
Lecture #18 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 18

Programming Languages • MISHRA 2008



Lecture #18 • 1

—Slide 1—

Sample Display Configuration

STACK

. . .

DISPLAY

DISPLAY

DISPLAY

DISPLAY

DISPLAY

DISPLAY

Main Program AR

AR(P)

AR(Q)

AR(R)

AR(R’)

AR(R’’)

AR(M)

AR(M)

AR(M)

AR(P)

AR(Q)AR(P)

AR(M)

AR(M)

AR(M)

AR(R)

AR(R’)

AR(R’’)

AR(Q)AR(P)

AR(Q)AR(P)

AR(Q)AR(P)

Programming Languages • MISHRA 2008



Lecture #18 • 2

—Slide 2—

Displays with
Procedure as Parameters

procedure Q(procedure F); {LexLev(Q) = n}

begin ... F(x) ... end;

procedure P; {LexLev(P) = n}

var a, b: T;

procedure R(y: T); begin ... a ... end;

begin

... P; ... Q(R); ... {LexLev(R) = n+1}

end;

{ Q calls R --- LexLev(R) > LexLev(Q) }

• P calls itself recursively

• Eventually, P calls Q and passes R as a parameter.

• P and R have access to a and b; but not Q.

• When Q calls R, R cannot establish access to a and b

from the display of Q.

Programming Languages • MISHRA 2008



Lecture #18 • 3

—Slide 3—

Procedure Parameters (Contd.)

• In order to create the display of R, P must
pass two things

– Address of R, and

– Current environment in the form of AR(P ).

• Initial display elements of R are established
from P’s display (not Q’s).

Programming Languages • MISHRA 2008



Lecture #18 • 4

—Slide 4—

Allocation of Assignable Data Types

• Static Arrays: (Fortran, Pascal)

– Size of the arrays is fixed at the compile time

– Procedure with local arrays

– Has a fixed size AR. Local arrays are allocated on

the stack.

• Non-Static Arrays: (Algol, PL/i)
– Bounds of an array can be determined at run time

– Procedure with local non-static arrays
– Has a variable size AR, whose size can be deter-
mined at run-time

• But in order for the array bounds to be computed, the AR

must have already been established. The expression com-

puting the bounds may involve function calls:

(e.g., var A: array[0..Fib(N)] of integer;)

Programming Languages • MISHRA 2008



Lecture #18 • 5

—Slide 5—

AR for Non-Static Arrays

• Descriptor for the array in AR
– Has place holders for array bound values

– Descriptor size can be computed at compile time

• Steps in Creating AR

1. Establish a “partial” activation record with descriptor
allocated.

2. Compute the bounds for the descriptors filling in the

place-holders.
— Each bound computation may trigger other proce-

dure calls, but as each bound is evaluated, the stack
returns to environment of the AR under consideration
—

3. When all bounds are computed the sizes of the arrays

are known. The activation record is “extended” by
allocating the arrays on top of the stack.

4. The procedure execution begins.

5. When procedure returns the allocated local array dis-
appears along with the AR.

Programming Languages • MISHRA 2008



Lecture #18 • 6

—Slide 6—

Variant Records

• Two Parts:
– Fixed Fields
– Variant Fields

• The field layouts and hence the size of a vari-
ant record depends on — the value of the
tag

• Allocate enough space on the stack so that
the variant part is able to hold the fields in
the largest part

F1 F2 TAG V1 V2 Vk. . .

Variant PartFixed
Part

Tag
Field

Programming Languages • MISHRA 2008



Lecture #18 • 7

—Slide 7—

Parameter Passing

• Parameter Passing:

– Call-by-Value
– Call-by-Reference

– Call-by-Value/Result
– Call-by-Name

• Runtime Representation:

– Caller: Stores the actual parameters
– Callee: Uses the parameters in the body

• Actual Parameter List = Contiguous area on top of the

stack at the very front of the callee’s AR.

