V22.0490.001
Special Topics: Programming Languages

B. Mishra
New York University.

Lecture # 19

Programming Languages e MISHRA 2008

LECTURE #19 @ 1

—Slide 1—

Data Abstraction
Encapsulation and Inheritance

e Specification of the Abstract Data Types
(Design of attributes and operation)

e Implementation of Concrete Data Types

e Encapsulation — Usage does not depend on imple-

mentation details.

e Mechanisms
— Subprograms
— Type Definitions
— Inheritance

e History
— (Pascal 1970) Type Definition: defines structure of a

data object with its possible value binding.

— Type can be then bound (as an attribute) to a variable
name

— (Ada, Modula, etc.) Further extended to
set of data objects + set of operations

Programming Languages e MISHRA 2008

LECTURE #19 @ 2

—Slide 2—

Data Abstraction and Encapsulation of
Programmer Defined Data Types

Abstract Data Types
e Set of Data Objects (uses other data type defini-
tions)

o Set of Abstract Operations on those data objects

e Fncapsulation of the Whole in such a way that the
user of the new type cannot manipulate data objects

except by the user defined operations.

1) Package 2) Module 3) Class
4) Flavor 5) Form 6) Structure
7) Cluster

e Distinction between

Ada Packages — Partition the static program text

C++ Class — Also describes dynamic objects (at
compile time)

Programming Languages e MISHRA 2008

LECTURE #19 @ 3

—olide 3—
Stack Example in Ada 95

package STACK_PACKAGE is --specification
procedure PUSH(C: in Character);

function POP return Character;
function EMPTY return Boolean;
function FULL return Boolean;

procedure INIT;
end STACK_PACKAGE;

package body STACK_PACKAGE is —--body
MAX_LEN: constant Integer := 1000;

TOP: Integer := -1
ELEMENTS: array (O0..MAX_LEN -1) of Character;

Programming Languages e MISHRA 2008

LECTURE #19 @ 4

—Slide 4—
STACK_PACKAGE Continued

procedure PUSH(C: in Character) is
begin if TOP < MAX_LEN then
TOP := TOP + 1; ELEMENTS(TOP) := C;
end if; end PUSH;

procedure POP return Character is
begin if TOP > -1 then
TOP := TOP - 1; return ELEMENTS(TOP+1);
end if; end POP;

function EMPTY return Boolean is
begin return TOP = -1; end;

function FULL return Boolean is
begin return TOP = MAX_LEN - 1; end;

procedure INIT is begin null; end;
begin

Top := -1; --initialization
end STACK_PACKAGE;

Programming Languages e MISHRA 2008

LECTURE #19 @ 5

—Slide b—
STACK wn C++

#define MAX_LEN 1000

struct STACK {
char ELEMENTS [MAX_LEN];

int TOP = -1;
enum {EMPTY = -1; FULL = MAX_LEN -1};

void PUSH(char C){TOP++; ELEMENTS[TOP] = C;}
char POP(){TOP--; return (ELEMENT[TOP+1]);}
boolean EMPTY(){return (boolean) (TOP == EMPTY);}
boolean FULL(){return (boolean) (TOP == FULL);}

void INITO{}
};

Programming Languages e MISHRA 2008

LECTURE #19 @ 6

—Slide 6—

Abstraction Facilities

Set of Modules:

Each module performs a limited set of operations
on a limited amount of data.

e Information is encapsulated. Implementation hiding.
Representation independence.

1. User does not need to know the hidden infor-
mation to use the abstraction.
2. User is not permitted to directly use or manip-

ulate hidden information.

e Ada, C++, Smalltalk provide language support for
data encapsulation.

e In Ada, the declaration “is private” for type makes
the internal structure inaccessible. Only subprograms
within the package have access to “private” data.

Programming Languages e MISHRA 2008

LECTURE #19 @ 7

—Slide 7—
Modules € Classes

e Modules:

— Static
— cannot create new modules or copies of existing mod-
ules at run-time

— Interface (Public View)
— Collection of declarations: Types, Variables, Proce-
dures, etc.

— Implementation (Private View)
— Code for the procedures ... may be changed without

affecting the interface.

e Classes:

— Dynamic
— Class of objects may be created and deleted at run
time
— Constructor & Destructor
— Constructor contains initialization process
— Destructor contains clean-up and “last-rites” (will-

and-testament) process

Programming Languages e MISHRA 2008

LECTURE #19 @ 8

—olide 8—
Example in C++

const int max_len = 255;

class string {

char xs;
int len; \\PRIVATE
public: \\PUBLIC form here

string(){s = new char[max_len]; len = max_len - 1;}
string(char *p){len = strlen(p); s = new char[len+1];
strcpy(s,p);} \\CONSTRUCTORS

“string() {delete s;} \\DESTRUCTOR

void operator = (string&);

void operator += (string&);

string operator + (string&);

void assign(char* st){strcpy(s,st); len=strlen(st);?}

void print(){cout << s << "\nLength" << len << "\n";}

};

Programming Languages e MISHRA 2008

LECTURE #19 @ 9

—Slide 9—

string continued

void string::operator = (string& a)
{strcpy(s,a.s); len = a.len;}

void string::operator += (string& a)
{strcpy(s+len,a.s); len += a.len;}

string string::operator + (string& a)
{
string temp(lent+a.len);
strcpy(temp.s,s);
strcpy(temp.s+len, a.s);

return(temp) ;

Programming Languages e MISHRA 2008

LECTURE #19 @ 10

—>lide 10—
string Usage

main()
{
string one("Bud_Why_Err"),
two("Why ask Why"),
both, four;

both = one;

both.print();

both += two;

both.print();

both = both + both;

both.print();

four.assign("This Bud’s for you");
both = four + two;

both.print();

Programming Languages e MISHRA 2008

LECTURE #19 @ 11

—>olide 11—

Implementation Issues
Indirect Encapsulation

Activation Record Activation Record
Package A Package B

-

e The structure of the abstract data type is defined by
the package specification A

e Actual storage is maintained in an activation record
for package A

e In package B, which declares and uses the objet P,
the run-time activation record contains a pointer to
the actual data storage.

e Huge run-time cost — Low recompilation cost

Programming Languages e MISHRA 2008

LECTURE #19 @ 12

—>olide 12—

Implementation Issues
Direct Encapsulation

Activation Record Activation Record
Package A Package B

-

e The structure of the abstract data object is defined
by the specification for package A

e The actual storage for object P is maintained within
the activation record for package B

e High run-time execution efficiency — High compile-
time cost. Use of an abstract data type requires the
compiler to know the details of representation (in-
cluding the private components)

e Ada uses direct encapsulation

Programming Languages e MISHRA 2008

LECTURE #19 @ 13

—-lide 13—
Key Concepts of OOPS

e Abstraction: Interfaces abstract away from implementa-
tion details.

e Encapsulation: Ccontrolled access to the internal states.
Consistent states and consistent state transition.

e Modularity: FEach object has minimal dependence on
other objects. (Inheritance, Friends, Public Access, Im-
port /Export)

e Reuse: C(Code reuse through inheritance and polymor-

phism. Minimal Code modification.

Programming Languages e MISHRA 2008

LECTURE #19 @ 14

—Last Slide—
Key Concepts of OOPS, Contd.

e Invariants: Universal properties that hold of an instance
at all the time (except inside the class’s method).

e Mutability: Allows one to design immutable objects (Java
final, e.g., Strings) that cannot be changed once it is cre-

ated.

[End of Lecture #19]

Programming Languages e MISHRA 2008

