programming Languages • MISHRA 2008

Lecture #20 • 17

—Slide 17—

Abstraction Concepts
Specialization & Decomposition

If A ⇒ B means B is a related class to A

what is the relationship between objects of A and B?

storage[100]

Specialization Decomposition

stack

top

record

composite

stack

real stackint stack

• Specialization

– Allows the derived object B to obtain more precise prop-

erties than A.

– Class NewStack is a specialization of ElemStack

– Converse process, Generalization.

• Decomposition

– Separates an abstraction into its components

– Converse process, Aggregation.

Programming Languages • MISHRA 2008

Lecture #20 • 18

—Slide 18—

Abstraction Concepts
Instantiation & Individualization

stack

stack Cstack Bstack A

stack

C AR

AR

Pascal AR

symbol table

Instantiation Individualization

• Instantiation

– Creates instances of a class (copy operation)

– Converse process, Classification.

• Individualization

– Groups similar objects with common purposes

– Converse process, Grouping.

Programming Languages • MISHRA 2008

Lecture #20 • 19

—Last Slide—

Inheritance in Ada 95

• Single Inheritance

Note: Adventure has all the “methods” of Tried_And_Trusted,

but none of Wizard_Stuff

• Mixin Inheritance

– Combines inheritance with static polymorphism

• Containers

• Iterators

• Multiple Views

[End of Lecture #20]

Programming Languages • MISHRA 2008