Left-to-Right

Order

Actual

Parameters

Callee’s AR

Caller’s AR Right-most Parameter

Left-most Parameter

Programming Languages • MISHRA 2008



Lecture #18 • 8

—Slide 8—

Evaluation of Actual Parameter List

• Assume Number of parameters to a given proce-

dure is fixed at compile time.

• Steps

-1- As each actual parameter is evaluated, it is pushed

on the stack. (Evaluation proceeding from left-to-

right order — possibly triggering other calls)

-2- Computation proceeds at top of the stack. Pa-

rameters already computed are not disturbed

-3- When callee receives control, its actuals are on

top of the stack & are treated as part of the callee’s

AR

• Variable number of parameters : The callee must

know how many parameters is received. Usually kept

in an extra word on top of the stack.

Programming Languages • MISHRA 2008



Lecture #18 • 9

—Slide 9—

Call-By-Value

• Actuals are evaluated in the current context (using

caller’s AR).

• Computed values are pushed onto the stack in left-

to-right order. They become part of the callee’s AR

• These values may be modified by the callee.

Programming Languages • MISHRA 2008



Lecture #18 • 10

—Slide 10—

Call-By-Reference

• The addresses of the actuals are computed in the

caller’s AR.

• The addresses are placed on the stack in left-to-right

order in the callee’s AR

• The callee references these parameters indirectly through

the appropriate parameter list location

• Note: The address is computed by the caller in the

current context prior to the call and remains fixed

during the call

(e.g. Add(A[i,j], A[i+1, j+1]))

A change to i and/or j by the callee does not change

the addresses of the actuals, A[i,j] or A[i+1,j+1].

Programming Languages • MISHRA 2008



Lecture #18 • 11

—Slide 11—

Call-By-Value/Result

• Actual parameters are passed as in call-by-reference.

• The callee copies the values of formals into local vari-

ables in its AR.

• The callee executes its body, while accessing only the

local variables.

• Before returning the control, the callee copies the

values of local variables back into actual parameter

locations.

• Alternatively , the caller passes the parameters as for

call-by-value and copies the final values back after the

callee finishes.

Programming Languages • MISHRA 2008



Lecture #18 • 12

—Slide 12—

Call-By-Name [Algol60]

• Two Problems

– Evaluation occurs in the environment of the caller

(not callee)

– Necessary to change the environments to that of

the caller every time a name parameter is ac-

cessed.

– High Overhead — in representation and proce-

dure invocation.

• Main Idea

Pass a function (not a value or location) as the actual

parameter:

THUNK: ∅ → L-values

– Takes no parameter itself

– Delivers the address of its corresponding actual in

the environment of the caller

Programming Languages • MISHRA 2008



Lecture #18 • 13

—Slide 13—

Thunks

Note

• Thunks don’t exist in the source. Generated
at the call site by the compiler

• Thunks inherit the environment of the caller
as is they were declared local to the caller

• Each time callee needs an actual, it invokes
the thunk and uses the L-value returned to
access the actual name parameter.

Programming Languages • MISHRA 2008



Lecture #18 • 14

—Slide 14—

Dynamic Storage

type ref = ^T;

var x : ref;

procedure P; begin ... new(x) ... end;

• P allocates an object A (anonymous)

• Assigns the L-value of A to the non-local
variable x.

• Object A must outlive the activation of P &
hence, must not reside P ’s activation record

(If A is allocated on the stack and outlives
P , it leaves a hole in the stack).

Programming Languages • MISHRA 2008



Lecture #18 • 15

—Last Slide—

Heap Allocation

Storage whose extent is not tied to a
particular scope cannot be allocated on
the stack.

STACK HEAP

Heap allocation is done on the free space

in heap in the direction of the stack.

A Block of Memory

• Collision: Error “Stack overruns heap.”

• Garbage Collection

[End of Lecture #18]

Programming Languages • MISHRA 2008


